SUSY facing $b \to s\ell\ell$

Nazila Mahmoudi

LPC Clermont-Ferrand & CERN TH

B physics observables are essential in the search for new physics

B factories: important results in particular for inclusive $b \rightarrow s$ transitions

LHC:

- First observation of $B_s \rightarrow \mu^+ \mu^-$
- Another important decay: $B o K^* \mu^+ \mu^-$

 \rightarrow large variety of experimentally accessible observables using angular distributions

- \rightarrow complementary information
- \rightarrow issue of hadronic uncertainties in exclusive modes

$\mathsf{BR}(B_s \to \mu^+ \mu^-)$

Relevant operators:

Largest contributions in SM from a Z penguin top loop (75%) and a W box diagram (24%)

First experimental evidence:

$$BR(B_s \to \mu^+ \mu^-) = (3.2^{+1.4}_{-1.2} (stat)^{+0.5}_{-0.3} (syst)) \times 10^{-9}$$

$${}^{\text{LHCb, Phys. Rev. Lett. 110 (2013) 021801}}$$
Combined LHCb/CMS result:
$$BR(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

$${}^{\text{CMS PAS BPH-13-007, LHCb-CONF-2013-012}}$$

 \rightarrow Measurement consistent with the SM prediction! \rightarrow Crucial to have a clear estimation of the uncertainties!

Nazila Mahmoudi

$BR(B_s \rightarrow \mu^+ \mu^-)$

Relevant operators:

Largest contributions in SM from a Z penguin top loop (75%) and a W box diagram (24%)

First experimental evidence:

 $\begin{array}{l} {\rm BR}(B_s \to \mu^+ \mu^-) = \left(3.2^{+1.4}_{-1.2}({\rm stat})^{+0.5}_{-0.3}({\rm syst})\right) \times 10^{-9} \\ {}_{\rm LHCb,\ Phys.\ Rev.\ Lett.\ 110\ (2013)\ 021801} \\ {\rm Combined\ LHCb/CMS\ result:\ BR}(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9} \\ {}_{\rm CMS\ PAS\ BPH-13-007,\ LHCb-CONF-2013-012} \end{array}$

 \rightarrow Measurement consistent with the SM prediction!

 \rightarrow Crucial to have a clear estimation of the uncertainties!

In the large tan β region, the largest contribution to C_{Q_1} and C_{Q_2} comes from the chargino-stop loops:

$$C_{Q_1} \approx -C_{Q_2} \approx -\mu A_t \frac{\tan^3 \beta}{(1+\epsilon_b \tan \beta)^2} \frac{m_t^2}{m_{\tilde{t}}^2} \frac{m_b m_\mu}{4 \sin^2 \theta_W M_W^2 M_A^2} f(x_{\tilde{t}\mu})$$

where

 $x_{\tilde{t}\mu} = m_{\tilde{t}}^2/\mu^2$ $m_{\tilde{t}}$: geometric average of the two stop masses

$$f(x) = -\frac{x}{1-x} - \frac{x}{(1-x)^2} \ln x$$

Since f(x) > 0 the sign of C_{Q_1} is opposite to that of the μA_t term

$B ightarrow K^* \mu^+ \mu^-$ – Angular distributions

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0}\ell^+\ell^- \ (\bar{K}^{*0} \to K^-\pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

$$J(q^2, heta_\ell, heta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(heta_\ell, heta_{K^*}, \phi)$$

 $^{ imes}$ angular coefficients J_{1-9}

 \searrow functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s . Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\begin{aligned} \mathcal{O}_9 &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\ell), \quad \mathcal{O}_{10} &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\gamma_5\ell) \\ \mathcal{Q}_1 &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\ell), \qquad \mathcal{Q}_2 &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\gamma_5\ell) \end{aligned}$$

F. Kruger et al., Phys. Rev. D 61 (2000) 114028;

W. Altmannshofer et al., JHEP 0901 (2009) 019; U. Egede et al., JHEP 1010 (2010) 056

$B ightarrow K^* \mu^+ \mu^-$ – Angular distributions

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0}\ell^+\ell^- (\bar{K}^{*0} \to K^-\pi^+)$ is completely ⁻ described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$k^-$$

 l^-
 l^+
 k^-
 θ_{K^-}
 π^+

$$\frac{d^{4}\Gamma}{dq^{2} d\cos\theta_{\ell} d\cos\theta_{K^{*}} d\phi} = \frac{9}{32\pi} J(q^{2},\theta_{\ell},\theta_{K^{*}},\phi)$$

7

$$J(q^2, \theta_\ell, \theta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(\theta_\ell, \theta_{K^*}, \phi)$$

 $\stackrel{\scriptstyle \searrow}{}$ angular coefficients J_{1-9}

 $^{\searrow}$ functions of the spin amplitudes A₀, A_{\parallel}, A_{\perp}, A_t, and A_S

Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\begin{aligned} \mathcal{O}_9 &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\ell), \quad \mathcal{O}_{10} &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\gamma_5\ell) \\ \mathcal{Q}_1 &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\ell), \qquad \mathcal{Q}_2 &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\gamma_5\ell) \end{aligned}$$

F. Kruger et al., Phys. Rev. D 61 (2000) 114028;

W. Altmannshofer et al., JHEP 0901 (2009) 019; U. Egede et al., JHEP 1010 (2010) 056

Dilepton invariant mass spectrum: $\frac{d\Gamma}{dq^2} = \frac{3}{4} \left(J_1 - \frac{J_2}{3} \right)$ Forward backward asymmetry:

$$A_{\rm FB}(q^2) \equiv \left[\int_{-1}^{0} - \int_{0}^{1}\right] d\cos\theta_{l} \frac{d^{2}\Gamma}{dq^{2} d\cos\theta_{l}} \left/ \frac{d\Gamma}{dq^{2}} = \frac{3}{8}J_{6} \right/ \frac{d\Gamma}{dq^{2}}$$

Forward backward asymmetry zero-crossing: $q_0^2 \simeq -2m_b m_B \frac{C_9^{-m}(q_0^2)}{C_7} + O(\alpha_s, \Lambda/m_b)$ \rightarrow fix the sign of C_9/C_7

Polarization fractions: $|A_0|^2$

$$F_L(q^2) = rac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}, \quad F_T(q^2) = 1 - F_L(q^2) = rac{|A_{\perp}|^2 + |A_{\parallel}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

Transverse asymmetries:

$$egin{aligned} &A_T^{(1)}(q^2) = rac{-2 \Re (A_\parallel A_\perp^*)}{|A_\perp|^2 + |A_\parallel|^2} &A \ &A_T^{(3)}(q^2) = rac{|A_{0L}A_{\parallel L}^* + A_{0R}^*A_{\parallel R}|}{\sqrt{|A_0|^2 |A_\perp|^2}} &A \end{aligned}$$

$$\begin{split} A_{T}^{(2)}(q^{2}) &= \frac{|A_{\perp}|^{2} - |A_{\parallel}|^{2}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} \\ A_{T}^{(4)}(q^{2}) &= \frac{|A_{0L}A_{\perp L}^{*} - A_{0R}^{*}A_{\perp R}|}{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|} \end{split}$$

 $|A|^{2} |A|^{2}$

D. Becirevic, E. Schneider, Nucl. Phys. B854 (2012) 321

$B ightarrow K^* \mu^+ \mu^-$ – low- and high- q^2

Low- q^2 region: $1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2$

- method of QCD-improved Factorization (QCDF)
- Soft-Collinear Effective Theory (SCET)

Simplifications:

- heavy *b*-quark
- energetic K^* meson

These simplifications allow to design a set of **optimized** observables P_i and $P'_i \rightarrow$ soft form factor dependence cancels out at leading order in α_s and Λ/m_b

High- q^2 region: $q^2 \gtrsim (14 - 15) \text{ GeV}^2$

Local Operator Product Expantion applicable

Hadronic uncertainties well under control in the low-recoil region. But very small sensitivity to the Wilson coefficients in which potential NP contributions enter Optimised: form factor uncertainties cancel at leading order

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P'_4 \rangle_{\text{bin}} = \frac{1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\text{bin}} = \frac{1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\ \langle P'_6 \rangle_{\text{bin}} = \frac{-1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \qquad \langle P'_8 \rangle_{\text{bin}} = \frac{-1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]$$
with

$$\mathcal{N}_{
m bin}' = \sqrt{-\int_{
m bin} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{
m bin} dq^2 [J_{2c} + \bar{J}_{2c}]}$$

+ CP violating clean observables and other combinations

U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104 S. Descotes-Genon et al., JHEP 1305 (2013) 137

First observation of new angular observables in $B o K^* \mu^+ \mu^-$

3.7 σ local discrepancy in one of the q^2 bins

 $(P_5', 4.3 < q^2 < 8.68 \text{ GeV}^2)$

LHCb collaboration, arXiv:1308.1707 [hep-ex]

Possible explanations:

- Statistical fluctuations
- Underestimation of hadronic uncertainties
- New Physics!

S. Descotes-Genon, J. Matias, J. Virto, arXiv:1307.5683
W. Altmannshofer, D. M. Straub, arXiv:1308.1501
R. Gauld, F. Goertz, U. Haisch, arXiv:1308.1959, arXiv:1310.1082
F. Beaujean, C. Bobeth, D. van Dyk, arXiv:1310.2478
R.R. Horgan, Z. Liu, S. Meinel, M. Winzate, arXiv:1310.3887

Global analysis of the latest LHCb data under the hypothesis of Minimal Flavour Violation

 \rightarrow need for new flavour structure?

Relevant operators:

 O_7, O_8, O_9, O_{10} and $Q_{1-2} \propto (\bar{s}P_R b)(\bar{\mu}P_L \mu) \equiv O_0^{\prime}$

 NP manisfests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\rm SM}(\mu) + \delta C_i$$

 \rightarrow Scans over the values of $\delta\it C_7$, $\delta\it C_8$, $\delta\it C_9$, $\delta\it C_{10}$, $\delta\it C_0'$

- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i
- \rightarrow Prediction for other flavour observables

Observables

ightarrow Global fits of the $\Delta F = 1$ observables obtained by minimization of

$$\chi^{2} = \left(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\right) \cdot \Sigma^{-1} \cdot \left(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\right)$$

 Σ^{-1} is the inverse correlation matrix.

Observables:

- $BR(B \rightarrow X_s \gamma)$
- BR($B \rightarrow X_d \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_{s} \mu^{+} \mu^{-})$

• BR $(B_s \rightarrow \mu^+ \mu^-)$ • BR $(B_d \rightarrow \mu^+ \mu^-)$ • $B \rightarrow K^* \mu^+ \mu^ P_1, P_2, P'_4, P'_5, P'_6, P'_8, BR, F_L$ in 5 bins of q^2 : [0.1,2], [2,4.3], [4.3,8.68], [14.18,16], [16,19] GeV²

Before LHCb:

T. Hurth, FM, Nucl.Phys. B865 (2012) 461

- C_8 mostly constrained by $B o X_{s,d} \gamma$
- C_7 constrained by the other observables as well
- $C_{9,10}$ constrained by $B o X_s \mu^+ \mu^-$ and $B o K^* \mu^+ \mu^-$
- C_l mostly constrained by $B_s
 ightarrow \mu^+ \mu^-$

With the latest LHCb results

T. Hurth, FM, JHEP 1404 (2014) 097

Strong impact from the new LHCb results on the fits!

Constrained MSSM

CMSSM:

- MSSM with GUT scale universality assumptions \rightarrow 4 parameters + 1 sign
- Useful for benchmarking, model discrimination,...
- However the mass patterns could be more complicated

General MSSM

Phenomenological MSSM (pMSSM):

- The most general CP/R parity-conserving MSSM
- Minimal Flavour Violation at the TeV scale
- The first two sfermion generations are degenerate
- The three trilinear couplings are general for the 3 generations

\rightarrow 19 free parameters

10 sfermion masses, 3 gaugino masses, 3 trilinear couplings, 3 Higgs/Higgsino

A. Djouadi et al., hep-ph/9901246

Fit results in MSSM

CMSSM:

pMSSM

FM, S. Neshatpour, J. Virto, arXiv:1401.2145

Fit results in MSSM

CMSSM:

pMSSM

FM, S. Neshatpour, J. Virto, arXiv:1401.2145

Red lines: SM predictions

CMSSM with m_0 and $m_{1/2}$ varied, $\mu > 0$, $A_0 = -2 m_0$ and $\tan \beta$ fixed:

CMSSM with m_0 and $m_{1/2}$ varied, $\mu > 0$, $A_0 = -2 m_0$ and $\tan \beta$ fixed:

FM, S. Neshatpour, J. Virto, arXiv:1401.2145

Black line: ATLAS exclusion limit with 20.3 fb⁻¹ data Blue line: Higgs mass exclusion limit ($M_h = 122 \text{ GeV}$) CMSSM with m_0 and $m_{1/2}$ varied, $\mu > 0$, $A_0 = -2 m_0$ and $\tan \beta$ fixed:

FM, S. Neshatpour, J. Virto, arXiv:1401.2145

Black line: ATLAS exclusion limit with 20.3 fb⁻¹ data Blue line: Higgs mass exclusion limit ($M_h = 122 \text{ GeV}$)

CMSSM with all parameters varied:

Fraction of CMSSM points compatible with BR($B_s \rightarrow \mu^+ \mu^-$)

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

Continuous line: ATLAS SUSY searches at 8 TeV with 5.8 $\rm fb^{-1}$ of data Dotted line: reach estimated at 14 TeV with 300 $\rm fb^{-1}$

Flat scans over the CMSSM parameters with $\mu > 0$

Solid line: central value of the BR($B_s \rightarrow \mu^+ \mu^-$) measurement

Dashed lines: 2σ experimental deviations

Gray points: all valid points

Green points: points in agreement with the Higgs mass constraint

 $BR(B_s \rightarrow \mu^+ \mu^-)$ smaller than SM and the Higgs mass constraint cannot be satisfied simultaneously!!

Constraints on CMSSM from $B \rightarrow K^* \mu^+ \mu^-$

 $B \rightarrow K^* \mu^+ \mu^-$ in the low q^2 region: CMSSM - tan $\beta = 50$

 A_{FB} in the low q^2 region is especially interesting!

Nazila Mahmoudi

Constraints on pMSSM from BR($B_s \rightarrow \mu^+ \mu^-$)

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

Solid line: central value of the BR($B_s \rightarrow \mu^+ \mu^-$) measurement Dashed lines: 2σ experimental deviations Gray points: all valid points Green points: points in agreement with the Higgs mass constraint

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

Black points: all the valid pMSSM points

Gray points: $123 < M_h < 129$ GeV

Dark green points: in agreement with the latest $BR(B_s \rightarrow \mu^+ \mu^-)$

Light green points: in agreement with the ultimate LHCb BR($B_s \rightarrow \mu^+ \mu^-$) measurement

Red line: excluded at 95% C.L. by the latest CMS $A/H \rightarrow \tau^+ \tau^-$ searches

- $B
 ightarrow K^* \mu^+ \mu^-$ offers multiple sensitive observables
- Latest LHCb results for the optimised observables have a very important impact on the global fits
- No need for any new flavour structure with the current measurements
- Important constraints from both $B_s \to \mu^+ \mu^-$ and $B \to K^* \mu^+ \mu^-$ decays in the MSSM
- MSSM still provides solutions in global agreement with all the available data for $b\to s\ell\ell$ transitions

Backup

Observable	Experiment	SM prediction
$BR(B \rightarrow X_s \gamma)$	$(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$	$(3.09 \pm 0.24) \times 10^{-4}$
$\Delta_0(B \rightarrow K^* \gamma)$	$(5.2 \pm 2.6) \times 10^{-2}$?? ± 0.09	$(7.9 \pm 3.9) \times 10^{-2}$
$BR(B \rightarrow X_d \gamma)$	$(1.41 \pm 0.57) \times 10^{-5}$	$(1.49 \pm 0.30) \times 10^{-5}$
$BR(B_s \rightarrow \mu^+ \mu^-)$	$(2.9 \pm 0.7) \times 10^{-9}$	$(3.49 \pm 0.38) \times 10^{-9}$
$BR(B_d \rightarrow \mu^+ \mu^-)$	$(3.6 \pm 1.6) \times 10^{-10}$	$(1.07 \pm 0.27) \times 10^{-10}$
$BR(B \rightarrow X_s \mu^+ \mu^-)_{q^2 \in [1,0]GeV^2}$	$(1.60 \pm 0.68) \times 10^{-6}$	$(1.73 \pm 0.16) \times 10^{-6}$
$BR(B \rightarrow X_s \mu^+ \mu^-)_{q^2 \ge 14.4 \text{GeV}^2}$	$(4.18 \pm 1.35) \times 10^{-7}$	$(2.20 \pm 0.44) \times 10^{-7}$
$(dBR/dq^2(B \rightarrow K^* \mu^+ \mu^-))_{q^2 \in [0.1,2]GeV^2}$	$(0.60 \pm 0.06 \pm 0.05 \pm 0.04 \pm 0.05) \times 10^{-7}$	$(0.70 \pm 0.81) \times 10^{-7}$
$\langle F_L(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [0.1,2] \text{GeV}^2}$	$0.37 \pm 0.10 \pm 0.04$	0.32 ± 0.20
$\langle P_1(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [0.1,2] \text{GeV}^2}$	$-0.19 \pm 0.40 \pm 0.02$	-0.01 ± 0.04
$(P_2(B \rightarrow K^* \mu^+ \mu^-))_{q^2 \in [0.1,2]GeV^2}$	$0.03 \pm 0.15 \pm 0.01$	0.17 ± 0.02
$\langle P'_{4}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle_{q^{2} \in [0.1,2]GeV^{2}}$	$0.00 \pm 0.52 \pm 0.06$	-0.37 ± 0.03
$\langle P'_{5}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [0.1,2] \text{GeV}^2}$	$0.45 \pm 0.22 \pm 0.09$	0.52 ± 0.04
$\langle P'_{6}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [0.1,2] \text{GeV}^2}$	$0.24 \pm 0.22 \pm 0.05$	-0.05 ± 0.04
$\langle P'_{\mathbf{g}}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [0,1,2] \text{GeV}^2}$	$-0.12 \pm 0.56 \pm 0.04$	0.02 ± 0.04
$(dBK/dq^{-}(B \rightarrow K^{*}\mu^{-}\mu^{-}))_{q^{2} \in [2,4.3]GeV^{2}}$	$(0.30 \pm 0.03 \pm 0.03 \pm 0.02 \pm 0.02) \times 10^{-7}$	$(0.35 \pm 0.29) \times 10^{-7}$
$\langle F_L(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [2,4,3] \text{GeV}^2}$	$0.74 \pm 0.10 \pm 0.03$	U.76 ± 0.20
$\langle P_1(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [2,4.3] \text{GeV}^2}$	$-0.29 \pm 0.65 \pm 0.03$	-0.05 ± 0.05
$\langle P_2(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [2,4.3] \text{GeV}^2}$	$0.50 \pm 0.08 \pm 0.02$	0.25 ± 0.09
$\langle P'_{4}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [2, 4, 3] \text{GeV}^2}$	$0.74 \pm 0.58 \pm 0.16$	0.54 ± 0.07
$\langle P_{5}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [2, 4.3] \text{GeV}^2}$	$0.29 \pm 0.39 \pm 0.07$	-0.33 ± 0.11
$\langle P'_6(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [2,4,3] \text{GeV}^2}$	$-0.15 \pm 0.38 \pm 0.05$	-0.06 ± 0.06
$\langle P'_{\mathbf{g}}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [2, 4.3] \text{GeV}^2}$	$-0.3 \pm 0.58 \pm 0.14$	0.04 ± 0.05
$(dBR/dq^2(B \rightarrow K^* \mu^+ \mu^-))_{q^2 \in [4.3, 8.68] \text{GeV}^2}$	$(0.49 \pm 0.04 \pm 0.04 \pm 0.03 \pm 0.04) \times 10^{-7}$	$(0.48 \pm 0.53) \times 10^{-7}$
$\langle F_L(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [4.3, 8.68] \text{GeV}^2}$	$0.57 \pm 0.07 \pm 0.03$	0.63 ± 0.14
$\langle P_1(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [4.3, 8.66] \text{GeV}^2}$	$0.36 \pm 0.31 \pm 0.03$	-0.11 ± 0.06
$\langle P_2(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [4.3, 8.66] \text{GeV}^2}$	$-0.25 \pm 0.08 \pm 0.02$	-0.36 ± 0.05
$(P'_{4}(B \rightarrow K^{*}\mu^{+}\mu^{-}))_{q^{2} \in [4.3, 8.60] \text{GeV}^{2}}$	$1.18 \pm 0.30 \pm 0.10$	0.99 ± 0.03
$(P'_{5}(B \rightarrow K^{*}\mu^{+}\mu^{-}))_{q^{2} \in [4.3, 8.60] \text{GeV}^{2}}$	$-0.19 \pm 0.16 \pm 0.03$	-0.83 ± 0.05
$\langle P_6(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [4.3, 8.68] \text{GeV}^2}$	$0.04 \pm 0.15 \pm 0.05$	-0.02 ± 0.06
$\langle P_{5}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [4,3,5,68] \text{GeV}^2}$	0.58 ± 0.38 ± 0.06	0.02 ± 0.06
$(dBR/dq^2(B \rightarrow K^-\mu^-\mu^-))_{q^2 \in [14.18, 16] GeV^2}$	$(0.56 \pm 0.06 \pm 0.04 \pm 0.04 \pm 0.05) \times 10^{-1}$	(0.67 ± 1.17) × 10
$\langle F_L(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [14.18, 16] \text{GeV}^2}$	$0.33 \pm 0.08 \pm 0.03$	0.39 ± 0.24
$\langle P_1(B \rightarrow K^-\mu^-\mu^-) \rangle_{q^2 \in [14.18, 16] \text{GeV}^2}$	$0.07 \pm 0.28 \pm 0.02$	-0.32 ± 0.70
$\langle P_2(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [14.18, 16] \text{GeV}^2}$	-0.50 ± 0.03 ± 0.01	-0.47 ± 0.14
$(P_4(D \rightarrow K^* \mu^* \mu^*))_q^2 \in [14.18, 16] \text{GeV}^2$	-0.16 ± 0.70 ± 0.06	1.15 ± 0.33
$(F_5(D \rightarrow N \ \mu^{-} \mu^{-}))_q^2 \in [14.18, 16] \text{GeV}^2$	-0.79 ± 0.20 ± 0.16	-0.82 ± 0.36
$\langle F_6(D \rightarrow N \ \mu^- \mu^-) \rangle_q^2 \in [14.18, 16] \text{GeV}^2$ $\langle D'(D \rightarrow K^*, \mu^+, \mu^-) \rangle$	0.16 ± 0.25 ± 0.05	0.00 ± 0.00
$(r_{8}(D \rightarrow R \ \mu \ \mu \))_{q^{2} \in [14, 18, 16] GeV^{2}}$	$-0.40 \pm 0.00 \pm 0.00$	(0.00 ± 0.01) $(0.42 \pm 0.78) \times 10^{-7}$
$(ubn/uq (D \rightarrow N^-\mu^+\mu^-))_q^2 \in [16, 19] \text{GeV}^2$ $(E_r(D_{rev} K^*,^+,^-))$	(0.41 ± 0.04 ± 0.04 ± 0.03 ± 0.03) × 10 ⁻⁷	(0.43 ± 0.78) × 10 ⁻⁷
$(P_L(D \rightarrow K \mu^+ \mu^-))_q^2 \in [16, 19] \text{GeV}^2$	0.30 ± 0.09 ± 0.05	0.30 ± 0.13
$(P_1(D \rightarrow A \mu^+ \mu^-))_{q^2 \in [16, 19] \text{GeV}^2}$ $(D_1(D \rightarrow K^*, \mu^+, \mu^-))$	-0.71 ± 0.35 ± 0.00	-0.55 ± 0.59
$(P_2(D \rightarrow N \mu^+ \mu^-))_q^2 \in [16, 19] \text{GeV}^2$ $(P'(P \rightarrow K^*, \mu^+, \mu^-))$	-0.32 ± 0.06 ± 0.01	-0.41 ± 0.15
$(P_4(D \rightarrow R \ \mu^{-} \mu^{-}))_q^2 \in [16, 19] \text{GeV}^2$ $(D'(R \rightarrow K^*, \mu^{+}, \mu^{-}))$	0.60 ± 0.32 ± 0.00	1.24 ± 0.25
$(P_{5}(D \rightarrow R \mu^{-} \mu^{-}))_{q^{2} \in [16, 19] \text{GeV}^{2}}$	-0.00 ± 0.19 ± 0.09	-0.00 ± 0.00
$(P_6(D \rightarrow R \ \mu \ \mu)/q^2 \in [16, 19] \text{GeV}^2$ $(D'(P \rightarrow K^*, u^+, u^-))$	-0.31 ± 0.36 ± 0.10	0.00 ± 0.00
$(J_{BD}) = (I_{A})^{-1} \mu \mu / (g^2 \in [16, 19] \text{GeV}^2)$	$(0.24 \pm 0.03 \pm 0.04 \pm 0.02 \pm 0.02) \times 10^{-7}$	0.00 ± 0.04
$(\mu B R) (\mu q (B \rightarrow R \mu \mu))_q^2 \in [1, 6] GeV^2$ $(E, (B \rightarrow K^* \mu^+ \mu^-))_q$	(0.34 ± 0.03 ± 0.04 ± 0.02 ± 0.03) × 10	$(0.36 \pm 0.33) \times 10^{-1}$
$(P_L(B \rightarrow K^* \mu^+ \mu^-)) = 0$	0.15 + 0.41 + 0.03	-0.05 + 0.04
$P_{\mathbf{r}}(B \rightarrow K^* \mu^+ \mu^-)) = 1.0 \text{ GeV}^2$	0.33 + 0.12 + 0.02	0.10 ± 0.08
$(P_2(B \rightarrow R \ \mu \ \mu))_q 2 \in [1, 6] \text{GeV}^2$ $(P'(B \rightarrow K^* \mu^+ \mu^-))_q = 0$	$0.53 \pm 0.12 \pm 0.02$ 0.58 ± 0.36 ± 0.06	0.10 ± 0.08
$P'(B \rightarrow K^* \mu^+ \mu^-)$	0.21 + 0.21 + 0.03	-0.34 ± 0.10
$P'(B \rightarrow K^* \mu^+ \mu^-)$	0.18 + 0.21 + 0.03	-0.05 ± 0.05
$\langle P'(B \rightarrow K^* \mu^+ \mu^-) \rangle_2 = 1.0 \text{ GeV}^2$	$0.46 \pm 0.38 \pm 0.04$	0.03 + 0.04
V 8		

Flat scans over the 19 parameters:

Parameter	Range (in GeV)			
tan β	[1, 60]			
M _A	[50, 2000]			
M1	[-2500, 2500]			
M ₂	[-2500, 2500]			
M ₃	[50, 2500]			
$A_d = A_s = A_b$	[-10000, 10000]			
$A_u = A_c = A_t$	[-10000, 10000]			
$A_e = A_\mu = A_ au$	[-10000, 10000]			
μ	[-3000, 3000]			
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[50, 2500]			
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[50, 2500]			
M _{˜t}	[50, 2500]			
M _{r̃}	[50, 2500]			
$M_{\tilde{q}_{1l}} = M_{\tilde{q}_{2l}}$	[50, 2500]			
M _{q̃3/}	[50, 2500]			
$M_{\tilde{u}_R} = M_{\tilde{c}_R}$	[50, 2500]			
M _{ĨR}	[50, 2500]			
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[50, 2500]			
M _{b̃R}	[50, 2500]			

 ${\sim}100M$ points generated with Softsusy

Flavour constraints with SuperIso

$\mathsf{BR}(\mathit{B_s}\to\mu^+\mu^-)$

Theory prediction: CP-averaged quantities, effect of $B_s - \bar{B}_s$ oscillations disregarded Experimental measurement: untagged branching fraction

K. De Bruyn et al., Phys. Rev. D86, 014027; Phys. Rev. Lett. 109, 041801 (2012)

$$\mathrm{BR}(B_s \to \mu^+ \mu^-)_{\mathrm{untag}} = \left(\frac{1 + \mathcal{A}_{\Delta\Gamma} y_s}{1 - y_s^2}\right) \mathrm{BR}(B_s \to \mu^+ \mu^-)$$

with

$$y_s \equiv \frac{1}{2} \tau_{B_s} \Delta \Gamma_s = 0.088 \pm 0.014$$

$$\mathcal{A}_{\Delta\Gamma} = rac{|P|^2\cos(2arphi_P) - |S|^2\cos(2arphi_S)}{|P|^2 + |S|^2}$$

S and P are related to the Wilson coefficients by:

$$S = \sqrt{1 - 4\frac{m_{\mu}^2}{M_{B_s}^2}\frac{M_{B_s}^2}{2m_{\mu}}\frac{1}{m_b + m_s}\frac{C_{Q_1} - C'_{Q_1}}{C_{10}^{SM}}}{C_{10}^{SM}}, \quad P = \frac{C_{10}}{C_{10}^{SM}} + \frac{M_{B_s}^2}{2m_{\mu}}\frac{1}{m_b + m_s}\frac{C_{Q_2} - C'_{Q_1}}{C_{10}^{SM}}}{\varphi_S = \arg(S)}, \qquad \varphi_P = \arg(P)$$

The SM expectation for this corrected branching fraction is:

$${
m BR}(B_s o \mu^+ \mu^-)_{
m untag} = (3.87 \pm 0.46) imes 10^{-9}$$

Nazila Mahmoudi

Main source of uncertainty: f_{B_s}

• ETMC-11: 232 ±	10 MeV
● HPQCD-12: 227 ±	10 MeV
HPQCD NR-09: 231 ±	15 MeV
HPQCD HISQ-11: 225 ± 4	4 MeV

Our choice: 234 ± 10 MeV

• Fermilab-MILC-11: 242 ± 9.5 MeV

With the most up-to-date input parameters (PDG), in particular $\tau_{B_s} = 1.497$ ps:

SM prediction: BR(
$$B_s \rightarrow \mu^+ \mu^-$$
) = (3.53 ± 0.38) × 10⁻⁹

FM, S. Neshatpour, J. Orloff, JHEP 1208 (2012) 092

Most important sources of uncertainties:

	f_{B_s}	EW cor.	scales	τ_{B_s}	V _{ts}	top mass	Overall
Uncertainty	8%	2%	2%	2%	5%	1.3%	\sim 10%

Using $f_{B_s} = 227$ MeV and $\tau_{B_s} = 1.466$ ps, one gets: BR($B_s \rightarrow \mu^+\mu^-$) = 3.25×10^{-9}

A. Buras et al. Eur.Phys.J. C72 (2012) 2172

Nazila Mahmoudi

IHP Paris, June 3rd, 2014

Dotted vertical lines: delimit the range of C_{10} in the CMSSM Dashed lines: delimit the range of C_{10} in the pMSSM.

$B \to K^* \mu^+ \mu^-$

CMSSM:

pMSSM

FM, S. Neshatpour, J. Virto, arXiv:1401.2145

 $B \to K^* \mu^+ \mu^-$

CMSSM:

pMSSM

FM, S. Neshatpour, J. Virto, arXiv:1401.2145