Constraints from $b \rightarrow s \mu^{-}\mu^{+}$ on leptoquark scenarios

Nejc Košnik

Institut "Jožef Stefan", Ljubljana, Slovenija

Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

Leptoquarks.What?

- Boson color triplets, talking to a lepton and a quark
- Natural in theories with mixed lepton/quark multiplets Grand unified theories, Pati-Salam unification, composite scenarios
- vector or scalar (role of gauge boson or Higgs in GUT)
- fermion number F = 2 or F = 0 (F = 3B+L)

[HI Collaboration]

Leptoquarks. Pros and cons.

Their presence generates, at tree level:

- quark flavour violation
- neutral current processes with quarks
- lepton flavor violation

If LQ endowed with di-quark couplings, then state has ill-defined B and L numbers.

$$\tau_p > 10^{34} \,\mathrm{yr}$$

[Super-Kamiokande(1996-2008)]

Effective renormalizable framework

Above the weak scale complement the Standard model with (super)renormalizable terms

$$\mathcal{L} = \mathcal{L}_{\rm SM} + |D_{\mu}\Delta|^2 - m_{\Delta}^2 |\Delta|^2 + Y_{ij}\Delta \bar{f}_i f_j$$

 Δ = scalar/vector state with well defined quantum numbers, e.g., (3,2,1/6)

Remarks:

- add single scalar/vector leptoquark at a time
- UV symmetry hidden, Lagrangian invariant under the SM gauge group
- Mass of the state is not proportional to VEV of the SM Higgs
- Fermion couplings (Yukawas) and LQ mass are new free parameters
- Renormalizable theory => UV independent => "model independent" framework.

In other words ... a perfectly viable scenario.

Build appropriate LQ currents out of SM fermions:

Build appropriate LQ currents out of SM fermions:

 $\bar{Q}\ell_R \\ \bar{d}_R L$

scalars

 $egin{array}{lll} \overline{Q^C} i au_2 oldsymbol{ au} & L \ \overline{d^C_R} \ell_R \end{array}$

Build appropriate LQ currents out of SM fermions:

 $ar{Q}\ell_R \ ar{d}_R L$

 $egin{array}{lll} \overline{Q^C}i au_2oldsymbol{ au} & L \ \overline{d^C_R}\ell_R \end{array}$

 $ar{d}_R \gamma^\mu \ell_R \ ar{Q} oldsymbol{ au} \gamma^\mu L$

vectors

 $\overline{Q^C} i \tau_2 \gamma^{\mu} \ell_R$

Build appropriate LQ currents out of SM fermions:

 $\begin{array}{ccc} \bar{Q}\ell_R & (\bar{3},2,-7/6) \\ \bar{d}_R L & (\bar{3},2,-1/6) \end{array} & \mbox{scalars} & \begin{tabular}{c} \overline{Q^C}i\tau_2 {\bm \tau} \cdot L & (3,\bar{3})_{-1/3} \\ \hline d_R^C \ell_R & (3,1)_{-4/3} \end{array} \\ \end{array}$

Build appropriate LQ currents out of SM fermions:

In the effective Hamiltonian language:

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}\lambda_t \Big[\sum_{i=1}^{6} C_i(\mu)\mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S} (C_i(\mu)\mathcal{O}_i(\mu) + C'_i(\mu)\mathcal{O}'_i(\mu)) + C_T\mathcal{O}_T + C_{T5}\mathcal{O}_{T5} \Big]$

$$\mathcal{O}_{9} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) , \qquad \mathcal{O}_{S} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\ell) , \qquad \mathcal{O}_{T} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\ell) , \\ \mathcal{O}_{10} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) , \qquad \mathcal{O}_{P} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell) . \qquad \mathcal{O}_{T5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\gamma_{5}\ell) .$$

$$\Delta^{(7/6)} \ \bar{Q}\ell_R \qquad (\bar{3}, 2, -7/6) \\ \Delta^{(1/6)} \ \bar{d}_R L \qquad (\bar{3}, 2, -1/6)$$
 scalars Δ
$$\Delta^{(1/3)} \ Q^C i \tau_2 \tau \cdot L \qquad (3, \bar{3})_{-1/3} \\ \Delta^{(4/3)} \ \overline{d}_R^C \ell_R \qquad (3, 1)_{-4/3}$$

 $\begin{array}{ll} V^{(1)} \bar{d}_R \gamma^{\mu} \ell_R & (\bar{3}, 1, -2/3) & \text{vectors V} & V^{(2)} \ \overline{Q^C} i \tau_2 \gamma^{\mu} \ell_R & (3, 2, -5/6) \\ V^{(3)} \ \bar{Q} \tau \gamma^{\mu} L & (\bar{3}, 3, -2/3) & \end{array}$

In the effective Hamiltonian language:

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}\lambda_t \Big[\sum_{i=1}^{6} C_i(\mu)\mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S} (C_i(\mu)\mathcal{O}_i(\mu) + C'_i(\mu)\mathcal{O}'_i(\mu)) + C_T\mathcal{O}_T + C_{T5}\mathcal{O}_{T5} \Big]$

$$\mathcal{O}_{9} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad \mathcal{O}_{S} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\ell), \qquad \mathcal{O}_{T} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\ell), \\ \mathcal{O}_{10} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \qquad \mathcal{O}_{P} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell). \qquad \mathcal{O}_{T5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\gamma_{5}\ell).$$

$$\underline{\Delta^{(7/6)} \ \bar{Q}\ell_R} \qquad (\bar{3}, 2, -7/6) \\ \underline{\Delta^{(1/6)} \ \bar{d}_R L} \qquad (\bar{3}, 2, -1/6)$$
 scalars $\Delta \qquad \qquad \underline{\Delta^{(1/3)} \ Q^C i\tau_2 \tau \cdot L} \qquad (3, \bar{3})_{-1/3} \\ \underline{\Delta^{(4/3)} \ \bar{d}_R^C} \ell_R \qquad (3, 1)_{-4/3}$

 $\begin{array}{l} V^{(1)} \bar{d}_R \gamma^{\mu} \ell_R & (\bar{3}, 1, -2/3) & \text{vectors V} \\ V^{(3)} \, \bar{Q} \tau \gamma^{\mu} L & (\bar{3}, 3, -2/3) & \end{array}$

 $V^{(2)} \ \overline{Q^C} \, i\tau_2 \gamma^\mu \ell_R \qquad (3,2,-5/6)$

In the effective Hamiltonian language:

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}\lambda_t \Big[\sum_{i=1}^{6} C_i(\mu)\mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S} (C_i(\mu)\mathcal{O}_i(\mu) + C'_i(\mu)\mathcal{O}'_i(\mu)) + C_T\mathcal{O}_T + C_{T5}\mathcal{O}_{T5} \Big]$

(defined in the down-quark mass basis)

In the effective Hamiltonian language:

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}\lambda_t \Big[\sum_{i=1}^{6} C_i(\mu)\mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S} (C_i(\mu)\mathcal{O}_i(\mu) + C'_i(\mu)\mathcal{O}'_i(\mu)) + C_T\mathcal{O}_T + C_{T5}\mathcal{O}_{T5} \Big]$

In the effective Hamiltonian language:

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}\lambda_t \Big[\sum_{i=1}^6 C_i(\mu)\mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S} (C_i(\mu)\mathcal{O}_i(\mu) + C'_i(\mu)\mathcal{O}'_i(\mu)) + C_T\mathcal{O}_T + C_{T5}\mathcal{O}_{T5} \Big]$

$$\mathcal{O}_{9} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) , \qquad \mathcal{O}_{S} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\ell) , \qquad \mathcal{O}_{T} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\ell) , \\ \mathcal{O}_{10} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) , \qquad \mathcal{O}_{P} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell) . \qquad \mathcal{O}_{T5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\gamma_{5}\ell) .$$

$$\Delta^{(7/6)} \bar{Q}\ell_R \qquad (\bar{3}, 2, -7/6) \\ \Delta^{(1/6)} \bar{d}_R L \qquad (\bar{3}, 2, -1/6) \qquad \text{scalars } \Delta \qquad \qquad \Delta^{(1/3)} Q^C i\tau_2 \tau \cdot L \qquad (3, \bar{3})_{-1/3} \\ \Delta^{(4/3)} \bar{d}_R^C \ell_R \qquad (3, 1)_{-4/3} \end{cases}$$

$$\underbrace{ \begin{array}{ccc} V^{(1)} \bar{d}_R \gamma^{\mu} \ell_R & (\bar{3}, 1, -2/3) \\ V^{(3)} \bar{Q} \boldsymbol{\tau} \gamma^{\mu} L & (\bar{3}, 3, -2/3) \end{array} } \text{vectors V} \qquad V^{(2)} \ \overline{Q^C} i \tau_2 \gamma^{\mu} \ell_R & (3, 2, -5/6) \\ \end{array}$$

In the effective Hamiltonian language:

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}\lambda_t \Big[\sum_{i=1}^6 C_i(\mu)\mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S} (C_i(\mu)\mathcal{O}_i(\mu) + C'_i(\mu)\mathcal{O}'_i(\mu)) + C_T\mathcal{O}_T + C_{T5}\mathcal{O}_{T5} \Big]$

$$\mathcal{O}_{9} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad \mathcal{O}_{S} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\ell), \qquad \mathcal{O}_{T} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\ell), \\ \mathcal{O}_{10} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \qquad \mathcal{O}_{P} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell). \qquad \mathcal{O}_{T5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\gamma_{5}\ell).$$

In the effective Hamiltonian language:

 $\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}\lambda_t \Big[\sum_{i=1}^{6} C_i(\mu)\mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S} (C_i(\mu)\mathcal{O}_i(\mu) + C'_i(\mu)\mathcal{O}'_i(\mu)) + C_T\mathcal{O}_T + C_{T5}\mathcal{O}_{T5} \Big]$

$$\mathcal{O}_{9} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) , \qquad \mathcal{O}_{S} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\ell) , \qquad \mathcal{O}_{T} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\ell) , \\ \mathcal{O}_{10} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) , \qquad \mathcal{O}_{P} = \frac{e^{2}}{16\pi^{2}} (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell) . \qquad \mathcal{O}_{T5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\gamma_{5}\ell) .$$

Summary

Scalar leptoquarks in $bs \rightarrow \mu^+ \mu^-$

Scalars

Scalar leptoquarks in $bs \rightarrow \mu^+ \mu^-$

Scalars

Constrain above 4 scenarios in $B_s \rightarrow \mu\mu$, $B \rightarrow K\mu\mu$, $B \rightarrow X_s\mu\mu$!

 $B_s \rightarrow \mu \mu$

$$\begin{split} \operatorname{Br} \left(B_{s} \to \ell^{+} \ell^{-} \right)^{\operatorname{BSM}} &= \tau_{B_{s}} f_{B_{s}}^{2} m_{B_{s}}^{3} \frac{G_{F}^{2} \alpha^{2}}{64\pi^{3}} |V_{tb} V_{ts}^{*}|^{2} \beta_{\ell}(m_{B_{s}}^{2}) \left[\frac{m_{B_{s}}^{2}}{m_{b}^{2}} \left| C_{S} - C_{S}^{\prime} \right|^{2} \left(1 - \frac{4m_{\ell}^{2}}{m_{B_{s}}^{2}} \right) \right] \right] + \left| \frac{m_{B_{s}}}{m_{b}} \left(C_{P} - C_{P}^{\prime} \right) + 2 \frac{m_{\ell}}{m_{B_{s}}} \left(C_{10} - C_{10}^{\prime} \right) \right|^{2} \right] \right] , \\ \operatorname{Br}^{\operatorname{BSM}}(1 + \mathcal{A}_{\Delta\Gamma} y_{s}) / (1 - y_{s}^{2}) = \operatorname{Br}^{\operatorname{exp}} \end{split}$$

[ETM, HPQCD, RBC/UKQCD, FNAL/MILC, averaged by FLAG]

[Latest combination of LHCb and CMS results] [Monday's talk by Francesco Dettori] $f_{B_s} = (228 \pm 8) \text{ MeV}$ $\text{Br}(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$ $y_s = 0.08 \pm 0.01$

 $B \rightarrow K \mu \mu q^2$ spectrum

$$\frac{d\Gamma}{dq^2} = 2\left(a_\ell(q^2) + \frac{1}{3}c_\ell(q^2)\right)$$

 $a_1(q^2)$ and $c_1(q^2)$ depend on sums of Wilson coefficients

 $C_9 + C'_9$ $C_{10} + C'_{10}$ $C_S + C'_S$ $C_P + C'_P$

We employ unquenched lattice form factors

[Bouchard et al, Phys.Rev. D88] [see talk by Stefan Meinel]

[LHCb 1403.8044]

 $B \rightarrow K \mu \mu q^2$ spectrum

$$\frac{d\Gamma}{dq^2} = 2\left(a_\ell(q^2) + \frac{1}{3}c_\ell(q^2)\right)$$

 $a_1(q^2)$ and $c_1(q^2)$ depend on sums of Wilson coefficients

 $C_9 + C'_9$ $C_{10} + C'_{10}$ $C_S + C'_S$ $C_P + C'_P$

We employ unquenched lattice form factors

[Bouchard et al, Phys.Rev. D88] [see talk by Stefan Meinel]

Inclusive $B \rightarrow X_s \mu \mu$ at low q^2

$$\int_{1 \text{ GeV}^2}^{6 \text{ GeV}^2} \frac{d \text{Br} \left(B \to X_s \mu^+ \mu^- \right)}{dq^2} dq^2 \Big|_{\text{exp}} = 1.6(5) \times 10^{-6}$$

[T. Huber, T. Hurth, and E. Lunghi, NPB,802] [A.Ali, E. Lunghi, C. Greub, and G. Hiller, PRD66]

B-factories average

Theoretical predictions rely on expressions from S. Fukae, C. Kim, and T. Yoshikawa, PRD 61

Parameter space of scalar LQ Right chirality: Ισ regions of C10

 $B_s \rightarrow \mu\mu$ constraint is not affected by the relative sign (C₉ is irrelevant)

- SM is not within the I σ region due to B \rightarrow Kµµ
- Large cancellations possible in $B \rightarrow X_{s} \mu \mu$ and $B \rightarrow K\mu\mu$ with opposite C₉ and C₁₀

Parameter space of scalar LQ Wrong chirality: Ισ regions of C₁₀'

• Only $B \rightarrow K\mu\mu$ is sensitive to sign between C₉' and C₁₀'

Scalar leptoquarks in $bs \rightarrow \mu^+ \mu^-$

Scalars

 $|(g_L)_{b\ell}(g_L)_{s\ell}|, |(g_R)_{b\ell}(g_R)_{s\ell}| \lesssim \text{few} \times 10^{-2}$

$$\textcircled{0} \ m_{\Delta} = 1 \, \mathrm{TeV/c^2}$$

Comments

Leptonic and exclusive decays probe orthogonal combinations of Wilson coefficients.

Leptonic decay is a decent probe of (axial)vector operators.

Inclusive decay is becoming less competitive in constraining scalar LQ scenarios.

Comments

C₉ puzzle observed in B \rightarrow K^{*}µµ cannot be addressed by a single LQ

However, using a pair of scalar and vector we can modify C₉ while leaving everything else untouched.

S	LQ	BNC	\mathcal{O}_9	$ \mathcal{O}_{10} $	$ \mathcal{O}_S $	$ \mathcal{O}_P $	\mathcal{O}_9'	$ \mathcal{O}_{10}' $	$\left \mathcal{O}_{S}^{\prime} ight $	\mathcal{O}'_P
$\left \left(\right. \right. \right $	$\Delta^{(7/6)}$	\checkmark	<i>C</i> ₁₀	$ C_{10} $						\supset
	$\Delta^{(1/6)}$	\checkmark					$ -C'_{10} $	$ C_{10}' $		
	$\Delta^{(4/3)}$						C'_{10}	C_{10}^{\prime}		
	$\Delta^{(1/3)}$		$-C_{10}$	C_{10}						
C	$V^{(3)}$	\checkmark	$-C_{10}$	C_{10}						
$\ 1$	$V^{(1)}$		$ -C_{10} $	C_{10}	$ C_S $	$-C_S$	C'_{10}	C_{10}^{\prime}	$\left C_{S}^{\prime} ight $	C'_S
	$V^{(2)}$		C_{10}	\overline{C}_{10}	$ C_S $	C_S	$-C'_{10}$	$\overline{C}_{10}^{\prime}$	$\left C_{S}^{\prime} \right $	$-C'_S$

Conclusions

Leptoquarks are a viable framework, can be embedded in realistic GUT models.

In general, there is no objective objection to having light leptoquarks (IF they conserve B number).

 $(b_{\underline{s}})(\underline{\mu}\mu)$ can be studied independently of UV completion.

Interplay with other flavour constraints, e.g., scalar (3,2,7/6) scalar can explain the observed $B \rightarrow D^{(*)}\tau v$ branching fractions.

Interplay with LEP precision physics, direct production at the LHC.

Thank you for your attention!