On the possibility of measuring $\mathcal{B}(B_s \to \tau \tau)$ @ LHCb

Alessandro Mordá*

CPPM & CPT - Marseille

Flavor of New Physics in $b \rightarrow s$ transitions Institut Henri Poincaré - Paris 2-3 Juin 2014

イロト イポト イヨト イヨト

*Supported by the OCEVU Labex (ANR-11-LABX-0060) funded by the "Investissements d'Avenir" French government program

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_S \rightarrow \tau \tau)$ @ LHCb

▲ 重 ▶ 重 ∽ Q ペ 2 June, 2014 1 / 16

Outlook

- Motivations
- Challenges
- Some ideas
- Conclusions

イロト イポト イヨト イヨト

$B_s^0 \rightarrow \tau \tau$: motivations

No evidence of huge New Physics (NP) effects in $B_s \rightarrow \mu\mu$, but some hints that NP could manifest in processes involving the 3^{rd} generation...

Observable	Discrepancy wrt SM
$\frac{\mathcal{B}(B \to D(D^*)\tau\nu_{\tau})}{\mathcal{B}(B \to D(D^*)\ell\nu_{\ell})} _{\ell=\mu,e}$	3.4σ
A ^b _{SL} like-sign dimuon asymmetry	3.9σ

• $B_s^0 \rightarrow \tau \tau$ a good candidate where to look for NP effects even if these are absents in other $B_{(s)}^0$ decays [Dighe *et al*, arXiv:1207.1324v2]:

In SM we have [Bobeth et al., arXiv:1311.0903v1] :

$$\begin{split} \mathcal{B}(B^0_s \to \tau^+ \tau^-) &= (7.73 \pm 0.49) \times 10^{-7} \\ \mathcal{B}(B^0_d \to \tau^+ \tau^-) &= (2.22 \pm 0.04) \times 10^{-8} \end{split}$$

- respecting all the constraints on other B_s^0 decays it might be as large as 15%
- in models with a flavor depending Z' coupling it might be up to 5%
- in models with scalar Leptoquark it might be up to 0.3%
- Current status:
 - ▶ $\mathcal{B}(B^0_d
 ightarrow au^+ au^-) < 4 \cdot 10^{-4}$ @ 90% CL by BaBar
 - $\mathcal{B}(B^0_s o au^+ au^-)$ has not yet been constrained

Alessandro Mordá (CPPM & CPT)

・ロト ・ 日本 ・ 日本 ・ 日本 ・ 今日・

Challenging issues

 τ have a very short lifetime \Longrightarrow we must reconstruct them from their daughter particles But...

- ▶ at least one neutrino for each τ decay (1 for hadronic or 2 for leptonic channels) \Rightarrow at least 2 unreconstructable neutrinos and so...
- \blacktriangleright we cannot completely reconstruct the two τ momenta, hence neither τ^\pm invariant mass nor the decay topology
- ▶ a $B^0_{(s)} \rightarrow \mu\mu$ -like analysis (*i.e.* 2D classification geometry \otimes invariant mass) is not straightforward

The τ decay final states

Two possible τ decay modes are used:

- only 2 neutrinos
- 2 3-prong vertexes
- reconstruction of the decay plane: kinematic constraints & partial neutrino momentum reconstruction
- needs 6-charged tracks in the detector acceptance
- $\mathcal{B}(au
 ightarrow 3\pi \nu_{ au}) = 9.31\%$
- $\blacktriangleright \ {\cal B}(B_s \to \text{ final state}) \simeq 6.7 \times 10^{-9}$

• $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}, \tau \rightarrow 3\pi \nu_{\tau}$

- 3 neutrinos
- only one 3-prong vertex
- unreconstructable decay plane: approximate (partial) reconstruction of the missing v-momentum still possible

- $\mathcal{B}(\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}) = 17.41\%$
- $\blacktriangleright \ {\cal B}(B_s \to \, \text{final state}) \simeq 1.25 \times 10^{-8}$

Same effective \mathcal{B} as $B_s \to \mu \mu$!

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_S \rightarrow \tau \tau)$ @ LHCb

The $\tau \rightarrow 3\pi \nu_{\tau}$ decay chain

The $\tau \rightarrow 3\pi \nu_{\tau}$ decay proceeds through the a_1 and ρ resonances, *i.e.*

$$\tau^{\pm} \rightarrow a_1^{\pm} \nu \rightarrow \rho^0 \pi^{\pm} \nu \rightarrow \pi^+ \pi^- \pi^{\pm} \nu$$

- it helps to improve the τ selection
- makes possible to define control regions in the Dalitz plane

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_S \to au au)$ @ LHCb

2 June, 2014 6 / 16

イロト 不得下 イヨト イヨト

Sources of background - $\tau \rightarrow 3\pi\nu$

The following kind of background can fake the $\tau \rightarrow 3\pi\nu$ decay:

combinatorial τ : 3 random π tracks forming a common displaced vertex

- characterized using a sample of "dataSS", i.e. $B_s \to \tau^\pm \tau^\pm$ (nonphysical) events
- this sample contains true particles ($\tau \& D_{(s)}^{(\star)}$)
- . look at the region in the Dalitz plane outside the resonances structures
- ▶ true particles: prompt $D_{(s)}^{(\star)} \rightarrow 3\pi X$ misidentified as $\tau \rightarrow 3\pi \nu$

	Mass (MeV)	lifetime $(10^{-15} s)$	Spin
τ	1776	290	1/2
D	1869	1040	0-
Ds	1968	500	0-

Use of Dalitz plane may improve the rejection of D_s (depending on the resonances it goes through) but not of the D, because it proceeds through the same resonances of the τ .

Sources of background - $B_s \rightarrow \tau \tau \rightarrow (3\pi\nu)(3\pi\nu)$

The following processes could appear very similar to the $B_s \rightarrow \tau \tau \rightarrow (3\pi\nu)(3\pi\nu)$ signal:

- 2 "combinatorial" τ
- 2 true τ coming from 2 semileptonic $B_{(s)}$ decays
- ▶ 1 or 2 $D_{(s)}^{(\star)}$ from 2 hadronic or semileptonic $B_{(s)}$ decays
- studied using the sample of "dataSS" using all the Dalitz plane
 - <u>resonant</u>: one hadronic or semileptonic $B_{(s)}$ decay with misID $D_{(s)}^{(\star)}$ (due to $D_{(s)}^{(\star)} \rightarrow \tau \nu_{\tau} X$)
- Monte Carlo generated samples for some of the resonant modes:

Decay chain	B	$\mathcal{B}/\mathcal{B}_{sig}$
$B^0 ightarrow D3\pi, D ightarrow 3\pi\pi^0$	7.23×10^{-5}	$1.19 imes10^4$
$B^0 \rightarrow D^* 3\pi, D^* \rightarrow D\pi^0, D \rightarrow 3\pi\pi^0$	2.42×10^{-5}	$3.98 imes 10^3$
$B^0 \rightarrow D^* 3\pi \pi^0$, $D^* \rightarrow D\pi^0$, $D \rightarrow 3\pi \pi^0$	$6.10 imes 10^{-5}$	$1.00 imes 10^4$
$B^0 \rightarrow D^* \omega \pi$, $D^* \rightarrow D \pi^0$, $D \rightarrow 3 \pi \pi^0$, $\omega \rightarrow 2 \pi \pi^0$	$8.94 imes 10^{-6}$	$1.47 imes 10^3$
$B_s \rightarrow D_s \tau u$, $D_s \rightarrow \tau u$, $\tau \rightarrow 3 \pi u$	4.70×10^{-6}	7.01×10^{2}
$B_s ightarrow D_s 3\pi, D_s ightarrow au u$	3.28×10^{-5}	$5.40 imes 10^3$
$B^+ ightarrow D^{\star} 3\pi \pi^0$, $D^0 ightarrow K 3\pi$	1.45×10^{-3}	$2.38 imes 10^5$
$B^+ ightarrow D^\star 3\pi\pi^0, D^0 ightarrow K3\pi\pi^0$	$7.56 imes 10^{-2}$	$1.24 imes 10^7$
$B^0 ightarrow D au u, D ightarrow au u$	1.14×10^{-7}	$1.87 imes 10^1$
$B^0 \rightarrow D \tau \nu, D \rightarrow 3 \pi \pi^0$	$1.15 imes10^{-5}$	1.89×10^3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_{S} \rightarrow \tau \tau)$ @ LHCb

In the events we select we know the following quantities:

- ► *B* origin vertex
- 3d sides of triangle \overrightarrow{w}_{\pm}
- 4-momenta p^{μ}_{\pm} of $(3\pi)_{\pm}$ system

Tau decay vertexes

Let's assume that the pattern we observe is generated by a $B_s \rightarrow \tau \tau \rightarrow (3\pi\nu)(3\pi\nu)$ chain. Can we reconstruct two τ candidates momenta?

B production vertex

Preliminar example. 1D case:

- $\blacktriangleright \ \tau$ production and decay vertexes are known $\Rightarrow \tau$ flight direction is known
- 4 unknowns: the p_{τ}^{μ} momentum components
- \blacktriangleright the norm of the τ momentum is defined up to a twofold ambiguity
- ▶ technique used for the τ momentum reconstruction in the $H \rightarrow \tau \tau$ searches

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring ${\cal B}(B_{\rm S}\,
ightarrow\, au\, au)$ @ LHCb

What about the case with 2 τ , when their production point is not known?

In this case we have to fix 2 4-vectors p_+^μ , p_-^μ \Rightarrow 8 unknowns

A first attempt was suggested in Anne Keune's doctoral thesis (reported also in [LHCb-INT-2011-039]):

expressing the 2 τ momenta in cartesian coordinates in 3D space (non covariant approach) and imposing:

- B, τ , ν mass constraints
- ▶ momentum conservation in $B_s \rightarrow \tau \tau$ & planarity of the decay

the solution of the problem is (one of) the root of a 8^{th} degree polynom. Still some issues:

- no analytic solutions
- numerical instability
- no more than 4 solutions: why?
- no variables related to the invariant mass: only the B_s & τ_{\pm} decay time

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_S
ightarrow au au)$ @ LHCb

2 June, 2014 10 / 16

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

We propose a slightly different approach, differing from the previous one in the following point:

- keep manifest Lorentz-covariance
- different choice of unknown momenta

Let's define:

$$W^{\mu}_{\pm} \equiv (w^0_{\pm}, \vec{w}_{\pm}) \tag{1}$$

and

$$W \equiv (W^{\mu}_{+}, W^{\mu}_{-}) \quad , \quad P \equiv (p^{\mu}_{+}, p^{\mu}_{-})$$
 (2)

We have that (from momentum conservation in $B \rightarrow \tau \tau$ and 4-velocity definition)

$$W = H \cdot P \tag{3}$$

with

$$H \equiv \begin{pmatrix} \hat{\tau_B} + \hat{\tau_+} & \hat{\tau_B} \\ \hat{\tau_B} & \hat{\tau_B} + \hat{\tau_-} \end{pmatrix} = \hat{\tau_B} \cdot \begin{pmatrix} 1 + t_+ & 1 \\ 1 & 1 + t_- \end{pmatrix}$$
(4)

being $\hat{\tau}_i \equiv \frac{\tau_i}{m_i}$ and $t_{\pm} \equiv \frac{\hat{\tau}_{\pm}}{\hat{\tau}_B}$.

H is Lorentz-invariant!

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_{S} \rightarrow \tau \tau)$ @ LHCb

2 June, 2014 11 / 16

H is a real 2×2 symmetric matrix. Let's diagonalize it:

$$H = R(\theta) \cdot D_{\lambda} \cdot R^{-1}(\theta) \tag{5}$$

being

$$D_{\lambda} \equiv \hat{\tau}_B \cdot \begin{pmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{pmatrix}$$
 , $R(\theta) \equiv \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

3 parameters in total: $(\theta, \lambda_+, \lambda_-)$. What is their physical "meaning" ?

Let's look at some limit case:

- if $t_+ = t_- \equiv \delta$ we have $(\theta = \frac{\pi}{4}, \lambda_+ = 2 + \delta, \lambda_- = \delta)$
- if $\delta = 0$ H is not invertible: both τ are created and decay at the same moment \Rightarrow no triangle
- if $t_+ \neq t_-$ we have $\cos(\theta) \simeq \cos(\frac{\pi}{4}) + \mathcal{O}(t_+ t_-)$

θ is a measure of the asymmetry of the triangle in the proper time dimension of each τ

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_S \rightarrow \tau \tau)$ @ LHCb

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Distribution of the $\boldsymbol{\theta}$ angle for Monte Carlo generated signal events

Distribution of the 2 eigenvalues λ_+ & λ_- for Monte Carlo generated signal events

イロト 不得下 イヨト イヨト

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_S \rightarrow \tau \tau)$ @ LHCb

2 June. 2014 13 / 16

Using the "rotated" sides & momenta

$$\tilde{W} \equiv R^{-1}(\theta) \cdot W$$
 , $\tilde{P} \equiv R^{-1}(\theta) \cdot P$ (6)

and imposing

- mass-shell condition for p±
- the constraint on the direction of $\overrightarrow{\tilde{p}}_{\pm}$
- the constraint on $(p^{\mu} \cdot p^{(3\pi)}_{\mu})_{\pm}$

we end up with a system of **2** equations of 2^{nd} degree in two unknowns x & y (the norm of \vec{p}_{\pm}) to be solved as a function of the parameter θ :

$$\begin{cases} P_{\theta}^{(2)}(x,y) = 0\\ Q_{\theta}^{(2)}(x,y) = 0 \end{cases}$$

Two possibility to solve this system:

- ▶ solve for $x(\theta) \& y(\theta)$ and fix θ using the constraint on $p^{\mu}_{+} \cdot p_{-\mu}$.
- substitute θ with its average value $\overline{\theta} = \frac{\pi}{4}$ (*i.e.* same decay time of the 2 τ)

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_5 \rightarrow \tau \tau)$ @ LHCb

A D A A B A A B A A B A

² June, 2014 14 / 16

Solving the previous system we end up with an equation on \times in the form

$$A \cdot x^{4} + B \cdot x^{3} + C \cdot x^{2} + Dx + E = 0$$
⁽⁷⁾

where A, B, C, D, E are functions of the observables and the average value $\overline{\theta}$.

- being a 4th degree polynom solutions are analytical
- for signal events there must exist at least one real positive solution
- even if, due to
 - detector resolution
 - ▶ approximation $\theta \to \overline{\theta}$
 - γ-radiation in the final state

eq.(7) doesn't have real solutions, imaginary solutions and quantities related to them could still help to discriminate signal vs background

- ▶ the coefficients A, B, C, D, E could already be used as discriminating variables
- also the discriminants from which depends the existence of real positive solutions of (7)

Aspects to improve:

- find the optimal set of variables to be used for sig-bkg discrimination
- find a better approximation of the θ angle as a function of measurables quantities

Alessandro Mordá (CPPM & CPT)

E AQA

4 D N 4 D N 4 D N 4 D N

Conclusions

- A lot of work going on to set un upper limit on the $\mathcal{B}(B_s o au au)$
- Only a part of the effort devoted to this search has been presented today.
 - definition and optimization of topological & geometrical variables
 - development of new tools for the topological reconstruction of each events
 - development of Multi Variate Analysis selection chain

• The measure is really challenging and requires a good understanding both of the combinatorial background and of the resonant decays

- ▶ all the $3.1f^{-1}$ collected during the Run I of LHC is being analyzed
- ▶ an upper limit of $\mathcal{O}(10^{-3})$ should be reachable with the current dataset
- ▶ to improve this limit the crucial point is the understanding of the exclusives modes

• LHCb is the only experiment which will be able to perform this kind of measurement in the coming 20 years

- Belle II will not have enough statistics
- ▶ the general purpose LHC experiments (CMS & ATLAS) do not have a dedicated trigger

Thanks for your attention !

Alessandro Mordá (CPPM & CPT)

On the possibility of measuring $\mathcal{B}(B_S \rightarrow \tau \tau)$ @ LHCb

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで