Performance

- of the Electromagnetic CALorimeter
 - of the AMS-O2 experiment
 - on the International Space Station
 - and measurement
 - of the positron fraction
 - in the 1.5 350 GeV energy range

Laurent Basara

Overview

- Performances of the AMS-02 detector
- Lepton / proton discrimination
- Positron fraction

What is the Universe made of?

Cosmic Ray Spectra of Various Experiments

Standard matter and cosmic-ray spectrum

Top of the atmosphere

Composition of cosmic rays

- Mainly protons, then He, e-, e+...
- Expected types of particles
 - Primary : protons, electrons, ...
 - Secondary : positrons
- e⁺ / (e⁺ + e⁻)[:] expected to decrease
 - Fermi, PAMELA, ... : increases
 - Primary source of antiparticles ?

5

Part I The AMS-O2 detector

The AMS-O2 experiment

The Alpha Magnetic Spectrometer (AMS-02)

- Magnetic spectrometer
- GeV to TeV (anti)particles,
- 17.10⁹ particles / year
- Objectives :
 - Dark matter studies
 - Primordial antimatter
 - Production / propagation models

Electromagnetic CALorimeter (ECAL)

- 3D imaging, sandwich of 9 superlayers of 36 PMTs
- Energy measurement
- Leptons / hadrons discrimination

Energy reconstruction in the ECAL

Electronic readout of THE ECAL

Interaction of particles in the ECAL

- Shower development :
 - Leptons almost contained.
 - Protons:
 - Rear leakage
 - 50 % MIPs
- MIP Distribution
 - Landau x Gaussian fitted
 - Distribution of maxima : gaussian
 - Reduce Gaussian spread (sigma/mean)

Attenuation

- Inside cells : fibers
- Energy attenuated along length of fibers
- Scanned in BT, assumed homogeneous for all cells
- Direct collection (fast) + reflexion on other end (slow):

$$AttCor(x) = N \left[k \exp\left(-\frac{\lambda_{fast}}{X}\right) + (1-k) \exp\left(-\frac{\lambda_{slow}}{X}\right) \right]_{12}$$

X and Y fit

- Homogeneity probed against the direction of the cells.
- Sigma/mean of 5.2 % in X, 6.1 % in Y.
- Do certain
 directions / layers /
 cells behave
 differently ?

Cell binning

- For each cell, interpolation to estimate hit position
- Binning along the fiber
- Summed according to direction and fit for each bin
- Difference for the two directions

Equalization

- Finally done for each superlayer \rightarrow differences
- New intercell equalization
- After the equalization new spread of 2.7 % (8 % before)
- Could the differences found be due to aging effects ?
- Monitor MIP evolution through time

15

Evolution of MIP Max value and Temperature on Starboard

MIP evolution

- MIP
 - decorrelated wrt EHV temperature
- No aging
- Performances ok for ~ 6 MeV
- Higher energies ?

Bethe-Bloch formula

• For ionization losses :

$$-\frac{\mathrm{d}\mathsf{E}}{\mathrm{d}\xi} = \mathsf{z}^2\mathsf{f}(\mathsf{v})\frac{\mathsf{Z}}{\mathsf{m}}$$

- Rigidity + Energy known: single point (z²)
- Tracker used to :
 - Identify nuclei
 - Compute rigidity
- dE/dX from ECAL ; allow to identify charge ?

Linearity for most abundant nuclei

- Nuclei up to Z=8 (O) more abundant
- Excellent linearity up to Z=7
- Drop for Z=8 ?

Conclusions on the performances of the detector

- Global AMS-02 performances as expected
- For ECAL :
 - Excellent electronic performances.
 - Stable through time.
 - Stable in energy up to GeV.

Part II. Leptonic / hadronic discrimination

Objectives

- e+ / e+e- ratio
 - Select leptons
 - Protons large background

TRD up to ~ 100 GeV, above: ECAL

Another estimator: E/P ratio

E/p outcome with a cutoff of 0.5

- E/P discrimination
 - Fo β = 1: E=P, for Z=1: R=P
 - Electromagnetic showers:
 E=P(=R)
 - Hadronic showers:
 E<P(=R)
 - Compare R with E
- Discrimination quantification:
 - Efficiency
 - Rejection

Multivariate analysis

- Get pure samples
- Identify variables
- Optimally combinate them
- Assess performance
- Estimate nature given the variables

Get "pure" samples

Signal & background samples

- Beam tests
- Monte-Carlo simulations
- ISS Data (selected by TRD, E/P...)

Which variables ?

- Shape related
 variables
- Fit to the longitudinal profile
- Energydeposited variables

First results

ESEv3 results with 300 GeV BT and MC

Adjust simulation to data ?

Smearing

- Differences MC/BT at the variables level
- Compare variables distributions
- Smear the variables

Results after smearing

- For a 90 % efficiency, increases with energy
- >10⁴ above 200 GeV

Conclusions on part II

- A Leptons / hadrons estimator was built
- Only ECAL variables
- Combined (E/P + MIPs + Estimator) rejection of 10⁴ obtained for a 90 % efficiency above 200 GeV
- \rightarrow Compute the positron fraction

Part III. The positron fraction

Definition of the positron fraction

- The positron fraction
 - Independent on acceptance
 - Direct ratio of the number of particles
- Methodology
 - Only keep leptons
 - Estimate their charge

Leptons selection

- 65 energy bins from 1.5 to 350 GeV
- Events selection: primary events, track quality, particle estimators...
- 3 estimators:
 - TRD log-likelihood
 - E/P rejection
 - ECAL Estimator
- Use the first two to select pure samples
- Determine the shape of the third on those samples

Lepton selection 2

- Effect of various TRD cuts on ESE around 100 GeV
- Discard hadrons while keeping leptons.
- Done for all energies.
- Optimal selections

Leptons templates

- Preselection
 - R<0
 - E/P>0.9
 - TRDL<0.45
- Good fit through analytical function
 - Crystal Ball
 - Gaussian core portion
 - Power law low-end tail

Protons templates

- Preselection :
 - R > 0
 - E/P < 0.4
 - TRD > 0.9 for E<115GeV,
 0.85 above.
- Crystal ball does not reproduce well data
 - Novosibirsk (analytical)
 - Histograms (direct) fits

Application of the templates

- Apply to preselected "real" data for each bin
- A histogram = a unique linear combination of leptons and protons template.
- Area = number of each species
- Done for all events (e⁺ + e⁻) and ones with positive rigidities (e⁺).

Comparison between proton templates

- Top: Novosibirsk, bottom: histograms
- Differ only by one event
- Seen for all bins of high energies
- Histograms taken for all bins

Charge confusion

- Sign of charge: only given through magnet + tracker
- Limited granularity
 - Maximum detectable rigidity 2TV
 - Some charge signs are wrong
- Estimate the fraction of charge misidentified (charge confusion)
- Monte-Carlo simulations

Assessing the charge confusion

$$f_{cc} \equiv \frac{n_{cc}}{n_{e^{-}}} \qquad R = \frac{1}{1 - 2f_{cc}} \left(\frac{n_{+}}{n_{+} + n_{-}} - f_{cc}\right)$$

Uncertainty sources

- Acceptance asymmetry (neglected)
- Bin-to-bin migration (neglected)
- Charge confusion (stat.)
- Reference spectra (seen)
- Effect of the number of leptons selected by TRDL, E/P on ratio
- Added in squares to give the squared total uncertainty

Final positron ratio

Positron fraction comparison

Conclusions and prospectives

- Results from the paper are reproduced, using different method and estimator
- Crucial point: what happens after 350 GeV (plateau ? stiff drop?)
- More statistics (\sqrt{t})
- Improve ESEv3
 - New MC simulations
 - More smeared variables
 - More ISS Data
- 2D fits
- Other spectra from AMS-02
- Other experiments
 - ISS-CREAM
 - CALET

Nuclei of higher charge

- Drop, and the re-increase
- Known effects (GLAST, ToF...)
 - Quenching
 - Antiquenching
- Effect due to nuclei charge, not lack of linearity.
- Use of splines between Z=8 and Z=26
- Implemented in the software