$b \rightarrow s \ell^{+} \ell^{-}$perspective from LHCb

Konstantinos A. Petridis

Imperial College London

June 3, 2014

- Measure the decay rates, asymmetries and angular distributions of final state products
- Different final states sensitive to different combinations of Wilson coefficients
\triangleright Allows for precise extraction of LH and RH Wilsons
$\triangleright b \rightarrow d$ vs $b \rightarrow s$ allows to test Minimal Flavour Violation of new physics
- Observables built out of ratios of angular coefficients reduce theory uncertainties due to hadronic form factor

Operator \mathcal{O}_{i}	$B_{s(d)} \rightarrow X_{s(d)} \mu^{+} \mu^{-}$	$B_{s(d)} \rightarrow \mu^{+} \mu^{-}$	$B_{s(d)} \rightarrow X_{s(d)} \gamma$
$\mathcal{O}_{7} \sim m_{b}\left(\overline{s_{L}} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu}$	\checkmark		\checkmark
$\mathcal{O}_{9} \sim\left(\overline{s_{L}} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)$	\checkmark		
$\mathcal{O}_{10} \sim\left(\overline{\left.s_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{5} \gamma_{\mu} \ell\right)}\right.$	\checkmark	\checkmark	
$\mathcal{O}_{S, P} \sim(\bar{s} b)_{S, P}(\bar{\ell} \ell)_{S, P}$	(\checkmark)	\checkmark	

$\ln \mathrm{SM} C_{S, P} \propto m_{\ell} m_{b} / m_{W}^{2}$
In SM chirality flipped \mathcal{O}_{i} suppressed by m_{s} / m_{b}

Suite of LHCb measurements

World's most precise measurements

channel	$\mathcal{L}^{\text {int }}\left(f b^{-1}\right)$	Publication
$d \mathcal{B} / d q^{2} B \rightarrow K^{*+} \mu^{+} \mu^{-}$	3	$[1403.8044]$
$d \mathcal{B} / d q^{2} B \rightarrow K^{0} \mu^{+} \mu^{-}$	3	$[1403.8044]$
$d \mathcal{B} / d q^{2} B \rightarrow K^{+} \mu^{+} \mu^{-}$	3	$[1403.8044]$
$d \mathcal{B} / d q^{2} B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$	1	[JHEP08(2013)131]
$d \mathcal{B} / d q^{2} B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$	1	[JHEP07(2013)084]
$d \mathcal{B} / d q^{2} \Lambda_{b} \rightarrow \mu^{+} \mu^{-}$	1	[PLB725(2013)25]
$\mathcal{B} B^{0} \rightarrow K^{* 0} e^{+} e^{-}$	1	[JHEP05(2013)159]
$\mathcal{B} B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$	1	[JHEP12(2012)125]
$A_{/} B \rightarrow K^{(*)} \mu^{+} \mu^{-}$	3	$[1403.8044]$
$A_{C P} B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$	1	[PRL111,151801(2013)]
$A_{C P} B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$	1	[PRL110,031801(2013)]
Angular $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$	3	[JHEP05(2014)082],[PRL111,112003(2013)]
Angular $B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}$	3	[JHEP05(2014)082]
Angular $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$	1	[JHEP08(2013)131],[PRL111,191801(2013)]
Angular $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$	1	[JHEP07(2013)084]

Branching fraction measurements

Left: $B^{+} \rightarrow K^{+}$, Right: $B^{0} \rightarrow K^{0}$

- Reconstruct K^{0} as $K_{s} \rightarrow \pi^{+} \pi^{-}$and $K^{*+} \rightarrow K_{s} \pi^{+}$
- Large lifetime of K_{s} means reduction in reconstruction efficiency
- Normalise to corresponding $B \rightarrow J / \psi K$ mode
$-d \mathcal{B} / d q^{2}$ for $K^{+} \mu^{+} \mu^{-}$is becoming systematic dominated
- Dominant systematic is value of $\mathcal{B}\left(B \rightarrow J / \psi K^{(*)}\right)$

Theory: Khodjamirian et al. [JHEP09(2010)089], Buchard et al. [PRL111(2013)162002]
$d \mathcal{B} / d q^{2}$ of $B_{d(s)}^{0} \rightarrow K^{*}(\phi) \mu^{+} \mu^{-}$

Left: $B^{+} \rightarrow K^{*+}$, Middle $B_{s} \rightarrow \phi$, Right: $B^{0} \rightarrow K^{* 0}$,

- Reconstruct $K^{*+} \rightarrow K_{s} \pi^{+}$
- Normalise to corresponding $B \rightarrow J / \psi K(\phi)$ mode
- Hint that all BFs are at low side? (theory uncertainties correlated with q^{2})

Theory: Horgan et al. [PRL111(2013)162002], Bobeth et al. [JHEP07(2011)067], Altmannshofer et al.
[JHEP01(2009)019], Ball et al. [PRD71(2005)014029]

$$
R\left(q^{2}\right)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

Resonance	Mass $\left[\mathrm{MeV} / c^{2}\right]$	Width $[\mathrm{MeV}]$
$\psi(3770)$	3773.2 ± 0.3	27.2 ± 1.0
$\psi(4040)$	4039.6 ± 4.3	84.5 ± 12.3
$\psi(4160)$	4191.7 ± 6.5	71.8 ± 12.3
$\psi(4415)$	4415.1 ± 7.9	71.5 ± 19.0

- Charmonium resonances 1^{--}above open charm (DD) threshold from BES
- Fits account for interference between states
- Watch out. PDG information is misleading! Resonant structures clear in $3 \mathrm{fb}^{-1}$ at low recoil

- Sensitive due to interference with large non-resonant component!
- Assume resonances are $1^{--} \rightarrow$ only V non-resonant interferes, universal lepton couplings
- Take SM value for

$$
m_{\mu^{+} \mu^{-}}\left[\mathrm{MeV} / c^{2}\right]
$$

- Difficult to quantify resonances theoretically
- $\mathcal{B}\left(B^{+} \rightarrow K^{+} \psi_{4160}\left(\mu^{+} \mu^{-}\right)\right)=$ $3.9_{-0.6}^{+0.7} \times 10^{-9}$!
- Predict rates and observables integrated across resonances
- Presence of resonances has implications on bin choice and interpretation of measurements in this region for all such decays

Asymmetry measurements

Isospin asymmetry measurements

$$
A_{I}=\frac{\mathcal{B}\left(B^{0} \rightarrow K^{(*) 0} \mu^{+} \mu^{-}\right)-\frac{\tau_{0}}{\tau_{+}} \mathcal{B}\left(B^{+} \rightarrow K^{(*)+} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{(*) 0} \mu^{+} \mu^{-}\right)+\frac{\tau_{0}}{\tau_{+}} \mathcal{B}\left(B^{+} \rightarrow K^{(*)+} \mu^{+} \mu^{-}\right)}
$$

- More precise prediction than \mathcal{B}
- In SM expected due to:
\triangleright Photon coupling to u and d
$\triangleright C_{u u b s}$ at tree level but $C_{d d b s}$ only loop level

Isospin asymmetry measurements [נHep of (2012) 133]

- LHCb's $1 \mathrm{fb}^{-1}$ analysis revealed a significantly negative A_{l} in $B \rightarrow K \mu^{+} \mu^{-}$
- Measurements from B-factories also hint at low A_{I}

- Significance from SM between 3 and 4σ (depending on definition of test statistic)
- Very difficult to accomodate in SM or NP models!

Isospin asymmetry measurements

- Updating to full dataset $\left(3 \mathrm{fb}^{-1}\right)$

- Assume $A_{\text {I }}$ in $J / \psi K^{*}$ modes is zero
\triangleright Uncertainties related to \mathcal{B} cancel
- Estimate p -value for difference from zero assuming data have a constant non-zero value of A_{I}
- Results consistent with SM, p-value of $11 \%(1.5 \sigma)$ for $B \rightarrow K \mu^{+} \mu^{-}$

CP asymmetry measurements
$A_{C P}=\frac{\Gamma\left(\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}\right)-\Gamma\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}\right)+\Gamma\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)}$
Left: $B^{+} \rightarrow K^{+}$, Right: $B^{0} \rightarrow K^{* 0}$

- Expected to be small in SM $\left(10^{-4}\right)$
- Sensitive to NP affecting imaginary part of Wilsons
- Extract detector and production asymmetries using $B \rightarrow J / \psi K$ relative mode
- Consistent with zero.

Angular analyses

Angular analysis of $B^{+(0)} \rightarrow K_{(s)}^{+(0)} \mu^{+} \mu^{-}$

$$
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{l}}=\frac{3}{4}\left(1-F_{\mathrm{H}}\right)\left(1-\cos ^{2} \theta_{l}\right)+\frac{1}{2} F_{\mathrm{H}}+A_{\mathrm{FB}} \cos \theta_{l}
$$

Left: $1.1<q^{2}<6.0 \mathrm{GeV}^{2}$, Right: $15.0<q^{2}<22.0 \mathrm{GeV}^{2}$

- $B \rightarrow P \mu^{+} \mu^{-}$means only one angle of interest and two observables
$\triangleright F_{H}$: "Flat" parameter sensitive to scalar and tensor contributions
$\triangleright A_{F B}$: Forward-backward asymmetry of the muons. Deviation from zero would indicate new physics with scalar or tensor couplings (sensitivity to NP vector couplings suppressed by m_{ℓ})
- Best fit point and SM lie at boundary of physical region
- Good agreement with SM
- Confidence intervals for $1 \mathrm{GeV} q^{2}$ bins available in ascii format

Angular analysis of $B_{d, s}^{0} V \mu^{+} \mu^{-}$

- Vector meson described by 3 helicity amplitudes (excluding S-wave and scalar contributions)
- Eight independent observables per B-flavour ($J_{i} \mathrm{~s}$)
- Can choose basis such that reduce dependence on FF's

$$
\begin{align*}
& \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{K} d \cos \theta_{l} d \phi}=\frac{9}{32 \pi}\left[J_{1 s} \sin ^{2} \theta_{K}+J_{1 c} \cos ^{2} \theta_{K}+\left(J_{2 s} \sin ^{2} \theta_{K}+J_{2 c} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{l}\right. \\
& \quad+J_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi+J_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+J_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi \\
& \quad+\left(J_{6 s} \sin ^{2} \theta_{K}+J_{6 c} \cos ^{2} \theta_{K}\right) \cos \theta_{l}+J_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi+J_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi \\
& \left.\quad+J_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi\right], \tag{1}
\end{align*}
$$

- $\mathcal{O}(1 K)$ stats for $K^{* 0}$ and $\mathcal{O}(200)$ for ϕ means full angular fit not possible
\triangleright Either fit projections or use angle transformations to extract observables from multiple fits
- $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$not self-tagging
\triangleright Sensitive to subset of observables

Results: New observables [PRL 111,191801(2013)]

$B_{s} \rightarrow \phi$ Left: F_{L}, Middle: S_{3}, Right: A_{6}

Theory: Altmannshofer et al. [JHEP01(2009)019], Ball et al. [PRD71(2005)014029]

- $S_{i}=\left(J_{i}+\bar{J}_{i}\right) /(d \Gamma+d \bar{\Gamma})$
- $A_{i}=\left(J_{i}-\bar{J}_{i}\right) /(d \Gamma+d \bar{\Gamma})$
- $P_{5}^{\prime}=\left(J_{5}+\bar{J}_{5}\right) / \sqrt{F_{L}\left(1-F_{L}\right)}$
- $1 \mathrm{fb}^{-1}$ of 2011 data
- 3.7σ local tension in P_{5}^{\prime}

Theory: Descote-Genon et al. [JHEP 05(2013)137]

Hint of new physics?

- Combine $B_{s} \rightarrow \mu \mu, B \rightarrow K^{(*)} \mu \mu, B \rightarrow X_{\mathrm{s}} \gamma, B \rightarrow K^{*} \gamma$ measurements to constrain New Physics
- Indicate significant deviation in di-leptonic vector operator $\left(C_{9}\right)$

Descote-Genon et al. [arXiv:1307.5683]]

- Numerous theory papers: Descotes-Genon et al [1307.5683], Beaujean et al [1310.2478], Gauld et al [1308.1959], Hurth et al [1312.5267], Straub et al [1308.1501], Horgan et al [1310.3887],Altmannshofer et al [1403.1269], Biancofiore et al [1403.2944]...
- Consistent with Z^{\prime} of mass:
$\sim 35 \mathrm{TeV}$ for $\mathcal{O}(1)$ couplings (tree)
$\sim 7 \mathrm{TeV}$ for CKM-like couplings (tree) Straub et al [1308.1501]
- Demonstrates the power of these searches!
- Difficult to accomodate within MSSM

Theory uncertainties

- Unfortunately not that simple...Observables are theoretically clean at leading order

- But! Uncertainties of higher order corrections can potentially dilute the significance
- Lattice QCD predictions can help clarify situation at high $q^{2} \rightarrow$ picture consistent with other interpretations!

A consistent picture emerging?

Branching Fraction measurements at high q^{2} in tension with SM predictions from the Lattice, but consistent with best fit point for NP from low q^{2} data! \rightarrow NP or unaccounted QCD effects? Something new to understand!
$B \rightarrow K$ prediction,

$O_{1 . .6}, O_{8}$ @ 1-loop. 2-loop moves \mathcal{B} closer to experiment

A consistent picture emerging?

Branching Fraction measurements at high q^{2} in tension with SM predictions from the Lattice, but consistent with best fit point for NP from low q^{2} data! \rightarrow NP or unaccounted QCD effects? Something new to understand!

- Perform measurements in related channels (e.g $b \rightarrow d \mu^{+} \mu^{-}$reveal information on MFV nature of NP)
- The data can help us understand QCD effects (e.g c \bar{c} contributions)
\triangleright Fit entire q^{2} spetrum of $B \rightarrow K^{*} \ell \ell$ including light and charm resonances
\triangleright Test extent of applicability of OPE and factorisation
- Measurements quantities with prestine theory predictions
\triangleright Inclusive $B \rightarrow X_{s, d} \ell^{+} \ell^{-}$c.f Belle [1402.7134], BaBar [1312.5364]

An example: $B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$

- First observation, $B_{F}=2.3 \pm 0.6($ stat. $) \pm 0.1($ syst. $) \times 10^{-8}$
- Can measure $R=\frac{B_{F}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)}{B_{F}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}$and tranlsate into $\left|V_{t d}\right| /\left|V_{t s}\right|$ measurement from penguin decays

- $R=0.053 \pm 0.014$ (stat.) ± 0.001 (syst.)
- $\left|V_{t d}\right| /\left|V_{t s}\right|=0.266 \pm 0.035$ (stat.) ± 0.007 (syst.)
- Neglecting FF uncertainties
- Compatible with previous measurements in $b \rightarrow s(d) \gamma(0.177 \pm 0.043)$ [PRL102,161803(2009)]

So what is next

Full exploitation of available data:

- Update of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$measurements with $3 \mathrm{fb}^{-1}$ in preparation (including S -wave extraction)
- New and updates of all analyses to $3 \mathrm{fb}^{-1}: B_{s} \rightarrow \phi \mu^{+} \mu^{-}, B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$, $B_{s, d} \rightarrow \pi \pi \mu^{+} \mu^{-}, \Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}, \Lambda_{b} \rightarrow p K \mu^{+} \mu^{-}, B \rightarrow K^{* 0} e^{+} e^{-}$, $B_{d} \rightarrow 3 h \mu^{+} \mu^{-}$
Runll data means $\sim 5 \mathrm{fb}^{-1}$ expected to be collected
- Large datasets open up precision era in $B \rightarrow d$ transitions and measurements of $\left|V_{t d} / V_{t s}\right|$ (requires precise FF calculations for $b \rightarrow d \ell \ell$)
- Look at higher $J K^{*}$ states (e.g increase sensitivity to tensor NP)
- Look for final states with τ 's $B \rightarrow K^{* 0} \tau^{+} \tau^{-}$
- Perform fully inclusive measurements

Post 2020 data means experiment catches and surpases current theory precision

Backup

Flavour measurements are critical

- NP at $\Lambda_{N P} \sim 1 \mathrm{TeV}$ motivated to tame fine tuning in Higgs sector
$-N P$ at $\Lambda_{N P} \sim 1 \mathrm{TeV}$ refuted by flavour measurements (ire LHC)
\rightarrow CKM-like NP couplings (MFV)
- As LHC pushes $\Lambda_{N P}$ to $\gg 1 \mathrm{TeV}$ lift MFV constraints \triangleright increase chances to see NP in flavour

Experimental aspects

Selection:

- Reduce combinatorial background using Multivariate classifiers, (typically Boosted Decision Tree)
\triangleright Using kinematic and topological information
\triangleright Variable choice based on minimising correlation with mass
- Reduce "peaking" backgrounds using particle-ID information
\triangleright Exclusive decays with final state hadron(s) mis-ld
\triangleright Estimate by mixture of MC and data-driven studies

Experimental aspects

Normalisation:

- Make use of proxy-decay (same topology) of known \mathcal{B} to normalize against

$$
\mathcal{B}(s i g)=\frac{N_{s i g} \epsilon_{s i g}}{N_{p r x} \epsilon_{p r x}} \mathcal{B}(p r x)
$$

\triangleright Reduces experimental uncertainties

Acceptance correction:

- Efficiency parametrised depending on type of measurement of \mathcal{B} \triangleright Differential with respect to di-muon mass squared $\left(q^{2}\right)$ or angular distribution of decay products of the b-Hadron
- Efficiency (ϵ) obtained from MC corrected from data

Theoretical Formalism

- Model independent approach
- "Integrate" out heavy ($m \geq m_{W}$) field(s) and introduce set of Wilson coefficients C_{i}, and operators \mathcal{O}_{i} encoding long and short distance effects

$$
\mathcal{H}_{\text {eff }} \approx-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s(d)}^{*} \sum_{i=1}^{10, S, P, T}\left(C_{i}^{S M}+\Delta C_{i}^{N P}\right) \mathcal{O}_{i}
$$

- c.f. Fermi interaction and G_{F}

- New physics enters at the $\Lambda_{N P}$ scale

Experimental concerns

$\sim 1 \mathrm{~K}$ reconstructed/selected $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$candidates in $1 \mathrm{fb}^{-1}$ (more than all B-factory experiments combined!), not enough to perform full angular fit in infinitesimally small bins of q^{2}

- Notice that can simplify angular distribution by "folding" angles

$$
\begin{aligned}
& \triangleright \text { e.g } \phi \rightarrow \phi+\pi \text { for } \phi<0, \\
& \quad \text { removes } \cos \phi \text { and } \sin \phi \text { terms }
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\mathrm{~d} \Gamma / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{4} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \hat{\phi}}=\frac{9}{16 \pi}[& F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{3}{4}\left(1-F_{\mathrm{L}}\right)\left(1-\cos ^{2} \theta_{K}\right)- \\
& F_{\mathrm{L}} \cos ^{2} \theta_{K}\left(2 \cos ^{2} \theta_{\ell}-1\right)+ \\
& \frac{1}{4}\left(1-F_{\mathrm{L}}\right)\left(1-\cos ^{2} \theta_{K}\right)\left(2 \cos ^{2} \theta_{\ell}-1\right) \\
& S_{3}\left(1-\cos ^{2} \theta_{K}\right)\left(1-\cos ^{2} \theta_{\ell}\right) \cos 2 \hat{\phi}+ \\
& \frac{4}{3} A_{\mathrm{FB}}\left(1-\cos ^{2} \theta_{K}\right) \cos \theta_{\ell}+ \\
& \left.A_{9}\left(1-\cos ^{2} \theta_{K}\right)\left(1-\cos ^{2} \theta_{\ell}\right) \sin 2 \hat{\phi}\right]
\end{aligned}
$$

- Different foldings can give access to different observables
- Perform fit in bins of q^{2}.
- Bias from not accounting for S-wave in $K \pi$ negligible with these stats. Needs to be dealt with with $3 \mathrm{fb}^{-1}$ Egede et al. [JHEP 03(2013)027]

LHCb upgrade

- Current conditions: $L_{\text {inst }}$ up to $4 \times 10^{32} \mathrm{~cm}^{-2} s^{-1}, \mu \sim 1.7$
- 2020 conditions: $L_{\text {inst }}=2 \times 10^{33} \mathrm{~cm}^{-2} s^{-1}, \mu \sim 5$

Higher luminosities:

- More interactions per crossing, more vertices, higher track multiplicities, more ghost tracks...
- Current trigger design has bottleneck at 1 MHz of LO
- More flexible trigger, reading out full detector at 40 MHz and HLT output at 20 kHz
- Upgrade VELO and tracking
- New photo detectors for RICH1,2 and re-optimise optics of RICH1

LHCb upgrade

Type	Observable	Current precision	$\begin{gathered} \hline \hline \text { LHCb } \\ 2018 \end{gathered}$	Upgrade $\left(50 \mathrm{fb}^{-1}\right)$	$\begin{gathered} \hline \text { Theory } \\ \text { uncertainty } \end{gathered}$
B_{s}^{0} mixing	$2 \beta_{s}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)$	0.10 [9]	0.025	0.008	~ 0.003
	$2 \beta_{s}\left(B_{s}^{0} \rightarrow J / \psi f_{0}(980)\right.$)	0.17 [10]	0.045	0.014	~ 0.01
	$A_{\text {fs }}\left(B_{s}^{0}\right)$	$6.4 \times 10^{-3}[18]$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic penguin	$2 \beta_{s}^{\text {eff }}\left(B_{s}^{0} \rightarrow \phi \phi\right)$	-	0.17	0.03	0.02
	$2 \beta_{s}^{\text {eff }}\left(B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}\right)$	-	0.13	0.02	<0.02
	$2 \beta^{\text {eff }}\left(B^{0} \rightarrow \phi K_{S}^{0}\right)$	0.17 [18]	0.30	0.05	0.02
Right-handed currents	$2 \beta_{s}^{\text {eff }}\left(B_{s}^{0} \rightarrow \phi \gamma\right)$	-	0.09	0.02	< 0.01
	$\tau^{\text {eff }}\left(B_{s}^{0} \rightarrow \phi \gamma\right) / \tau_{B_{s}^{0}}$	-	5\%	1\%	0.2\%
$\begin{aligned} & \text { Electroweak } \\ & \text { penguin } \end{aligned}$	$S_{3}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-} ; 1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}\right)$	0.08 [14]	0.025	0.008	0.02
	$s_{0} A_{\text {FB }}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$	25\% [14]	6\%	2%	7\%
	$A_{\mathrm{I}}\left(K \mu^{+} \mu^{-} ; 1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}\right)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)$	25% [16]	8\%	2.5\%	$\sim 10 \%$
Higgs	$\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$	$1.5 \times 10^{-9}[2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$	-	$\sim 100 \%$	~ 35%	$\sim 5 \%$
Unitarity triangle angles	$\gamma\left(B \rightarrow D^{(*)} K^{(*)}\right)$	$\sim 10-12^{\circ}$ [19, 20]	4°	0.9°	negligible
	$\gamma\left(B_{s}^{0} \rightarrow D_{s} K\right)$		11°	2.0°	negligible
	$\beta\left(B^{0} \rightarrow J / \psi K_{S}^{0}\right)$	0.8° [18]	$0.6{ }^{\circ}$	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3}[18]$	0.40×10^{-3}	0.07×10^{-3}	-
$C P$ violation	$\Delta A_{C P}$	$2.1 \times 10^{-3}[5]$	0.65×10^{-3}	0.12×10^{-3}	-

