$b \rightarrow s y$

Radiative B decays

- Rare penguin FCNC transitions with a final-state (real) photon
- Discovered by CLEO in 1993 (PRL 71.674)

Evidence for Penguin-Diagram Decays: First Observation of $B \rightarrow K^{*}(892) \gamma$

- Studied extensively by CLEO, BaBar, Belle and LHCb

RPP栔	Mode	PDG2012 Avg.	BABAR	Belle	CLEO	CDF	LHCb	New Avg.		
310	$K^{0} \eta \gamma$	7.6 ± 1.8	$7.1_{-2.0}^{+2.1} \pm 0.4$	$8.7_{-2.7-1.6}^{+3.1+1.9}$				$7.6{ }_{-1.7}^{+1.8}$	\bigcirc bivs	
311	$K^{0} \eta^{\prime} \gamma$	<6.4	<6.6	<6.4				<6.4		
312	K^{0} ¢ γ	2.7 ± 0.7	<2.7	$2.74 \pm 0.60 \pm 0.32$				2.74 ± 0.68		
313	$K^{+} \boldsymbol{m}^{-} \boldsymbol{\gamma}$ §	4.6 ± 1.4		$4.6{ }_{-1.2-0.7}^{+1.3+0.5}$				4.6 ± 1.4		
314	$K^{* 0} \gamma$	43.3 ± 1.5	$44.7 \pm 1.0 \pm 1.6$	$40.1 \pm 2.1 \pm 1.7$	$45.5{ }_{-6.8}^{+7.2} \pm 3.4$			43.3 ± 1.5		
315	$K^{*}(1410)^{0} \gamma$	<130		<130						
316	$K^{+} \pi^{-\gamma} \gamma($ N.R. $)$ §	<2.6		<2.6				<2.6		
318	$K^{0} \pi^{+} \pi^{-} \gamma$	19.5 ± 2.2	$18.5 \pm 2.1 \pm 1.2 \dagger$	$24 \pm 4 \pm 3 \ddagger$				19.5 ± 2.2		
319	$K^{+} \pi^{-} \pi^{0} \gamma$	41 ± 4	$40.7 \pm 2.2 \pm 3.1 \dagger$					40.7 ± 3.8		
320	$K^{0}(1270) \gamma$	< 58		<58						
321	$\kappa_{1}^{6}(1400) \gamma$	<12		<15				<15		
322	$K_{2}^{*}(1430)^{0} \gamma$	12.4 ± 2.4	$12.2 \pm 2.5 \pm 1.0$	$13 \pm 5 \pm 1$				12.4 ± 2.4		
324	$K_{3}^{2}(1780)^{0} \gamma$	<83								
326	$\rho^{0} \gamma$	0.86 ± 0.15	$0.97_{-0,24}^{+0.24} \pm 0.06$	$0.78{ }_{-0,16+0.10}^{+0.17+0.09}$				$0.86_{--.14}^{+0.15}$		
328	wy	$0.44_{-0.16}^{+0.18}$	$0.500_{-0.23}^{+0.27} \pm 0.09$	$0.40_{-0.17}^{+0.19} \pm 0.13$	<9.2			$0.44_{-0.16}^{+0.18}$		
329	. $\phi \gamma$	<0.85	<0.85		<3.3			<0.85		$H F A G A C P$
\| 314	\bar{K}	-0.	. 6 ± 0.23	$-0.16 \pm 0.22 \pm 0$.					$0.008 \pm 0.017 \pm 0.009$	0.007 ± 0.019

Measuring the polarization

- Time-dependent analyses of $B_{(s)} \rightarrow A^{f(P} \gamma$, e.g., $B_{s} \rightarrow \varphi \gamma$ and $B^{0} \rightarrow K_{s} \pi^{0} \gamma$
- Transverse asymmetry in $B^{0} \rightarrow K^{*}|+|$ (pollution from C_{9} and $\left.C_{10}\right)$
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow К \pi \pi \gamma$
- b-baryons: $\Lambda_{b} \rightarrow \Lambda^{(*)} \gamma, \Xi_{b} \rightarrow \Xi^{(*)} \gamma$

Complementary approaches

[Bečirević et al]

Challenges for radiative decays

- Distinct experimental signature with a high ET photon - Large levels of background are expected in a pp machine
- Mass resolution dominated by photon reconstruction

[Nucl. Phys. B 867 (2012)]

[PRL 110 (2013) 221601]

Measuring the polarization

- Time-dependent analyses of $B(s) \rightarrow f^{C P} \gamma$, e.g., $B_{s} \rightarrow \varphi \gamma$ and $B^{0} \rightarrow K_{s} \pi^{0} \gamma$
- Transverse asymmetry in $B^{0} \rightarrow K^{*}|+|$ (pollution from C_{9} and C_{10})
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow K \pi \pi \gamma$
b-baryons: $\Lambda_{b} \rightarrow \Lambda^{(*)} \gamma_{,} \Xi_{b} \rightarrow \Xi^{\left({ }^{*}\right)} \gamma$

$B \rightarrow$ Клтү in Belle and BaBar

- Belle observed $B \rightarrow K_{1}(1270)^{+} \gamma$ and $B a B a r ~ B \rightarrow K_{2}^{*}(1430)^{+} \gamma$
- Both BaBar and Belle have measured the inclusive BR

$K_{1}(1270)^{+} \gamma$	$(4.3 \pm 1.2) \times 10^{-5}$
$K_{1}(1400)^{+} \gamma$	$<1.5 \times 10^{-5}$
$K_{2}^{*}(1430)^{+} \gamma$	$(1.45 \pm 0.43) \times 10^{-5}$
$K^{+} \pi^{+} \pi^{-} \gamma$	$(2.76 \pm 0.18) \times 10^{-5}$
$K^{0} \pi^{+} \pi^{0} \gamma$	$(4.5 \pm 0.52) \times 10^{-5}$

Belle, [Nishida et al] (2002)
Belle, [Yang et al] (2005)
BaBar, [Aubert et al] (2007)

Photon polarization in $B \rightarrow K_{\text {res }} Y$

- If we consider $B \rightarrow K_{\mathrm{res}}^{(i)} \gamma$ we can define the photon polarization as

$$
\lambda_{\gamma}^{(i)}=\frac{|c_{R}^{(i)} \overbrace{}^{2}-\left|c_{L}^{(i)}\right|^{2}}{\left|c_{R}^{(i)}\right|^{2}+\left|c_{L}^{(i)}\right|^{2}} \quad \underset{\text { weak amplitudes }}{c^{(i)}}=A\left(B \rightarrow K_{\text {res }}^{(i)} \gamma_{L(R)}\right)
$$

- It can be shown that photon polarization is independent of the K resonance and can be expressed as [Gronau et al]

$$
\frac{\left|c_{R}^{(i)}\right|}{\left|c_{L}^{(i)}\right|}=\frac{\left|C_{7 R}\right|}{\left|C_{7 L}\right|} \Rightarrow \lambda_{\gamma}^{(i)}=\frac{\left|C_{7 R}\right|^{2}-\left|C_{7 L}\right|^{2}}{\left|C_{7 R}\right|^{2}+\left|C_{7 L}\right|^{2}} \equiv \lambda_{\gamma}
$$

+1 for \bar{b} and -1 for b

Angular distribution in $B \rightarrow К \pi \pi \gamma$

- The photon polarization can be inferred from the polarization of the K

Angular distribution in $B \rightarrow К \pi \pi \gamma$

- The amplitude of one K resonance decay can be described by the helicity amplitude J_{μ}

$$
A_{L(R)}^{(i)}\left(s, s_{13}, s_{23}, \cos \theta\right)=\epsilon_{K, L(R)}^{\mu} \mathcal{J}_{\mu}^{\text {vector }}{ }^{\text {information }}
$$

- Considering only one (1^{+}) intermediate resonance
$\frac{\mathrm{d} \Gamma\left(K_{L(R)} \rightarrow K \pi \pi\right)}{\mathrm{d} s \mathrm{~d} s_{13} \mathrm{~d} s_{23} \mathrm{~d} \cos \theta} \propto \frac{1}{4}|\overrightarrow{\mathcal{J}}|^{2}\left(1+\cos ^{2} \theta\right) \mp \frac{1}{2} \cos \theta \operatorname{Im}\left[\vec{n} \cdot\left(\overrightarrow{\mathcal{J}} \times \overrightarrow{\mathcal{J}}^{*}\right)\right]$
and therefore [Kou et al] [Gronau et al] interference! $\frac{\mathrm{d} \Gamma\left(B \rightarrow K_{\mathrm{res}} \gamma \rightarrow K \pi \pi \gamma\right)}{\mathrm{d} s \mathrm{~d} s_{13} \mathrm{~d} s_{23} \mathrm{~d} \cos \theta} \propto \frac{1}{4}|\overrightarrow{\mathcal{J}}|^{2}\left(1+\cos ^{2} \theta\right)+\lambda_{\gamma} \frac{1}{2} \cos \theta \operatorname{Im}\left[\vec{n} \cdot\left(\overrightarrow{\mathcal{J}} \times \overrightarrow{\mathcal{J}}^{*}\right)\right]$

But life is not so beautiful

- Interference between $1^{+}, 1^{-}, 2^{+}$resonances [Gronau et al]

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma}{\mathrm{~d} s_{13} \mathrm{~d} s_{23} \mathrm{~d} \cos \theta} & =|A|^{2}\left\{\frac{1}{4}|\overrightarrow{\mathcal{J}}|^{2}\left(1+\cos ^{2} \theta\right)+\frac{1}{2} \lambda_{\gamma} \operatorname{Im}\left[\vec{n} \cdot\left(\overrightarrow{\mathcal{J}} \times \overrightarrow{\mathcal{J}}^{*}\right)\right] \cos \theta\right\}+ \\
& +|B|^{2}\left\{\frac{1}{4}|\overrightarrow{\mathcal{K}}|^{2}\left(\cos ^{2} \theta+\cos ^{2} 2 \theta\right)+\frac{1}{2} \lambda_{\gamma} \operatorname{Im}\left[\vec{n} \cdot\left(\overrightarrow{\mathcal{K}} \times \overrightarrow{\mathcal{K}}^{*}\right)\right] \cos \theta \cos 2 \theta\right\}+|C|^{2} \frac{1}{2} \sin ^{2} \theta+ \\
& +\left\{\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \operatorname{Im}\left[A B^{*} \vec{n} \cdot\left(\overrightarrow{\mathcal{J}} \times \overrightarrow{\mathcal{K}}^{*}\right)\right]+\lambda_{\gamma} \operatorname{Re}\left[A B^{*} \vec{n} \cdot\left(\overrightarrow{\mathcal{J}} \cdot \overrightarrow{\mathcal{K}}^{*}\right)\right] \cos ^{3} \theta\right\}
\end{aligned}
$$

need to know J and K!

- But λ_{γ} goes with odd powers of $\cos \theta$

$$
\frac{\mathrm{d} \Gamma\left(\sum B \rightarrow K_{\mathrm{res}} \gamma \rightarrow P_{1} P_{2} P_{3} \gamma\right)}{\mathrm{d} s \mathrm{~d} s_{13} \mathrm{~d} s_{23} \mathrm{~d} \cos \theta} \propto \sum_{j=\text { even }} a_{j}\left(s_{13}, s_{23}\right) \cos ^{j} \theta+\lambda_{\gamma} \sum_{j=\mathrm{odd}} a_{j}\left(s_{13}, s_{23}\right) \cos ^{j} \theta
$$

Up-down asymmetry

- We can exploit the structure of the decay rate and define the up-down asymmetry

$$
\mathcal{A}_{\mathrm{UD}} \equiv \frac{\int_{0}^{1} \mathrm{~d} \cos \theta \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}-\int_{-1}^{0} \mathrm{~d} \cos \theta \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}}{\int_{-1}^{1} \mathrm{~d} \cos \theta \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}}=C \lambda_{\gamma}
$$

where C takes into account the integral over the Dalitz plot and the angular distribution

- This asymmetry is expected to be $\sim 0.3 \lambda_{y}$ in isolated neutral K_{p} decays and $\sim 0.1 \lambda_{y}$ in charged ones

$B^{ \pm} \rightarrow K^{ \pm} \pi^{\mp} \pi^{ \pm} \gamma$ at LHCb

- In LHCb we have studied the charged mode $B^{+} \rightarrow K^{+} \pi \pi^{+} \gamma$ (and charge conjugate)
- Inclusive study with $К \pi \pi$ system mass in the $[1.1,1.9] \mathrm{GeV} / \mathrm{c}^{2}$ range
- Analysis performed in the full data set recorded by LHCb in 2011 and 2012, corresponding to 3/fb
- Preliminary conference note inclusing only 2012 data and with simple counting approach was shown at EPS 2013 [LHCb-CONF-2013-009]

Analysis strategy

PRL 112, 161801 (2014)

- B candidates mass fit
- Assessment of the Kлा mass spectrum
- Angular study
- Provide angular distribution to help theory calculations
- Determination of up-down asymmetry
- Obtain significance with respect to the no-polarization scenario

Mass distribution

- Observe ~14000 signal events in the [1.1,1.9] GeV/c² Клा mass region

Background-subtracted Клт mass spectrum

- Many (unclear) contributions in the Kлт mass spectrum
- Impossible to separate the resonances without full Dalitz analysis

Background-subtracted Клт mass spectrum

- Many (unclear) contributions in the Kлт mass spectrum
- Impossible to separate the resonances without full Dalitz analysis

Angle definition

- In order to avoid cancellations due to symmetries, neutral Клт combinations requiere a change of the sign of $\cos \theta$ according to s_{12} and s_{13}

$$
\vec{n}=\vec{p}_{\pi, \text { slow }} \times \vec{p}_{\pi, \text { fast }}
$$

- The same convention is used for consistency

Angular fit

- Angular distributions for each region are fitted with a combination of Legendre polynomials up to order 4

$$
f\left(\cos \hat{\theta} ; c_{0}=0.5, c_{1}, c_{2}, c_{3}, c_{4}\right)=\sum_{i=0}^{4} c_{i} L_{i}(\cos \hat{\theta})
$$

- A X^{2} fit is performed taking into account the full statistical and systematic covariance matrices
- The up-down asymmetry is determined with the relation

$$
\mathcal{A}_{u d}=\frac{c_{1}-c_{3} / 4}{2 c_{0}}
$$

Nominal fit

No odd components

Angular fit results

Angular fit coefficients

- The coefficients of the angular fit are obtained for each of the four Клт mass regions

				$\left(\times 10^{-2}\right)$
	$[1.1,1.3]$	$[1.3,1.4]$	$[1.4,1.6]$	$[1.6,1.9]$
c_{1}	6.3 ± 1.7	5.4 ± 2.0	4.3 ± 1.9	-4.6 ± 1.8
c_{2}	31.6 ± 2.2	27.0 ± 2.6	43.1 ± 2.3	28.0 ± 2.3
c_{3}	-2.1 ± 2.6	2.0 ± 3.1	-5.2 ± 2.8	-0.6 ± 2.7
c_{4}	3.0 ± 3.0	6.8 ± 3.6	8.1 ± 3.1	-6.2 ± 3.2
$\mathcal{A}_{\text {UD }}$	6.9 ± 1.7	4.9 ± 2.0	5.6 ± 1.8	-4.5 ± 1.9

- We expect that these results prove to be a useful input for theorists (are they?)

Up-down asymmetry results

- Four independent up-down asymmetries are obtained

Aud significance

- Use the four independent up-down asymmetries to extract a combined significance with respect to the no-polarization scenario
- Up-down asymmetry is different from zero at 5.2σ

Aud significance

- Use the four independent up-down asymmetries to extract a combined significance with respect to the no-polarization scenario
- Up-down asymmetry is different from zero at 5.2σ

First observation of photon polarization in $b \rightarrow s \gamma$ transitions!

Conclusions so far

- LHCb has studied the $B^{+} \rightarrow K^{+} \pi \pi^{+} \gamma$ decay with its full available statistics of $3 / \mathrm{fb}$
- The angular distribution of the photon with respect to the plane defined by the final state hadrons has been characterized for different regions of their invariant mass
- Impossible to extract photon polarization without further input
- Aim to provide a valuable input for theorists
- Photon polarization has been observed for the first time in $b \rightarrow s y$ transitions

Photon polarization from $A_{u D}$?

- The up-down asymmetry is proportional to λ_{γ}

$$
\mathcal{A}_{\mathrm{UD}} \equiv \frac{\int_{0}^{1} \mathrm{~d} \cos \theta \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}-\int_{-1}^{0} \mathrm{~d} \cos \theta \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}}{\int_{-1}^{1} \mathrm{~d} \cos \theta \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}}=C \lambda_{\gamma}
$$

- But what is the proportionality constant?
- Right now it looks like it's not possible to translate a measurement of Aud into a measurement of λ_{y}

Interlude: theory vs experiment

- Combined work between theory and experiment is needed
- Need to take into account what experimental data can tell us
- Need to measure things that are theoretically interesting
- In the case of $К \pi \pi \gamma$, theory papers don't give any prediction or formula we can use, and experiment is probably not measuring things that are interesting to theorists

Interlude: theory vs experiment

News on $B \rightarrow K \pi \pi ү$ from BaBar

Eli Ben-Haim

 Moriond EW (March 16th 2014)| | Mode | $\begin{gathered} \mathcal{B}\left(B^{+} \rightarrow \text { Mode }\right) \times \\ \mathcal{B}\left(K_{\text {res }} \rightarrow K^{+} \pi^{+} \pi^{-}\right) \times 10^{-6} \end{gathered}$ | $\mathcal{B}\left(B^{+} \rightarrow\right.$ Mode $) \times 10^{-6}$ | PDG values $\left(\times 10^{-6}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| | Inclusive $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \gamma$ | \cdots | $27.2 \pm 1.0_{-1.3}^{+1.1}$ | 27.6 ± 2.2 |
| | $K_{1}(1270)^{+} \gamma$ | $14.5{ }_{-1.3}^{+2.0+1.2}$ | $44.0{ }_{-4.0-3.7}^{+6.0+3.5} \pm 4.6$ | 43 ± 13 |
| $\mathbf{K}_{\text {res }} \rightarrow \mathbf{K}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+}$ | $K_{1}(1400)^{+} \gamma$ | $4.1_{-1.2-0.8}^{+1.9+1.3}$ | $9.7{ }_{-2.9-1.8}^{+4.6+3.1} \pm 0.6$ | $<15 \mathrm{CL}=90 \%$ |
| | $K^{*}(1410)^{+} \gamma$ | $9.7{ }_{-1.9-0.7}^{+2.1+2.4}$ | $23.8{ }_{-4.6-1.4}^{+5.2} \pm 2.4$ | \emptyset |
| | $K_{2}^{*}(1430){ }^{+} \gamma$ | $1.5{ }_{-1.0}^{+1.2+4.9}$ | $10.4{ }_{-7.0}^{+8.7}{ }_{-9.9}^{6.3} \pm 0.5$ | 14 ± 4 |
| | $K^{*}(1680)^{+} \gamma$ | $17.0{ }_{-1.4-3.0}^{+1.7+3.5}$ | $71.7_{-5.7-13}^{+7.2+15} \pm 5.8$ | $<1900 \mathrm{CL}=90 \%$ |

News on $B \rightarrow K \pi \pi \gamma$ from BaBar

What can we do with Клп?

- Fit mass distribution and split by spin-parity and calculate updown asymmetry
- Still, predictions are needed for the up-down asymmetry in spinparity pairs (how to do it without BR measurements?)
- Can we anyway fit he mass distribution?
- Get an idea of the mass distribution and cut the $K_{7}(1270)$ off
- Still, no prediction for this resonance
- How to evaluate systematics?

What can we do with Клп?

- Add another variable (an angle) to the mass fit
- I honestly don't know which
- Another solution is to study the Dalitz plot similarly to what Belle did with the J/ ψ mode [Phys. Rev. D83 (2011) 032005]
- Factor 3 less data (14k vs 40k)
- Less allowed amplitudes due to the photon (less parameters to fit)
- Less clean
- Need to parametrize detection efficiency over the Dalitz plane

Measuring the polarization

- Time-dependent analyses of $B_{(s)} \rightarrow A^{f(P} \gamma$, e.g., $B_{s} \rightarrow \varphi \gamma$ and $B^{0} \rightarrow K_{s} \pi^{0} \gamma$
- Transverse asymmetry in $B^{0} \rightarrow K^{*}|+|$ (pollution from C_{9} and $\left.C_{10}\right)$
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow К \pi \pi \gamma$
- b-baryons: $\Lambda_{b} \rightarrow \Lambda^{(*)} \gamma, \Xi_{b} \rightarrow \Xi^{(*)} \gamma$

Measuring the polarization

- Time-dependent analyses of $B_{(s)} \rightarrow A^{f(P} \gamma$, e.g., $B_{s} \rightarrow \varphi \gamma$ and $B^{0} \rightarrow K_{s} \pi^{0} \gamma$
- Transverse asvmmetrv in $B^{0} \rightarrow K^{*}+\mid$ - (naلمlution from C_{9} and $\left.C_{10}\right)$ We can do more things in LHCb!
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow$ Клтү
- b-baryons: $\Lambda_{b} \rightarrow \Lambda^{(*)} \gamma, \Xi_{b} \rightarrow \Xi^{(*)} \gamma$

Ideas that need theory

- Angular distributions in $B^{+} \rightarrow \varphi K^{+} \gamma$
- Some theory papers, nothing conclusive
- Unobserved $B \rightarrow V \gamma$ transitions $\left(V=\varphi, K^{*}\right)$ could be observed with the current LHCb dataset
- Is there anything we can extract from angular distributions?
- Please, think out of the box: if it is interesting, we can try to do it!
- I leave you my email: albert.puig@cern.ch

Thank you

Backup

Radiative B decays

- Access to possible NP through the virtual loop (2HDM, SUSY...)
- Transitions especially sensitive to NP in the C gy coefficient $^{\text {c }}$

- Exclusive decays difficult from the theoretical point of view due to form factor
- Find form-factor free observables, such as CP and isospin asymmetries
- Photon polarization as test of the SM

Radiative B decays

- Access to possible NP through the virtual loop (2HDM, SUSY...)
- Transitions especially sensitive to NP in the C gy coefficient $^{\text {c }}$

electromagnetic
penguin operator
- Exclusive decays difficult from the theoretical point of view due to form factor
- Find form-factor free observables, such as CP and isospin asymmetries
- Photon polarization as test of the SM

Photon polarization in the SM

- The chiral structure of the $b \rightarrow s y$ process and the fact that the W couples only left-handedly causes the photons to be (almost completely) circularly polarized

$$
\mathcal{O}_{7 \gamma}=\frac{e}{16 \pi^{2}} m_{b} \bar{s}_{L} \sigma_{\mu \nu} F^{\mu \nu} b_{R}
$$

$$
\begin{aligned}
b & \rightarrow s \gamma_{L} \\
\bar{b} & \rightarrow \bar{s} \gamma_{R}
\end{aligned}
$$

- Never confirmed to high precision!
- QCD corrections coming from C_{2} are expected to be in the 1-10\% range [Bečirević et al]

And beyond the SM?

- Several NP models introduce right-handed currents
- New particles can change the chirality inside the loop, producing chiral enhancement
- m_{t} / m_{b} from LRSM [Babu et al]
- $m_{\text {suss }} / m_{b}$ in SUSY with $\delta_{\text {RL }}$ mass insertions [Gabbiani et al]

- Still "large" room for NP despite the constraints coming from B_{s} oscillation parameters, $B_{s} \rightarrow \mu \mu \ldots$
- New penguins around the corner?

The LHCb experiment

The LHCb experiment

The LHCb experiment

LHCb Run-I summary

Rare B decays

- FCNC with $\triangle F=1$ are forbidden at tree level in the $S M$, so they proceed through loop (box, penguin) diagrams
- In extensions of the SM, these loop processes may receive contributions from new virtual particles

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{e^{2}}{16 \pi^{2}} \sum_{i}\left(C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right)+\text { h.c. } .
$$

- Rare decays can be used for indirect searches of New Physics
- Highly suppressed in the SM
- Highly sensitive to NP effects

Photon polarization in the SM

- The $b \rightarrow s y$ process has a particular structure in the SM

$$
\bar{s} \Gamma(b \rightarrow s \gamma)_{\mu} b=\frac{e}{(4 \pi)^{2}} \frac{g^{2}}{2 M_{W}^{2}} V_{t s}^{*} V_{t b} F_{2} \bar{s} i \sigma_{\mu \nu} q^{\nu}\left(m_{b} \frac{1+\gamma_{5}}{2}+m_{s} \frac{1-\gamma_{5}}{2}\right) b
$$

- The W boson couples only left-handedly
- The requirement of a chirality flip leads to left-handed photon dominance

Photon polarization in the SM

Why 3 charged particles?

- Three tracks is the minimum needed to build a P-odd triple product proportional to the photon polarization using the final state momenta

$$
\vec{p}_{\gamma} \cdot\left(\vec{p}_{1} \times \vec{p}_{2}\right) \text { changes sign with photon helicity }
$$

2 body decay

Right

Photon polarization in $B \rightarrow K_{\text {res }} Y$

strong decay

- In the case of overlapping resonances amplitudes of the $K_{\text {res }}$

$$
\mathrm{d} \Gamma(B \rightarrow K \pi \pi \gamma)=\left|\sum_{i} \frac{c_{R}^{(i)} A_{R}^{(i)}}{s-M_{i}^{2}-i M-i \Gamma_{i}}\right|^{2}+\left|\sum_{i} \frac{c_{L}^{(i)} A_{L}^{(i)}}{s-M_{i}^{2}-i M-i \Gamma_{i}}\right|^{2}
$$

so (introducing the expression of the weak amplitudes) $\mathrm{d} \Gamma(B \rightarrow K \pi \pi \gamma) \propto\left(\left|\mathcal{A}_{R}\right|^{2}+\left|\mathcal{A}_{L}\right|^{2}\right)+\lambda_{\gamma}\left(\left|\mathcal{A}_{R}\right|^{2}-\left|\mathcal{A}_{L}\right|^{2}\right)$

- It's interesting to note that

$$
P_{\gamma}=\frac{\mathrm{d} \Gamma\left(B \rightarrow K \pi \pi \gamma_{R}\right)-\mathrm{d} \Gamma\left(B \rightarrow K \pi \pi \gamma_{L}\right)}{\mathrm{d} \Gamma\left(B \rightarrow K \pi \pi \gamma_{R}\right)+\mathrm{d} \Gamma\left(B \rightarrow K \pi \pi \gamma_{L}\right)}
$$

is only equal to λ_{Y} in the case of one resonance

Interference needed!

- The decay amplitude is required to have a non trivial phase due to final state interactions in order to preserve T
- Knowledge of this phase is required to interpret measurements in terms of photon polarization
- In the case of $К \pi \pi$ final states, this means
- Interference between two intermediate $K^{*} \pi$ states with different charges (isospin-related amplitudes) only for final states with neutrals
- Interference between intermediate $K^{*} \pi$ and ρK amplitudes
- Interference between different partial waves into $K^{*} \pi$ or ρK

Event selection

- Exploit the special features of B decays
- Selection criteria:
- High Eт photon (>3.0 GeV)
- Multivariate tool with kinematical variables
- Charged particle identification
- Photon identification (separation from charged e-m particles and other neutral e-m particles)

Backgrounds

- Combinatorial (exponential)
- Partially reconstructed background (Argus \otimes Gaussian)
- Missing $\pi, B \rightarrow K \pi \pi \eta(\rightarrow \gamma \gamma)$ (negligible) and general partial.
- Peaking backgrounds (suppressed with specific cuts)

$$
-B^{+} \rightarrow \bar{D}^{0}\left(\rightarrow K^{+} \pi \pi^{0}\right) \pi^{+}, B^{+} \rightarrow \bar{D}^{*} 0\left(\bar{D}^{0}\left(\rightarrow K^{+} \pi\right) Y\right) \pi^{+} \text {and } B^{+} \rightarrow K^{*}+\left(\rightarrow K^{+} \pi^{0}\right) \pi^{+} \pi
$$

- Contamination from neutral $B^{0} \rightarrow K_{l}(1270)^{0} \gamma$ (negligible)
- Crossfeed from $B^{+} \rightarrow$ тाттץ (suppressed with PID)

Backgrounds

- Combinatorial (exponential)
- Partially reconstructed background (Argus \otimes Gaussian)
- Missing $\pi, B \rightarrow K \pi \pi \eta(\rightarrow \gamma \gamma)$ (negligible) and general partial.
- Peaking backgrounds (suppressed with specific cuts)

$$
\left.-B^{+} \rightarrow \overline{D^{0}}\left(\rightarrow K^{+} \pi \pi^{0}\right) \pi^{+}, B^{+} \rightarrow \bar{D}^{*} 0\left(\bar{D}^{0}\left(\rightarrow K^{+} \pi\right) Y\right) \pi^{+} \text {and } B^{+} \rightarrow K^{*}+\rightarrow K^{+} \pi^{0}\right) \pi^{+} \pi
$$

- Contamination from neutral $B^{0} \rightarrow K_{l}(1270)^{\circ} \gamma$ (negligible)
- Crossfeed from $B^{+} \rightarrow$ тाтт (suppressed with PID)

Angle definition

- The sign of the λ_{y} parameter changes with the charge of the B meson (positive for B^{-}and negative for B^{+})
- When putting together the data, take the change of sign by taking into account the sign of the charge of the B candidate

$$
\cos \hat{\theta}=\operatorname{sign}\left(\operatorname{charge} B^{ \pm}\right) \cos \theta
$$

Mass fit

- Unbinned maximum likelihood fit to the invariant mass of the B candidates
- Simultaneously fit 2011 and 2012 to account for slightly different calorimeter performance
- Share shape parameters except for the B mass resolution
- Different background contamination
- Signal shape fixed from MC
- Background shapes partially fixed from MC
- Free combinatorial and partially reconstructed background tail

Angular distribution

- Angular distributions for each region of Клा mass are obtained as a simultaneous fit of the mass of the B candidates in bins of $\cos \hat{\theta}$
- Used 20 bins in the angular variable
- All fit parameters shared
- Yields for each bin are corrected with the selection acceptance and then normalized to the total yield

Systematic uncertainties

- Effect of bin migration, evaluated with pseudo experiments
- Use angle-dependent resolution
- Determined as a covariance matrix between bins
- Fit model, evaluated by testing alternative modelizations
- Parameters fixed from simulation, including acceptance, evaluated using simulated pseudo experiments

Systematic uncertainties

Largest systematic

- Effect of bin migration, evaluated with pseudo experiments
- Use angle-dependent resolution
- Determined as a covariance matrix between bins
- Fit model, evaluated by testing alternative modelizations
- Parameters fixed from simulation, including acceptance, evaluated using simulated pseudo experiments

Strong correlations between bins

Cross checks

- Adding further orders in Legendre polynomials does not add information (extra parameters ~ 0)
- Significance unchanged
- Further cross checks performed with counting experiment
- Up-down asymmetries compatible
- Lower significance (5.0б)
- Difference in significances with respect to the angular fit match expectations from pseudo experiments

Angle convention

- In neutral decays, it is necessary to redefine the angle θ in order to avoid cancellations due to the symmetries of J with respect to the exchange of the two π
- Not necessary in charged decays, but kept for consistency

$K_{1}(1270)^{+}$

