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Overview

● Performances of the AMS-02 detector
● Lepton / proton discrimination
● Positron fraction
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What is the Universe made of?

68.3% Dark 
Energy

26.8% Dark 
Matter

4.9% Ordinary 
Matter
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Dark matter
● Evidences 

– Galaxy rotation curves
– Bullet cluster
– CMB

● What it could be
– Not standard matter
– MOND ?
– SuSy particles, axions, ...

● Detection
– Production
– Direct
– Indirect
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● Stars, planets, us...
● Probed with astroparticles
● 108 up to 1020 eV
● Interact with the 

atmosphere
– Go above for direct 

detection
– Reduced energy range:

0.1 to 1000 GeV

Standard matter

Top of the atmosphere
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Composition of cosmic rays
● Spectrum composition

– 87 % protons
– 11 % helium
– 1 % higher nuclei
– 1 % electron
– 0.1 % positrons
– 0.01 % antiprotons

● Expected types of particles
– Primary : matter (protons, electrons, ...)
– Secondary : antimatter (positrons, ...)

● e+ / (e+ + e-): expected to decrease
– Fermi, PAMELA, … : increases above 10 GeV
– Primary source of antiparticles ? Propagation ?
– From now on: increase the precision of the 

measurement
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Part I
The AMS-02 detector
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The AMS-02 experiment
● Magnetic spectrometer 

installed on the International 
Space Station since May 2011

● GeV to TeV (anti)particles, 
nuclei up to Z=26

● 17.109 particles / year
● Objectives :

– Dark matter studies
– Primordial antimatter
– Production / propagation models
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Permanent magnet

● Field B = 0.15 T curves 
with radius r particles  of 
momentum p and charge 
Z

● Gives rigidity 
R=p/Z = Br 
and the sign of the charge

e- e+
p

y

z

x
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Tracker
● Reconstructs the 

trajectory of particles
● 9 layers
● 10µm in the curvature 

plane, 30µm in the other 
direction 

● MDR : 2 TeV
● Incoming direction, 

absolute charge up to 
Z=26
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ToF
● First level trigger
● Direction of particles 

(109 rejection)
● Separate 

leptons/protons up 
to 2 GeV.

● Absolute charge of 
the incident particle.
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Transition Radiation Detector 
(TRD)

● Identify particles through 
detection of the X-rays 
emitted by electrons and 
protons

● Emitted energy increases 
with Lorentz factor: 
electrons radiate more than 
hadrons (above 300 GeV)

● Discrimination in 1-100 GeV 
range, rejection 100 to 1000 
for a 90 % efficiency
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Ring Imaging Cherenkov (RICH)

● Identify elements until 
the iron (Z = 26) with 
an energy per nucleon 
up to the TeV

● Measure the velocity, β
● Separate electrons and 

protons up to 15 GeV
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Electromagnetic CALorimeter 
(ECAL)

● 3D imaging 
electromagnetic 
calorimeter, sandwich of 9 
superlayers of 72 cells

● Measure the energy
● Leptons / hadrons 

discrimination at high 
energy

● Performances important 
for our goal
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Electronic readout : 
Retrieving the numeric signal

● PMTs converts number oh 
photons to electric charge

● HG and LG channels convert 
to (usable) ADC

● Pedestals recomputed (and 
substracted) every 45 mn ; 
stable.

● Gain ratio between HG and 
LG stable through time and 
temperature.
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Energy reconstruction in the ECAL

ADC
Attenuation

Equalization

Temperatures Deposited
energy/cell 

(MeV)

Energy/
shower
 (MeV)

Impact
correction

Rear
Leak.

Side
Leak.

Incidence
angle

Reconstructed
Energy
(GeV)
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Interaction of particles in the ECAL
● Shower development :

– Leptons almost contained.
– Protons :

● Rear leakage
● 50 % minimum ionization 

particles (MIPs)

● MIP Distribution
– Landau (th) x Gaussian (inst. 

Resol.), fitted
– Distribution of maxima : 

gaussian
– Objectives: reduce Gaussian 

spread (sigma/mean)
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Attenuation

● Inside cells : fibers
● Energy attenuated along  

length of fibers
● Scanned in BT, assumed 

homogeneous for all cells
● Direct collection (fast) + 

reflexion on other end (slow):
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X and Y fit

● Homogeneity probed 
against the direction 
of the cells.

● Sigma/mean of 5.2 % 
in X, 6.1 % in Y.

● Do certain 
directions / layers / 
cells behave 
differently ?
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Cell binning
● For each cell, 

interpolation to 
estimate hit 
position

● Binning along the 
fiber

● Summed according 
to direction and fit 
for each bin

● Difference for the 
two directions
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Equalization
● Finally done for each superlayer  differences→

● New intercell equalization
● After the equalization new spread of 2.7 % (8 % 

before)
● Could the differences found be due to aging 

effects ?
● Monitor MIP evolution through time
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Temperature decorrelation
● 30 temperature sensors

– 6 / face (angles + middle)
– 6 for the electronic boards

● Evolution due to orbit, beta 
angle, umbra.

● Temperature interpolated for 
each cell, compared to MIP

● High (negative) correlation
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MIP evolution
● MIP correlated to EHV rather 

than face sensors (electronic 
effects)

● Decorrelated, then evolution 
through time

● No aging
● Performances ok for the lower 

energies (proton MIP ~ 6 MeV)
● What happens for higher 

energies ?
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Bethe-Bloch formula

● For ionization losses :

● Rigidity + Energy 
known: single point (z2)

● Tracker used to :
– Identify nuclei
– Compute rigidity

● dE/dX from ECAL allow 
to identify charge ?
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Estimator building
● Check linearity, formula in Z2 

 logarithmical scale→

● Peaks of same width, 
equireparted

● Simple estimator building :
– For each layer at MIP, compute

● dE (deposited energy)
● dX (geometrical length crossed)

– Multivariate event
– Estimate most probable charge of 

a nuclei depositing that energy
– Log-likelihood estimator
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Linearity for most abundant nuclei

● Nuclei up to Z=8 (O) 
more abundant

● Excellent linearity up to 
Z=7

● Drop for Z=8 ?
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Nuclei of higher charge

● Drop, and the re-increase
● Known effects (GLAST, ToF...)

– Quenching
– Antiquenching

● Effect due to nuclei charge, not 
lack of linearity.

● Use of splines between Z=8 
and Z=26

● Implemented in the software
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Conclusions on the performances 
of the detector

● Global AMS-02 performances as expected
● For ECAL :

– Excellent electronic performances.
– Stable through time.
– Stable in energy up to GeV.
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Part II.
Leptonic / hadronic discrimination
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Objectives

● e+ / e+e- ratio
– Only select leptons
– Protons 100 times more abundant than electrons, 

1000 than positrons (and same charge sign)
– Carefully discriminate protons

● TRD up to ~ 100 GeV, above: ECAL
– Electromagnetic cal.: difference of behaviour 

between EM and hadronic showers.
– Find a way to take advantage of those differences
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First example: E/P ratio
● E/P discrimination

– For     = 1: E=P, for Z=1: R=P
– Electromagnetic showers: E=P(=R)
– Hadronic showers: E<P(=R)
– Compare R with E

● Discrimination quantification:
– Number of particle correctly identified (or 

not)
– Efficiency = leptons seen as such (above 

the cut) / number of leptons
– Rejection = total number of hadrons / 

hadrons falsely seen as leptons (above the 
cut)
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Multivariate analysis

● Get pure samples of electrons and protons 
● Identify variables behaving differently for each 

sample
● Optimally combinate all variables to get a 

relevant estimator
● Assess the performance of the estimator
● Estimate whether an event is a proton or lepton 

given its variables.
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Get ``pure'' electrons 
and protons samples

● Beam tests
– True, identified data...
– … but beams can be polluted
– Low statistics, only for some energies

● Monte-Carlo simulations
– Huge statistics
– Do the simulations reproduce the data ?

● ISS Data (selected by TRD, E/P...)
– Contamination
– Low energy (we need high energy)
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Which variables ?
● Shape-related variables

– Longitudinal dispersion
– Number of layers at MIP

● Fit to the longitudinal profile
– Chi2

– Rear leakage
● Energy-deposited variables

– Energy / number of cells hit
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First results

● MC / Data: poor match
● Find a way to adjust 

simulation to data
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Smearing ● Differences MC/BT at the 
variables level

● Compare, for each 
common energy (100, 
120, 180, 300 GeV), 
the variables 
distributions

● Smear the variables :
– Shift the mean
– Add a gaussian noise
– Interpolate between 

energies
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Results after smearing
● Estimator distributions 

almost the same
● Use half the statistics 

(test sample) to 
assess the rejection 
power.

● For a 90 % efficiency, 
increases with energy, 
>104 above 200 GeV
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Conclusions on part II

● A Leptons / hadrons estimator was built
● Only ECAL variables
● Combined (E/P + MIPs + Estimator) rejection 

of 104 obtained for a 90 % efficiency above 
200 GeV

●  → Compute the positron fraction
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Part III.
The positron fraction
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Definition of the positron fraction

● The positron fraction
– Does not (a priori) depend on the acceptance
– Direct ratio of the number of particles 

(positive leptons / total leptons)
● Methodology

– Only keep leptons (E/P estimator)
– Estimate their charge along with possible confusion (tracker)



41

Leptons selection

● 65 energy bins from 1.5 to 350 GeV
● Events selection : primary events, 

track quality, particle estimators...
● 3 estimators :

– TRD log-likelihood
– E/P rejection
– ECAL Estimator

● Use the first two to select pure 
samples

● Determine the shape of the third on 
those samples 

e+

p

e+ + e-

p

R > 0
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Lepton selection 2

● Effect of various TRD 
cuts on ESE around 100 
GeV

● Discard hadrons while 
keeping leptons.

● Done for all energies.
● Optimal selections
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Leptons templates

● Preselection
– R<0
– E/P>0.9
– TRDL<0.45

● Good fit through analytical 
function
– Crystal Ball
– Gaussian core portion
– Power law low-end tail
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Protons templates
● Preselection :

– R > 0
– E/P < 0.4
– TRD > 0.9 for E<115GeV, 

0.85 above.
● Crystal ball does not 

reproduce well data
– Novosibirsk (analytical)
– Histograms (direct) fits

ESE
-0.6 -0.4 -0.2 0 0.2 0.4

E
ve

nt
s 

/ (
 0

.0
27

5 
)

0

5000

10000

15000

20000

25000

A RooPlot of "ESE"

ESE
-0.6 -0.4 -0.2 0 0.2 0.4

E
ve

nt
s 

/ (
 0

.0
27

5 
)

0

200

400

600

800

1000

1200

1400

A RooPlot of "ESE"



45

ESE
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Application of the templates
● Apply to preselected ''real'' 

data for each bin
● A histogram = a unique linear 

combination of leptons and 
protons template.

● Area = number of each species
● Done for all events (e+ + e-) 

and ones with positive 
rigidities (e+).
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Comparison between proton 
templates

● Top: Novosibirsk, 
bottom: 
histograms

● Differ only by 
one event

● Seen for all bins 
of high energies

● Histograms taken 
for all bins
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Charge confusion ● Sign of charge: 
only given through 
magnet + tracker

● Limited granularity
– Maximum detectable 

rigidity 2TV
– Some charge signs are 

wrong
● Estimate the fraction 

of charge misidentified 
(charge confusion)

● Monte-Carlo 
simulations
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Assessing the charge confusion
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Uncertainty sources
● Acceptance asymmetry 

(neglected)
● Bin-to-bin migration 

(neglected)
● Charge confusion (stat.)
● Reference spectra (seen)
● Effect of the number of 

leptons selected by TRDL, E/P 
on ratio

● Added in squares to give the 
squared total uncertainty
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Final positron ratio
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Conclusions and prospectives
● Results from the paper are reproduced, using different method and estimator
● Crucial point: what happens after 350 GeV (plateau ? stiff drop?)
● More statistics (         )
● Improve ESEv3

– New MC simulations
– More smeared variables
– More ISS Data

● 2D fits
● Other spectra from AMS-02
● Other experiments

– ISS-CREAM
– CALET
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