

$b \rightarrow s\gamma$

Radiative B decays

- · Rare penguin FCNC transitions with a final-state (real) photon
- Discovered by CLEO in 1993 (PRL 71.674)

VOLUME 71, NUMBER 5 PHYSICAL REVIEW LETTERS 2 AUGUST 1993 Evidence for Penguin-Diagram Decays: First Observation of $B \to K^*(892)\gamma$

Studied extensively by CLEO, BaBar, Belle and LHCb

RPP#	Mode	PDG2012 Avg.	BABAR	Belle	CLEO	CDF	LHCb	New Avg.	LIEAC DDs for DO
310	$K^0\eta\gamma$	7.6 ± 1.8	$7.1^{+2.1}_{-2.0} \pm 0.4$	$8.7^{+3.1+1.9}_{-2.7-1.6} < 6.4$				$7.6^{+1.8}_{-1.7}$	HFAG BRs for B ⁰
311	$K^0\eta'\gamma$	< 6.4	< 6.6	< 6.4				< 6.4	
312	$K^0\phi\gamma$	2.7 ± 0.7	< 2.7	$2.74 \pm 0.60 \pm 0.32$				2.74 ± 0.68	
313	$K^{+}\pi^{-}\gamma$ §	4.6 ± 1.4		$4.6^{+1.3+0.5}_{-1.2-0.7}$ $40.1 \pm 2.1 \pm 1.7$				4.6 ± 1.4	
314	$K^{*0}\gamma$	43.3 ± 1.5	$44.7 \pm 1.0 \pm 1.6$	$40.1 \pm 2.1 \pm 1.7$	$45.5^{+7.2}_{-6.8} \pm 3.4$			43.3 ± 1.5	
315	$K^*(1410)^0\gamma$	< 130		< 130	-0.0			< 130	
316	K+π-γ (N.R.) §	< 2.6		< 2.6				< 2.6	
318	$K^0\pi^+\pi^-\gamma$	19.5 ± 2.2	$18.5 \pm 2.1 \pm 1.2 \uparrow$	24 ± 4 ± 3 ‡				19.5 ± 2.2	
319	$K^{+}\pi^{-}\pi^{0}\gamma$	41 ± 4	$40.7 \pm 2.2 \pm 3.1 \dagger$					40.7 ± 3.8	
320	$K_1^0(1270)\gamma$	< 58		< 58				< 58	
321	$K_1^0(1400)\gamma$	< 12		< 15				< 15	
322	$K_2^*(1430)^0\gamma$	12.4 ± 2.4	$12.2 \pm 2.5 \pm 1.0$	$13 \pm 5 \pm 1$				12.4 ± 2.4	
324	$K_3^4(1780)^0\gamma$	< 83		< 83				< 83	
326	$\rho^{\circ}\gamma$	0.86 ± 0.15	$0.97^{+0.24}_{-0.22} \pm 0.06$	$0.78^{+0.17+0.09}_{-0.16-0.10}$	< 17			$0.86^{+0.15}_{-0.14}$	
328	$\omega\gamma$	$0.44^{+0.18}_{-0.16}$	$0.97^{+0.24}_{-0.22} \pm 0.06$ $0.50^{+0.27}_{-0.23} \pm 0.09$	< 83 $0.78^{+0.17+0.09}_{-0.16-0.10}$ $0.40^{+0.19}_{-0.17} \pm 0.13$	< 9.2			$0.44^{+0.18}_{-0.16}$	
329	$\phi\gamma$	< 0.85	< 0.85		< 3.3			$\begin{array}{c} < 83 \\ 0.86^{+0.15}_{-0.14} \\ 0.44^{+0.18}_{-0.16} \\ < 0.85 \end{array}$	HFAG ACP
									111/10/10/
314	K*0	γ -0.	16 ± 0.23	$-0.16 \pm 0.22 \pm 0.0$	7				$0.008 \pm 0.017 \pm 0.009$ 0.007 ± 0.019

Measuring the polarization

- Time-dependent analyses of $B_{(s)} \rightarrow f^{CP} \gamma$, e.g., $B_s \rightarrow \varphi \gamma$ and $B^0 \rightarrow K_S \pi^0 \gamma$
- Transverse asymmetry in $B^0 \rightarrow K^*l^+l^-$ (pollution from C_9 and C_{10})
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow K\pi\pi\gamma$
- b-baryons: $\Lambda_b \to \Lambda^{(*)} \gamma$, $\Xi_b \to \Xi^{(*)} \gamma$

Complementary approaches

[Bečirević et al]

Challenges for radiative decays

- Distinct experimental signature with a high E_T photon
 - Large levels of background are expected in a pp machine
- · Mass resolution dominated by photon reconstruction

Measuring the polarization

- Time-dependent analyses of $B_{(s)} \rightarrow f^{CP} \gamma$, e.g., $B_s \rightarrow \varphi \gamma$ and $B^0 \rightarrow K_S \pi^0 \gamma$
- Transverse asymmetry in $B^0 \rightarrow K^*/+l^-$ (pollution from C_9 and C_{10})
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow K\pi\pi\gamma$
- b-baryons: $\Lambda_b \to \Lambda^{(*)} \gamma$, $\Xi_b \to \Xi^{(*)} \gamma$

$B \rightarrow K\pi\pi\gamma$ in Belle and BaBar

- Belle observed $B \rightarrow K_1(1270) + \gamma$ and BaBar $B \rightarrow K_2^*(1430) + \gamma$
- Both BaBar and Belle have measured the inclusive BR

$$K_1(1270)^+ \gamma$$
 $(4.3 \pm 1.2) \times 10^{-5}$
 $K_1(1400)^+ \gamma$ $< 1.5 \times 10^{-5}$
 $K_2^*(1430)^+ \gamma$ $(1.45 \pm 0.43) \times 10^{-5}$
 $K^+ \pi^+ \pi^- \gamma$ $(2.76 \pm 0.18) \times 10^{-5}$
 $K^0 \pi^+ \pi^0 \gamma$ $(4.5 \pm 0.52) \times 10^{-5}$

Belle, [Nishida et al] (2002) Belle, [Yang et al] (2005) BaBar, [Aubert et al] (2007)

Photon polarization in $B \rightarrow K_{res} \gamma$

• If we consider $B \to K_{\rm res}^{(i)} \gamma$ we can define the **photon** polarization as

$$\lambda_{\gamma}^{(i)} = \frac{|c_R^{(i)}|^2 - |c_L^{(i)}|^2}{|c_R^{(i)}|^2 + |c_L^{(i)}|^2}$$
 weak amplitudes

• It can be shown that photon polarization is independent of the K resonance and can be expressed as [Gronau et al]

$$\frac{|c_R^{(i)}|}{|c_L^{(i)}|} = \frac{|C_{7R}|}{|C_{7L}|} \Rightarrow \lambda_{\gamma}^{(i)} = \frac{|C_{7R}|^2 - |C_{7L}|^2}{|C_{7R}|^2 + |C_{7L}|^2} \equiv \lambda_{\gamma}$$

+1 for \overline{b} and -1 for b

Angular distribution in $B \rightarrow K\pi\pi\gamma$

· The photon polarization can be inferred from the polarization

of the K

Angular distribution in $B \rightarrow K\pi\pi\gamma$

• The amplitude of one K resonance decay can be described by the helicity amplitude J_{μ} polarization contains all Dalitz

$$A_{L(R)}^{(i)}(s,s_{13},s_{23},\cos\theta)=\epsilon_{K,L(R)}^{\mu}\mathcal{J}_{\mu}^{\prime}$$
 information

interference!

Considering only one (1+) intermediate resonance

$$\frac{\mathrm{d}\Gamma(K_{L(R)} \to K\pi\pi)}{\mathrm{d}s\,\mathrm{d}s_{13}\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} \propto \frac{1}{4}|\vec{\mathcal{J}}|^2(1+\cos^2\theta) \mp \frac{1}{2}\cos\theta\,\mathrm{Im}\left[\vec{n}\cdot(\vec{\mathcal{J}}\times\vec{\mathcal{J}}^*)\right]$$

and therefore [Kou et al] [Gronau et al]

$$\frac{\mathrm{d}\Gamma(B \to K_{\mathrm{res}}\gamma \to K\pi\pi\gamma)}{\mathrm{d}s\,\mathrm{d}s_{13}\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} \propto \frac{1}{4}|\vec{\mathcal{J}}|^2(1+\cos^2\theta) + \lambda_{\gamma}\frac{1}{2}\cos\theta\,\mathrm{Im}\left[\vec{n}\cdot(\vec{\mathcal{J}}\times\vec{\mathcal{J}}^*)\right]$$

But life is not so beautiful

• Interference between 1+, 1-, 2+ resonances [Gronau et al]

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}s_{13}\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} = |A|^2 \left\{ \frac{1}{4} |\vec{\mathcal{J}}|^2 (1 + \cos^2\theta) + \frac{1}{2}\lambda_\gamma \operatorname{Im} \left[\vec{n} \cdot (\vec{\mathcal{J}} \times \vec{\mathcal{J}}^*) \right] \cos\theta \right\} + \\
+ |B|^2 \left\{ \frac{1}{4} |\vec{\mathcal{K}}|^2 (\cos^2\theta + \cos^22\theta) + \frac{1}{2}\lambda_\gamma \operatorname{Im} \left[\vec{n} \cdot (\vec{\mathcal{K}} \times \vec{\mathcal{K}}^*) \right] \cos\theta \cos2\theta \right\} + |C|^2 \frac{1}{2} \sin^2\theta + \\
+ \left\{ \frac{1}{2} (3\cos^2\theta - 1) \operatorname{Im} \left[AB^* \vec{n} \cdot (\vec{\mathcal{J}} \times \vec{\mathcal{K}}^*) \right] + \lambda_\gamma \operatorname{Re} \left[AB^* \vec{n} \cdot (\vec{\mathcal{J}} \cdot \vec{\mathcal{K}}^*) \right] \cos^3\theta \right\}$$

need to know J and K!

• But λ_{γ} goes with odd powers of $\cos\theta$

$$\frac{\mathrm{d}\Gamma(\sum B \to K_{\mathrm{res}} \gamma \to P_1 P_2 P_3 \gamma)}{\mathrm{d}s \,\mathrm{d}s_{13} \,\mathrm{d}s_{23} \,\mathrm{d}\cos\theta} \propto \sum_{j=\mathrm{even}} a_j(s_{13}, s_{23}) \,\cos^j \theta + \lambda_\gamma \sum_{j=\mathrm{odd}} a_j(s_{13}, s_{23}) \,\cos^j \theta$$

Up-down asymmetry

 We can exploit the structure of the decay rate and define the up-down asymmetry

$$\mathcal{A}_{\text{UD}} \equiv \frac{\int_{0}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta}} = C\lambda_{\gamma}$$

where C takes into account the integral over the Dalitz plot and the angular distribution

• This asymmetry is expected to be $\sim 0.3\lambda_{\gamma}$ in isolated neutral K_1 decays and $\sim 0.1\lambda_{\gamma}$ in charged ones

$B^{\pm} \rightarrow K^{\pm} \pi^{\mp} \pi^{\pm} \gamma$ at LHCb

- In LHCb we have studied the charged mode $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ (and charge conjugate)
 - Inclusive study with $K\pi\pi$ system mass in the [1.1, 1.9] GeV/ c^2 range
- Analysis performed in the full data set recorded by LHCb in 2011 and 2012, corresponding to 3/fb
- Preliminary conference note inclusing only 2012 data and with simple counting approach was shown at EPS 2013 [LHCb-CONF-2013-009]

Analysis strategy

PRL 112, 161801 (2014)

- B candidates mass fit
- Assessment of the Kππ mass spectrum
- Angular study
 - Provide angular distribution to help theory calculations
- Determination of up-down asymmetry
 - Obtain significance with respect to the no-polarization scenario

Mass distribution

• Observe ~14000 signal events in the [1.1,1.9] GeV/ c^2 $K\pi\pi$ mass region

Background-subtracted *Κππ* mass spectrum

- Many (unclear) contributions in the Kππ mass spectrum
 - Impossible to separate the resonances without full Dalitz analysis

Background-subtracted *Κππ* mass spectrum

- Many (unclear) contributions in the Kππ mass spectrum
 - Impossible to separate the resonances without full Dalitz analysis

Angle definition

• In order to avoid cancellations due to symmetries, neutral $K\pi\pi$ combinations requiere a change of the sign of $\cos\theta$ according to s_{12} and s_{13}

$$\vec{n} = \vec{p}_{\pi, \text{slow}} \times \vec{p}_{\pi, \text{fast}}$$

The same convention is used for consistency

Angular fit

 Angular distributions for each region are fitted with a combination of Legendre polynomials up to order 4

$$f(\cos \hat{\theta}; c_0 = 0.5, c_1, c_2, c_3, c_4) = \sum_{i=0}^{4} c_i L_i(\cos \hat{\theta})$$

- A χ^2 fit is performed taking into account the full statistical and systematic covariance matrices
- The up-down asymmetry is determined with the relation

$$\mathcal{A}_{ud} = \frac{c_1 - c_3/4}{2c_0}$$

Angular fit results

Angular fit coefficients

• The coefficients of the angular fit are obtained for each of the four $K\pi\pi$ mass regions

				(X 1 U ²)
	[1.1, 1.3]	[1.3, 1.4]	[1.4, 1.6]	[1.6, 1.9]
c_1	6.3 ± 1.7	5.4 ± 2.0	4.3 ± 1.9	-4.6 ± 1.8
c_2	31.6 ± 2.2	27.0 ± 2.6	43.1 ± 2.3	28.0 ± 2.3
c_3	-2.1 ± 2.6	2.0 ± 3.1	-5.2 ± 2.8	-0.6 ± 2.7
c_4	3.0 ± 3.0	6.8 ± 3.6	8.1 ± 3.1	-6.2 ± 3.2
$\overline{\mathcal{A}_{ ext{UD}}}$	6.9 ± 1.7	4.9 ± 2.0	5.6 ± 1.8	-4.5 ± 1.9

 We expect that these results prove to be a useful input for theorists (are they?)

Up-down asymmetry results

 Four independent up-down asymmetries are obtained

Aud significance

- Use the four independent up-down asymmetries to extract a combined significance with respect to the no-polarization scenario
- Up-down asymmetry is different from zero at 5.2σ

Aud significance

- Use the four independent up-down asymmetries to extract a combined significance with respect to the no-polarization scenario
- Up-down asymmetry is different from zero at 5.2σ

First observation of photon polarization in $b \rightarrow s\gamma$ transitions!

Conclusions so far

- LHCb has studied the $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ decay with its full available statistics of 3/fb
- The angular distribution of the photon with respect to the plane defined by the final state hadrons has been characterized for different regions of their invariant mass
 - Impossible to extract photon polarization without further input
 - Aim to provide a valuable input for theorists
- Photon polarization has been observed for the first time in b→sγ transitions

Photon polarization from AuD?

• The up-down asymmetry is proportional to λ_{γ}

$$\mathcal{A}_{\text{UD}} \equiv \frac{\int_{0}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta}} = C\lambda_{\gamma}$$

- But what is the proportionality constant?
- Right now it looks like it's not possible to translate a measurement of A_{UD} into a measurement of λ_{γ}

Interlude: theory vs experiment

- · Combined work between theory and experiment is needed
 - Need to take into account what experimental data can tell us
 - Need to measure things that are theoretically interesting
- In the case of $K\pi\pi\gamma$, theory papers don't give any prediction or formula we can use, and experiment is probably not measuring things that are interesting to theorists

Interlude: theory vs experiment

- Combined v
 - Need to tak
 - Need to me
- In the case of the formula we measuring to the case of the formula we will be a suring to the formula will be a suring to the suring to the formula will be a suring to the suring to

nt is needed can tell us

sting

prediction or not

News on $B \rightarrow K\pi\pi\gamma$ from BaBar

Eli Ben-Haim Moriond EW (March 16th 2014)

	Mode	$\mathcal{B}(B^+ \to \text{Mode}) \times$ $\mathcal{B}(K_{\text{res}} \to K^+ \pi^+ \pi^-) \times 10^{-6}$	$\mathcal{B}(B^+ \to \mathrm{Mode}) \times 10^{-6}$	PDG values (×10 ⁻⁶)
	Inclusive $B^+ \to K^+ \pi^+ \pi^- \gamma$		$27.2 \pm 1.0^{+1.1}_{-1.3}$	27.6 ± 2.2
Preliminary	$K_1(1270)^+\gamma$	$14.5^{+2.0}_{-1.3}{}^{+1.1}_{-1.2}$	$44.0^{+6.0}_{-4.0}{}^{+3.5}_{-3.7}\pm4.6$	43 ± 13
	$K_1(1400)^+\gamma$	$4.1^{+1.9}_{-1.2}{}^{+1.3}_{-0.8}$	$9.7^{+4.6}_{-2.9}{}^{+3.1}_{-1.8}\pm0.6$	< 15 CL= 90%
$K_{res} \rightarrow K^+\pi^-\pi^+$	$K^{\bullet}(1410)^{+}\gamma$	$9.7^{+2.1}_{-1.9}^{+2.1}_{-0.7}$	$23.8^{+5.2}_{-4.6}{}^{+5.9}_{-1.4}\pm2.4$	Ø
	$K_2^{\bullet}(1430)^+\gamma$	$1.5^{+1.2}_{-1.0}^{+0.9}_{-1.4}$	$10.4^{+8.7}_{-7.0}{}^{+6.3}_{-9.9}\pm0.5$	14 ± 4
	$K^{\bullet}(1680)^{+}\gamma$	$17.0^{+1.7}_{-1.4}^{+3.5}_{-3.0}$	$71.7^{+7.2}_{-5.7}{}^{+15}_{-13}\pm5.8$	< 1900 CL= 90%

News on $B \rightarrow K\pi\pi\gamma$ from BaBar

What can we do with $K\pi\pi$?

- Fit mass distribution and split by spin-parity and calculate updown asymmetry
 - Still, predictions are needed for the up-down asymmetry in spinparity pairs (how to do it without BR measurements?)
 - Can we anyway fit he mass distribution?
- Get an idea of the mass distribution and cut the $K_1(1270)$ off
 - Still, no prediction for this resonance
 - How to evaluate systematics?

What can we do with $K\pi\pi$?

- · Add another variable (an angle) to the mass fit
 - I honestly don't know which
- Another solution is to study the Dalitz plot similarly to what Belle did with the J/ψ mode [Phys. Rev. D83 (2011) 032005]
 - Factor 3 less data (14k vs 40k)
 - Less allowed amplitudes due to the photon (less parameters to fit)
 - Less clean
 - Need to parametrize detection efficiency over the Dalitz plane

Measuring the polarization

- Time-dependent analyses of $B_{(s)} \rightarrow f^{CP} \gamma$, e.g., $B_s \rightarrow \varphi \gamma$ and $B^0 \rightarrow K_S \pi^0 \gamma$
- Transverse asymmetry in $B^0 \rightarrow K^*l^+l^-$ (pollution from C_9 and C_{10})
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow K\pi\pi\gamma$
- b-baryons: $\Lambda_b \to \Lambda^{(*)} \gamma$, $\Xi_b \to \Xi^{(*)} \gamma$

Measuring the polarization

- Time-dependent analyses of $B_{(s)} \rightarrow f^{CP} \gamma$, e.g., $B_s \rightarrow \varphi \gamma$ and $B^0 \rightarrow K_S \pi^0 \gamma$
- Transverse asymmetry in $R^0 \rightarrow K^*l+l-$ (nollution from C_9 and C_{10})
 We can do more things in LHCb!
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow K\pi\pi\gamma$
- b-baryons: $\Lambda_b \to \Lambda^{(*)} \gamma$, $\Xi_b \to \Xi^{(*)} \gamma$

Ideas that need theory

- Angular distributions in $B^+ \rightarrow \varphi K^+ \gamma$
 - Some theory papers, nothing conclusive
- Unobserved $B \rightarrow VV\gamma$ transitions ($V = \varphi, K^*$) could be observed with the current LHCb dataset
 - Is there anything we can extract from angular distributions?
- Please, think out of the box: if it is interesting, we can try to do it!
 - I leave you my email: albert.puig@cern.ch

Thank you

Backup

Radiative B decays

Access to possible NP through the virtual loop (2HDM, SUSY...)

- Transitions especially sensitive to NP in the $C_{7\gamma}$ coefficient

- Exclusive decays difficult from the theoretical point of view due to form factor
 - Find form-factor free observables, such as *CP* and isospin asymmetries
- Photon polarization as test of the SM

Radiative B decays

Access to possible NP through the virtual loop (2HDM, SUSY...)

- Transitions especially sensitive to NP in the $C_{7\gamma}$ coefficient

- Exclusive decays difficult from the theoretical point of view due to form factor
 - Find form-factor free observables, such as *CP* and isospin asymmetries
- Photon polarization as test of the SM

Photon polarization in the SM

• The chiral structure of the $b \rightarrow s\gamma$ process and the fact that the W couples only left-handedly causes the photons to be (almost completely) circularly polarized

$$\mathcal{O}_{7\gamma} = \frac{e}{16\pi^2} m_b \bar{s}_L \sigma_{\mu\nu} F^{\mu\nu} b_R$$

 $egin{array}{c} b
ightarrow s \gamma_L \ ar{b}
ightarrow ar{s} \gamma_R \end{array}$

- Never confirmed to high precision!
- QCD corrections coming from C₂ are expected to be in the 1-10% range [Bečirević et al]

And beyond the SM?

Several NP models introduce right-handed currents

New particles can change the chirality inside the loop,
 producing chiral enhancement

- m_t/m_b from LRSM [Babu et al]
- m_{SUSY}/m_b in SUSY with δ_{RL} mass insertions [Gabbiani et al]
- Still "large" room for NP despite the constraints coming from B_s oscillation parameters, $B_s \rightarrow \mu\mu$...
 - New penguins around the corner?

The LHCb experiment

The LHCb experiment

The LHCb experiment

LHCb Run-I summary

Rare B decays

- FCNC with ΔF =1 are forbidden at tree level in the SM, so they proceed through loop (box, penguin) diagrams
 - In extensions of the SM, these loop processes may receive contributions from new virtual particles

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + h.c.$$
 NP may modify the Wilson Coefficients

- · Rare decays can be used for indirect searches of New Physics
 - Highly suppressed in the SM
 - Highly sensitive to NP effects

Photon polarization in the SM

The b→sy process has a particular structure in the SM

$$\bar{s}\Gamma(b\to s\gamma)_{\mu}b = \frac{e}{(4\pi)^2} \frac{g^2}{2M_W^2} V_{ts}^* V_{tb} F_2 \bar{s} i \sigma_{\mu\nu} q^{\nu} \left(m_b \frac{1+\gamma_5}{2} + m_s \frac{1-\gamma_5}{2} \right) b$$

- The W boson couples only left-handedly
- The requirement of a chirality flip leads to left-handed photon dominance

Photon polarization in the SM

$$m_s \bar{s}_R \sigma_{\mu\nu} q^{\nu} b_L$$
 $m_b \bar{s}_L \sigma_{\mu\nu} q^{\nu} b_R$ $\approx 0.02 \ll 1$

Why 3 charged particles?

 Three tracks is the minimum needed to build a P-odd triple product proportional to the photon polarization using the final state momenta

$$ec{p}_{\gamma} \cdot (ec{p}_1 imes ec{p}_2)$$
 changes sign with photon helicity

Photon polarization in $B \rightarrow K_{res} \gamma$

· In the case of overlapping resonances

strong decay amplitudes of the K_{res}

$$d\Gamma(B \to K\pi\pi\gamma) = \left| \sum_{i} \frac{c_R^{(i)} A_R^{(i)}}{s - M_i^2 - iM - i\Gamma_i} \right|^2 + \left| \sum_{i} \frac{c_L^{(i)} A_L^{(i)}}{s - M_i^2 - iM - i\Gamma_i} \right|^2$$

so (introducing the expression of the weak amplitudes)

$$d\Gamma(B \to K\pi\pi\gamma) \propto (|\mathcal{A}_R|^2 + |\mathcal{A}_L|^2) + \lambda_\gamma (|\mathcal{A}_R|^2 - |\mathcal{A}_L|^2)$$

It's interesting to note that

$$P_{\gamma} = \frac{\mathrm{d}\Gamma(B \to K\pi\pi\gamma_R) - \mathrm{d}\Gamma(B \to K\pi\pi\gamma_L)}{\mathrm{d}\Gamma(B \to K\pi\pi\gamma_R) + \mathrm{d}\Gamma(B \to K\pi\pi\gamma_L)}$$

is only equal to λ_y in the case of one resonance

Interference needed!

- The decay amplitude is required to have a non trivial phase due to final state interactions in order to preserve T
 - Knowledge of this phase is required to interpret measurements in terms of photon polarization 1
- In the case of $K\pi\pi$ final states, this means
 - Interference between two intermediate $K^*\pi$ states with different charges (isospin-related amplitudes) only for final states with neutrals
 - Interference between intermediate $K^*\pi$ and ρK amplitudes
 - Interference between different partial waves into $K^*\pi$ or ρK

Event selection

Exploit the special features of B decays

- · Selection criteria:
 - High E_T photon (>3.0 GeV)
 - Multivariate tool with kinematical variables
 - Charged particle identification
 - Photon identification (separation from charged e-m particles and other neutral e-m particles)

Backgrounds

- Combinatorial (exponential)
- Partially reconstructed background (Argus ⊗ Gaussian)
 - Missing π , $B \rightarrow K\pi\pi\eta(\rightarrow\gamma\gamma)$ (negligible) and general partial.
- Peaking backgrounds (suppressed with specific cuts)
 - B+ → \overline{D}^{0} (→ K+π- π^{0}) π+, B+ → \overline{D}^{*0} (\overline{D}^{0} (→ K+ π^{-})γ)π+ and B+ → K*+(→ K+ π^{0}) π+ π^{-}
- Contamination from neutral $B^0 \rightarrow K_1(1270)^0 \gamma$ (negligible)
- Crossfeed from $B^+ \rightarrow \pi\pi\pi\gamma$ (suppressed with PID)

Backgrounds

included in mass fit

- Combinatorial (exponential)
- Partially reconstructed background (Argus ⊗ Gaussian)
 - Missing π , $B \rightarrow K\pi\pi\eta(\rightarrow\gamma\gamma)$ (negligible) and general partial.
- · Peaking backgrounds (suppressed with specific cuts)
 - B+ → \overline{D}^{0} (→ K+π- π^{0}) π+, B+ → \overline{D}^{*0} (\overline{D}^{0} (→ K+ π^{-})γ)π+ and B+ → K*+(→ K+ π^{0}) π+ π^{-}
- Contamination from neutral $B^0 \rightarrow K_1(1270)^0 \gamma$ (negligible)
- Crossfeed from $B^+ \rightarrow \pi\pi\pi\gamma$ (suppressed with PID)

Angle definition

- The sign of the λ_{γ} parameter changes with the charge of the *B* meson (positive for *B* and negative for *B*+)
- When putting together the data, take the change of sign by taking into account the sign of the charge of the B candidate

$$\cos \hat{\theta} = \operatorname{sign}(\operatorname{charge} B^{\pm}) \cos \theta$$

Mass fit

- Unbinned maximum likelihood fit to the invariant mass of the B candidates
- Simultaneously fit 2011 and 2012 to account for slightly different calorimeter performance
 - Share shape parameters except for the B mass resolution
 - Different background contamination
- Signal shape fixed from MC
- Background shapes partially fixed from MC
 - Free combinatorial and partially reconstructed background tail

Angular distribution

- Angular distributions for each region of $K\pi\pi$ mass are obtained as a simultaneous fit of the mass of the B candidates in bins of $\cos\theta$
 - Used 20 bins in the angular variable
 - All fit parameters shared
- Yields for each bin are corrected with the selection acceptance and then normalized to the total yield

Systematic uncertainties

- · Effect of bin migration, evaluated with pseudo experiments
 - Use angle-dependent resolution
 - Determined as a covariance matrix between bins
- · Fit model, evaluated by testing alternative modelizations
- Parameters fixed from simulation, including acceptance, evaluated using simulated pseudo experiments

Systematic uncertainties

Largest systematic

- · Effect of bin migration, evaluated with pseudo experiments
 - Use angle-dependent resolution
 - Determined as a covariance matrix between bins
- · Fit model, evaluated by testing alternative modelizations
- Parameters fixed from simulation, including acceptance, evaluated using simulated pseudo experiments

Strong correlations between bins

Cross checks

- Adding further orders in Legendre polynomials does not add information (extra parameters ~ 0)
 - Significance unchanged
- Further cross checks performed with counting experiment
 - Up-down asymmetries compatible
 - Lower significance (5.0σ)
 - Difference in significances with respect to the angular fit match expectations from pseudo experiments

Angle convention

- In neutral decays, it is necessary to redefine the angle θ in order to avoid cancellations due to the symmetries of J with respect to the exchange of the two π
 - Not necessary in charged decays, but kept for consistency

(LHCb Implications Workshop)