On the possibility of measuring $\mathcal{B}\left(B_{s} \rightarrow \tau \tau\right)$ @ LHCb

Alessandro Mordá*

CPPM \& CPT - Marseille

Flavor of New Physics in $b \rightarrow s$ transitions
Institut Henri Poincaré - Paris
2-3 Juin 2014

*Supported by the OCEVU Labex (ANR-11-LABX-0060) funded by the
"Investissements d'Avenir" French government program

Outlook

Motivations

Challenges

Some ideas

Conclusions

$B_{s}^{0} \rightarrow \tau \tau$: motivations

No evidence of huge New Physics (NP) effects in $B_{s} \rightarrow \mu \mu$, but some hints that NP could manifest in processes involving the $3^{\text {rd }}$ generation...

Observable	Discrepancy wrt SM
$\left.\frac{\mathcal{B}\left(B \rightarrow D\left(D^{\star}\right) \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D\left(D^{\star}\right) \ell \nu_{\ell}\right)}\right\|_{\ell=\mu, e}$	3.4σ
$A_{S L}^{b}$ like-sign dimuon asymmetry	3.9σ

- $B_{s}^{0} \rightarrow \tau \tau$ a good candidate where to look for NP effects even if these are absents in other $B_{(s)}^{0}$ decays [Dighe et al, arXiv:1207.1324v2]:
- In SM we have [Bobeth et al., arXiv:1311.0903v1] :

$$
\begin{aligned}
& \mathcal{B}\left(B_{s}^{0} \rightarrow \tau^{+} \tau^{-}\right)=(7.73 \pm 0.49) \times 10^{-7} \\
& \mathcal{B}\left(B_{d}^{0} \rightarrow \tau^{+} \tau^{-}\right)=(2.22 \pm 0.04) \times 10^{-8}
\end{aligned}
$$

- respecting all the constraints on other B_{s}^{0} decays it might be as large as 15%
- in models with a flavor depending Z^{\prime} coupling it might be up to 5%
- in models with scalar Leptoquark it might be up to 0.3\%

- Current status:

- $\mathcal{B}\left(B_{d}^{0} \rightarrow \tau^{+} \tau^{-}\right)<4 \cdot 10^{-4}$ @ 90% CL by BaBar
- $\mathcal{B}\left(B_{s}^{0} \rightarrow \tau^{+} \tau^{-}\right)$has not yet been constrained

Challenging issues

τ have a very short lifetime \Longrightarrow we must reconstruct them from their daughter particles But...

- at least one neutrino for each τ decay (1 for hadronic or 2 for leptonic channels) \Rightarrow at least 2 unreconstructable neutrinos and so...
- we cannot completely reconstruct the two τ momenta, hence neither $\tau^{ \pm}$invariant mass nor the decay topology
- a $B_{(s)}^{0} \rightarrow \mu \mu$-like analysis (i.e. 2D classification geometry \otimes invariant mass) is not straightforward
B_{s}
τ
visible (charged) tracks
ν \& neutral tracks

The τ decay final states

Two possible τ decay modes are used:

- both $\tau \rightarrow 3 \pi \nu_{\tau}$ (covered here !)

Tau decay vertexes

B production vertex

- only 2 neutrinos
- 2 3-prong vertexes
- reconstruction of the decay plane: kinematic constraints \& partial neutrino momentum reconstruction
- needs 6-charged tracks in the detector acceptance
- $\mathcal{B}\left(\tau \rightarrow 3 \pi \nu_{\tau}\right)=9.31 \%$
- $\mathcal{B}\left(B_{s} \rightarrow\right.$ final state $) \simeq 6.7 \times 10^{-9}$
- $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}, \tau \rightarrow 3 \pi \nu_{\tau}$

Tau decay vertex

B production vertex

Muon track

- 3 neutrinos
- only one 3-prong vertex
- unreconstructable decay plane: approximate (partial) reconstruction of the missing ν-momentum still possible
- "only" 4 charged tracks in the detector acceptance \oplus higher trigger efficiency
- $\mathcal{B}\left(\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}\right)=17.41 \%$
- $\mathcal{B}\left(B_{s} \rightarrow\right.$ final state $) \simeq 1.25 \times 10^{-8}$

Same effective \mathcal{B} as $B_{s} \rightarrow \mu \mu$!

The $\tau \rightarrow 3 \pi \nu_{\tau}$ decay chain

The $\tau \rightarrow 3 \pi \nu_{\tau}$ decay proceeds through the a_{1} and ρ resonances, i.e.

$$
\tau^{ \pm} \rightarrow a_{1}^{ \pm} \nu \rightarrow \rho^{0} \pi^{ \pm} \nu \rightarrow \pi^{+} \pi^{-} \pi^{ \pm} \nu
$$

- it helps to improve the τ selection
- makes possible to define control regions in the Dalitz plane signal

Sources of background - $\tau \rightarrow 3 \pi \nu$

The following kind of background can fake the $\tau \rightarrow 3 \pi \nu$ decay:

- combinatorial τ : 3 random π tracks forming a common displaced vertex - characterized using a sample of "dataSS", i.e. $B_{s} \rightarrow \tau^{ \pm} \tau^{ \pm}$(nonphysical) events
- this sample contains true particles $\left(\tau \& D_{(s)}^{(\star)}\right)$
- look at the region in the Dalitz plane outside the resonances structures
- true particles: prompt $D_{(s)}^{(\star)} \rightarrow 3 \pi X$ misidentified as $\tau \rightarrow 3 \pi \nu$

	Mass (MeV)	lifetime $\left(10^{-15} s\right)$	Spin
τ	1776	290	$1 / 2$
D	1869	1040	0^{-}
D_{s}	1968	500	0^{-}

Use of Dalitz plane may improve the rejection of D_{s} (depending on the resonances it goes through) but not of the D, because it proceeds through the same resonances of the τ.

Sources of background - $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

The following processes could appear very similar to the $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$ signal:

- 2 "combinatorial" τ
- 2 true τ coming from 2 semileptonic $B_{(s)}$ decays
- 1 or $2 D_{(s)}^{(\star)}$ from 2 hadronic or semileptonic $B_{(s)}$ decays
- studied using the sample of "dataSS" using all the Dalitz plane
- resonant: one hadronic or semileptonic $B_{(s)}$ decay with misID $D_{(s)}^{(\star)}$ (due to $\left.D_{(s)}^{(\star)} \rightarrow \tau \nu_{\tau} X\right)$
- Monte Carlo generated samples for some of the resonant modes:

Decay chain	\mathcal{B}	$\mathcal{B} / \mathcal{B}_{\text {sig }}$
$B^{0} \rightarrow D 3 \pi, D \rightarrow 3 \pi \pi^{0}$	7.23×10^{-5}	1.19×10^{4}
$B^{0} \rightarrow D^{\star} 3 \pi, D^{\star} \rightarrow D \pi^{0}, D \rightarrow 3 \pi \pi^{0}$	2.42×10^{-5}	3.98×10^{3}
$B^{0} \rightarrow D^{\star} 3 \pi \pi^{0}, D^{\star} \rightarrow D \pi^{0}, D \rightarrow 3 \pi \pi^{0}$	6.10×10^{-5}	1.00×10^{4}
$B^{0} \rightarrow D^{\star} \omega \pi, D^{\star} \rightarrow D \pi^{0}, D \rightarrow 3 \pi \pi^{0}, \omega \rightarrow 2 \pi \pi^{0}$	8.94×10^{-6}	1.47×10^{3}
$B_{s} \rightarrow D_{s} \tau \nu, D_{s} \rightarrow \tau \nu, \tau \rightarrow 3 \pi \nu$	4.70×10^{-6}	7.01×10^{2}
$B_{s} \rightarrow D_{s} 3 \pi, D_{s} \rightarrow \tau \nu$	3.28×10^{-5}	5.40×10^{3}
$B^{+} \rightarrow D^{\star} 3 \pi \pi^{0}, D^{0} \rightarrow K 3 \pi$	1.45×10^{-3}	2.38×10^{5}
$B^{+} \rightarrow D^{\star} 3 \pi \pi^{0}, D^{0} \rightarrow K 3 \pi \pi^{0}$	7.56×10^{-2}	1.24×10^{7}
$B^{0} \rightarrow D \tau \nu, D \rightarrow \tau \nu$	1.14×10^{-7}	1.87×10^{1}
$B^{0} \rightarrow D \tau \nu, D \rightarrow 3 \pi \pi^{0}$	1.15×10^{-5}	1.89×10^{3}

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

In the events we select we know the following quantities:

- B origin vertex
- Sd sides of triangle $\vec{w}_{ \pm}$
- 4-momenta $p_{ \pm}^{\mu}$ of $(3 \pi)_{ \pm}$system

```
B production vertex
```

Let's assume that the pattern we observe is generated by a $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$ chain.

Can we reconstruct two τ candidates momenta?

Preliminar example. 1D case:

Production vertex

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

What about the case with 2τ, when their production point is not known?
In this case we have to fix 24 -vectors $p_{+}^{\mu}, p_{-}^{\mu} \Rightarrow 8$ unknowns

A first attempt was suggested in Anne Keune's doctoral thesis (reported also in [LHCb-INT-2011-039]):
expressing the 2τ momenta in cartesian coordinates in 3D space (non covariant approach) and imposing:

- B, τ, ν mass constraints
- momentum conservation in $B_{s} \rightarrow \tau \tau$ \& planarity of the decay
the solution of the problem is (one of) the root of a $8^{\text {th }}$ degree polynom.
Still some issues:
- no analytic solutions
- numerical instability
- no more than 4 solutions: why?
- no variables related to the invariant mass: only the $B_{s} \& \tau_{ \pm}$decay time

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

We propose a slightly different approach, differing from the previous one in the following point:

- keep manifest Lorentz-covariance
- different choice of unknown momenta

Let's define:

$$
\begin{equation*}
W_{ \pm}^{\mu} \equiv\left(w_{ \pm}^{0}, \vec{w}_{ \pm}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
W \equiv\left(W_{+}^{\mu}, W_{-}^{\mu}\right) \quad, \quad P \equiv\left(p_{+}^{\mu}, p_{-}^{\mu}\right) \tag{2}
\end{equation*}
$$

We have that (from momentum conservation in $B \rightarrow \tau \tau$ and 4-velocity definition)

$$
\begin{equation*}
W=H \cdot P \tag{3}
\end{equation*}
$$

with

$$
H \equiv\left(\begin{array}{cc}
\hat{\tau}_{B}+\hat{\tau_{+}} & \hat{\tau_{B}} \tag{4}\\
\hat{\tau}_{B} & \hat{\tau}_{B}+\tau_{-}
\end{array}\right)=\hat{\tau_{B}} \cdot\left(\begin{array}{cc}
1+t_{+} & 1 \\
1 & 1+t_{-}
\end{array}\right)
$$

being $\hat{\tau}_{i} \equiv \frac{\tau_{i}}{m_{i}}$ and $t_{ \pm} \equiv \frac{\hat{\tau}_{ \pm}}{\hat{\tau}_{B}}$.

H is Lorentz-invariant!

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

H is a real 2×2 symmetric matrix. Let's diagonalize it:

$$
\begin{equation*}
H=R(\theta) \cdot D_{\lambda} \cdot R^{-1}(\theta) \tag{5}
\end{equation*}
$$

being

$$
D_{\lambda} \equiv \hat{\tau}_{B} \cdot\left(\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right) \quad, \quad R(\theta) \equiv\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

3 parameters in total: $\left(\theta, \lambda_{+}, \lambda_{-}\right)$. What is their physical "meaning" ?
Let's look at some limit case:

- if $t_{+}=t_{-} \equiv \delta$ we have $\left(\theta=\frac{\pi}{4}, \lambda_{+}=2+\delta, \lambda_{-}=\delta\right)$
- if $\delta=0 \mathrm{H}$ is not invertible: both τ are created and decay at the same moment \Rightarrow no triangle
- if $t_{+} \neq t_{-}$we have $\cos (\theta) \simeq \cos \left(\frac{\pi}{4}\right)+\mathcal{O}\left(t_{+}-t_{-}\right)$
θ is a measure of the asymmetry of the triangle in the proper time dimension of each τ

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Distribution of the θ angle for Monte Carlo generated signal events

Distribution of the 2 eigenvalues $\lambda_{+} \& \lambda_{-}$for Monte Carlo generated signal events

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Using the " rotated" sides \& momenta

$$
\begin{equation*}
\tilde{W} \equiv R^{-1}(\theta) \cdot W \quad, \quad \tilde{P} \equiv R^{-1}(\theta) \cdot P \tag{6}
\end{equation*}
$$

and imposing

- mass-shell condition for $p_{ \pm}$
- the constraint on the direction of $\overrightarrow{\tilde{p}}_{ \pm}$
- the constraint on $\left(p^{\mu} \cdot p_{\mu}^{(3 \pi)}\right)_{ \pm}$
we end up with a system of 2 equations of $2^{\text {nd }}$ degree in two unknowns $x \& y$ (the norm of $\overrightarrow{\tilde{p}}_{ \pm}$) to be solved as a function of the parameter θ :

$$
\left\{\begin{array}{l}
P_{\theta}^{(2)}(x, y)=0 \\
Q_{\theta}^{(2)}(x, y)=0
\end{array}\right.
$$

Two possibility to solve this system:

- solve for $x(\theta) \& y(\theta)$ and fix θ using the constraint on $p_{+}^{\mu} \cdot p_{-\mu}$.
- substitute θ with its average value $\bar{\theta}=\frac{\pi}{4}$ (i.e. same decay time of the 2τ)

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Solving the previous system we end up with an equation on x in the form

$$
\begin{equation*}
A \cdot x^{4}+B \cdot x^{3}+C \cdot x^{2}+D x+E=0 \tag{7}
\end{equation*}
$$

where A, B, C, D, E are functions of the observables and the average value $\bar{\theta}$.

- being a $4^{\text {th }}$ degree polynom solutions are analytical
- for signal events there must exist at least one real positive solution
- even if, due to
- detector resolution
- approximation $\theta \rightarrow \bar{\theta}$
- γ-radiation in the final state
eq.(7) doesn't have real solutions, imaginary solutions and quantities related to them could still help to discriminate signal vs background
- the coefficients A, B, C, D, E could already be used as discriminating variables
- also the discriminants from which depends the existence of real positive solutions of (7)

Aspects to improve:

- find the optimal set of variables to be used for sig-bkg discrimination
- find a better approximation of the θ angle as a function of measurables quantities

Conclusions

- A lot of work going on to set un upper limit on the $\mathcal{B}\left(B_{s} \rightarrow \tau \tau\right)$
- Only a part of the effort devoted to this search has been presented today.
- definition and optimization of topological \& geometrical variables
- development of new tools for the topological reconstruction of each events
- development of Multi Variate Analysis selection chain
- The measure is really challenging and requires a good understanding both of the combinatorial background and of the resonant decays
- all the $3.1 f^{-1}$ collected during the Run I of LHC is being analyzed
- an upper limit of $\mathcal{O}\left(10^{-3}\right)$ should be reachable with the current dataset
- to improve this limit the crucial point is the understanding of the exclusives modes
- LHCb is the only experiment which will be able to perform this kind of measurement in the coming 20 years
- Belle II will not have enough statistics
- the general purpose LHC experiments (CMS \& ATLAS) do not have a dedicated trigger

Thanks for your attention!

