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Wigner distributions for quarks in the nucleon

• In quantum mechanics position and momentum operators do not commute and they

cannot be measured simultaneously : one cannot define a joint position and momentum

space distribution of quarks inside the nucleon

• Wigner distributions : not positive definite (no probabilistic interpretation); reduces to

classical phase space distribution for h→ 0

• For a 1-D quantum system with wave function ψ(x), Wigner distribution can be defined
as

W (x, p) =

∫

dyeip·yψ∗(x− y/2)ψ(x+ y/2)

• Matrix elements of Wigner operator for a nucleon state can be interpreted as

distributions of the partons in 6-D space (3 position and 3 momentum)

X. Ji, PRL (2003); Belitsky, Ji, Yuan, PRD (2004)
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Wigner Distributions (contd.)

• 5-D Wigner distributions (by integrating one position variable) can be studied in infinite

momentum frame or light-front formalism

Lorce, Pasquini (2011)

• Advantage : boost invariant definition of Wigner distributions

• Integrating over k⊥ Wigner distributions reduce to the Fourier transform of GPDs

• Integrating over transverse position b⊥ they reduce to TMD correlators

• Wigner distributions are related to GPCFs and GTMDs

• Contains informations on both GPDs and TMDs

• Are related to the orbital angular momentum carried by quarks in the nucleon

• Model studies : constituent quark model and chiral quark soliton model in the above

reference

• We calculate the reduced Wigner distributions for a quark dressed with a gluon in

light-front Hamiltonian perturbation theory : relativistic composite spin 1/2 state

• Two-particle light-front wave function can be calculated analytically : mimicks a bound
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Wigner Distributions : Definitions

Wigner distributions for the quarks are defined as

ρ[Γ](~b⊥, ~k⊥, x, σ) =

∫

d2∆⊥

(2π)2
e−i∆⊥.b⊥W [Γ](∆⊥, ~k⊥, x, σ);

∆⊥ is momentum transfer of dressed quark in transverse direction and ~b⊥ is impact

parameter conjugate to ∆⊥

W [Γ] is the quark-quark correlator given by

W [Γ](~∆⊥, ~k⊥, x, σ) =
1

2

∫

dz−d2z⊥

(2π)3
ei(xp

+z−/2−k⊥.z⊥)

〈

p+,
∆⊥

2
, σ

∣

∣

∣

∣

ψ(− z
2
)ΩΓψ(

z

2
)

∣

∣

∣

∣

p+,−∆⊥

2
, σ

〉∣

∣

∣

∣

z+=0

.

Ω is the gauge link needed for color gauge invariance : we use light-front gauge and take

the gauge link to be unity

Γ represents the Dirac matrix defining the types of quark densities
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Wigner Distributions : Model Calculations

We calculate the above Wigner distributions in a quark state dressed with a gluon

The state can be expanded in Fock space in terms of multi-parton light-front wave

functions (LFWFs)

∣

∣

∣

∣

p+, p⊥, σ

〉

= Φσ(p)b†σ(p)|0〉+
∑

σ1σ2

∫

[dp1]

∫

[dp2]
√

16π3p+δ3(p− p1 − p2)

Φσ
σ1σ2

(p; p1, p2)b
†
σ1

(p1)a
†
σ2

(p2)|0〉;

Used light-front gauge, took gauge link as unity and used two-component formalism

introduced in

Zhang, Harindranath, PRD (1993)

Φσ(p) gives the normalization of the wave function, Φσ
σ1σ2

(p; p1, p2) is the two-particle

light-front wave function (LFWF), related to the boost invariant wave function

single particle sector contributes through the normalization of the state, which is

important to get the complete contribution at x = 1
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Wigner Distributions : Model Calculations

Two-particle LFWFs can be calculated

Ψσa
σ1σ2

(x, q⊥) =
1

[

m2 − m2+(q⊥)2

x
− (q⊥)2

1−x

]

g
√

2(2π)3
Taχ†

σ1

1√
1− x

[

− 2
q⊥

1− x
−− (σ⊥.q⊥)σ⊥

x
+
imσ⊥(1− x)

x

]

χσ(ǫ⊥σ2
)∗.

χ is the two-component spinor

The state above mimicks the bound state of a two particle system. Note that for a bound

state, the bound state mass M should be less than the sum of the masses of the
constituents

Using this, we can calculate the Wigner distributions for given helicity of the initial and

final target state in terms of overlaps of LFWFs

We use the symbol ρλλ′ for Wigner distributions, where λ(λ′) is longitudinal polarization

of target state(quark)

+ ~ez and − ~ez correspond to helicity up and down of the target state, respectively
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Wigner Distributions : Definitions

Wigner distribution of unpolarized quarks in unpolarized target state is given by

ρUU (~b⊥, ~k⊥, x) =
1

2

[

ρ[γ
+](~b⊥, ~k⊥, x,+~ez) + ρ[γ

+](~b⊥, ~k⊥, x,−~ez)
]

Distortion due to longitudinal polarization of the target state :

ρLU (~b⊥, ~k⊥, x) =
1

2

[

ρ[γ
+](~b⊥, ~k⊥, x,+~ez)− ρ[γ

+](~b⊥, ~k⊥, x,−~ez)
]

Distortion due to the longitudinal polarization of quarks :

ρUL(~b⊥, ~k⊥, x) =
1

2

[

ρ[γ
+γ5](~b⊥, ~k⊥, x,+~ez) + ρ[γ

+γ5](~b⊥, ~k⊥, x,−~ez)
]

Distortion due to the correlation between the longitudinal polarized target state and

quarks :

ρLL(~b⊥, ~k⊥, x) =
1

2

[

ρ[γ
+γ5](~b⊥, ~k⊥, x,+~ez)− ρ[γ

+γ5](~b⊥, ~k⊥, x,−~ez)
]
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Connection with GTMDs

• All the Wigner distributions introduced are related to the Fourier transforms of GTMDs

(Defs to be shown later)

• ρUU is related to F11, ρUL is related to G11, ρLU to F14 and ρLL to G14

• On integration over k⊥ or b⊥, ρUL and ρLU give zero : there is no GPD or TMD

associated with these two. They give new information not contained in the GPDs and

TMDs

• ρUU can be considered as the mother distribution for the GPD H and TMD f1

• ρLL is the mother distribution for the GPD H̃ and TMD g1L

• k⊥ and b⊥ are not Fourier conjugates. k⊥ is the Fourier conjugate of z⊥ and b⊥ is the

Fourier conjugate of ∆⊥ : relative average transverse momentum and relative average

transverse position of the quark

•
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Wigner Distributions : Model Calculations

In this work we restrict ourselves to the kinematic region x < 1, and in this case the

contribution from Φσ(p) can be taken to be 1

Wigner distribution from the two particle sector in the Fock space expansion in our model

is given by

W [γ+](∆⊥, k⊥, x, σ) =
1

(2π)3

∑

σ1,σ2

Ψ∗σa
σ1σ2

(x, q′⊥)Ψσa
σ1σ2

(x, q⊥),

W [γ+γ5](∆⊥, k⊥, x, σ) =
1

(2π)3

∑

σ1,σ2,λ1

Ψ∗σa
λ1σ2

(x, q′⊥)χ†
λ1
σ3χσ1

Ψσa
σ1σ2

(x, q⊥);

where the Jacobi relation for the transverse momenta in the symmetric frame is given by

q′
⊥

= k⊥ − ∆⊥

2
(1− x) and q⊥ = k⊥ + ∆⊥

2
(1− x).
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Wigner Distributions : Model Calculations

In our model ρLU = ρUL

ρ
[γ+]
UU (b⊥, k⊥, x) = N

∫

d∆x

∫

d∆y
cos(∆⊥ · b⊥)

D(q⊥)D(q′
⊥
)

[

I1 +
4m2(1− x)

x2

]

;

ρ
[γ+]
LU (b⊥, k⊥, x) = N

∫

d∆x

∫

d∆y
sin(∆⊥ · b⊥)

D(q⊥)D(q′
⊥
)

[

4(kx∆y − ky∆x)
(1 + x)

x2(1− x)

]

;

ρ
[γ+γ5]
LL (b⊥, k⊥, x) = N

∫

d∆x

∫

d∆y
cos(∆⊥ · b⊥)

D(q⊥)D(q′
⊥
)

[

I1 − 4m2(1− x)

x2

]

;

D(k⊥) =

(

m2 − m2 + (k⊥)2

x
− (k⊥)2

1− x

)

I1 = 4

(

(k⊥)2 − ∆2
⊥
(1− x)2

4

)

(1 + x2)

x2(1− x)3
.

N is a normalization constant
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Wigner Distributions : Results

AM, Nair, Ojha, PRD 90 (2014) 014024

• Integrated over x (all plots)

• Used an upper limit on ∆⊥ integration, k⊥ in y direction

• Asymmetry related to OAM (no confining potential)

•
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Wigner Distributions : Results

AM, Nair, Ojha, PRD 90 (2014) 014024

• For all plots took m = 0.33 GeV

• Plots in k⊥ space

• b in y direction
•
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Wigner Distributions : Results

AM, Nair, Ojha, PRD 90 (2014) 014024

• Plots in mixed space : probabilistic interpretation

• Minima at bx = 0 and ky = 0 : minima is observed for all bx values for ky = 0

• Probability of finding a quark with fixed ky and bx first increases away from ky = 0 and

then decreases
•
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Wigner Distributions : Results

AM, Nair, Ojha, PRD 90 (2014) 014024

• Distortion of the Wigner distribution of unpolarized quarks due to the longitudinal

polarization of the dressed quark.

• ρLU is the same as ρUL in this model

• k⊥ in y direction; dipole structure similar to other models
•
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Wigner Distributions : Results

AM, Nair, Ojha, PRD 90 (2014) 014024

• b in y direction

• Dipole structure

•
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Wigner Distributions : Results

AM, Nair, Ojha, PRD 90 (2014) 014024

• Quadrupole structure in the mixed space like other models

• Peaks increase in magnitude with increasing ∆max
⊥

•
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Wigner Distributions : Results

AM, Nair, Ojha, PRD 90 (2014) 014024

• Correlations between the unpolarized quarks inside the unpolarized target as well as

the distortions due to the longitudinal polarization of the quarks in the longitudinally

polarized dressed quark target are large in the close vicinity of b⊥ = 0 for fixed k⊥. If the

allowed transverse momentum transfer is higher, these correlations move closer to the

origin

• The distortions of the Wigner functions due to the longitudinal polarization of the quark

in an unpolarized target changes sign for negative b⊥, these distortions are related to

the OAM of the quark. Such distortions are also more concentrated near the origin in b

space as the transverse momentum transfer is higher
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Orbital Angular Momentum of Quarks

•EMC experiment (1989) showed that the quark intrinsic spin contribution was much

less than expected

• A substantial part of the spin of the nucleon comes from quark and gluon OAM

• Issue of gauge invariance and experimental measurability of the OAM contribution

complicates the issue of a full understanding of such contributions

• Theoretically there exist mainly two definitions of OAM : one obtained from the sum

rules of GPDs and the other, canonical OAM distribution in the light cone gauge

• These two different distributions are projections of Wigner distributions with different

choice of gauge links and they are related by a gauge dependent potential term

Hatta, PLB (2012), Lorce, PLB (2013), Burkardt, PRD (2013).
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Orbital Angular Momentum of Quarks

Quark-quark correlator defining the Wigner distributions can be parameterized in terms

of generalized transverse momentum dependent parton distributions (GTMDs)

W
[γ+]
λ,λ′ =

1

2M
ū(p′, λ′)

[

F1,1 − iσi+ki⊥

P+
F1,2 − iσi+∆i⊥

P+
F1,3 +

iσijki⊥∆j⊥

M2
F1,4

]

u(p, λ);

W
[γ+γ5]
λ,λ′ =

ū(p′, λ′)

2M

[−iǫij
⊥
ki⊥∆j⊥

M2
G1,1 − iσi+γ5ki⊥

P+
G1,2

− iσ
i+γ5∆i⊥

P+
G1,3 + iσ+−γ5G1,4

]

u(p, λ).

For the dressed quark, the GTMDs can be calculated analytically

Confirm in our model calculation that the GTMDs F14 and G11 exist and are non-zero;
conclusion agrees with

Kanazawa, Lorce, Metz, Pasquini, Schlegel, PRD (2014); arXiv:1403.5226[hep-ph]
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Quark GTMDs

F11 = −
N

[

4k2
⊥
(1 + x2) + (x− 1)2(4m2(x− 1)2 − (1 + x2)∆2

⊥
)

]

D(q⊥)D(q′
⊥
)2x2(x− 1)3

;

F12 =
2Nm2∆2

⊥

D(q⊥)D(q′
⊥
)x(ky∆x − kx∆y)

;

F13 =
N

D(q⊥)D(q′
⊥
)4x(ky∆x − kx∆y)

[

8m2(k⊥∆⊥)

− (ky∆x − kx∆y)(4k2⊥(1 + x2) + (x− 1)2(4m2(x− 1)2 − (1 + x2)∆2
⊥
))

x(x− 1)3

]

;

F14 =
2Nm2(1 + x)

D(q⊥)D(q′
⊥
)x2(1− x)

.
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Quark GTMDs

G11 = − 2Nm2(1 + x)

D(q⊥)D(q′
⊥
)x2(x− 1)

;

G12 =
−N

D(q⊥)D(q′
⊥
)x(x− 1)

[

4m2 k⊥.∆⊥

(ky∆x − kx∆y)
− (1 + x)∆2

⊥

x

]

;

G13 =

N

[

(1 + x)

(

∆2
y −∆2

x +∆x∆y(k2y − k2x)

)

+ 4xm2k2
⊥

]

D(q⊥)D(q′
⊥
)x2(x− 1)(ky∆x − kx∆y)

;

G14 =

N

[

− 4k2
⊥
(1 + x2) + (x− 1)2

(

4m2(x− 1)2 − (1 + x2)∆2
⊥

)]

D(q⊥)D(q′
⊥
)2x2(x− 1)3

;
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Quark Orbital Angular Momentum

Lq
z =

1

2

∫

dx{x[Hq(x, 0, 0) + Eq(x, 0, 0)]− H̃q(x, 0, 0)}

X. Ji, PRL (1997)

GPDs in the above equation are defined at ξ = 0 or when the momentum transfer is

purely in the transverse direction

The GPDs in the above expression are related to the GTMDs by the following relations :

H(x, 0, t) =

∫

d2k⊥F11

E(x, 0, t) =

∫

d2k⊥

[

− F11 + 2

(

k⊥.∆⊥

∆2
⊥

F12 + F13

)]

H̃(x, 0, t) =

∫

d2k⊥G14

Meissner, Metz, Schlegel, JHEP (2009)
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Quark Orbital Angular Momentum

Using the GTMDs calculated we have the following final expression for the kinetic orbital

angular momentum of quarks in the dressed quark model:

Lq
z =

N

2

∫

dx

{

− f(x)I1 + 4m2(1− x)2I2

}

;

I1 =

∫

d2k⊥

m2(1− x)2 + (k⊥)2
= πlog





Q2 +m2(1− x)2

µ2 +m2(1− x)2



;

I2 =

∫

d2k⊥
(

m2(1− x)2 + (k⊥)2
)2

=
π

(m2(1− x)2)
; f(x) = 2(1 + x2)

Q and µ are the upper and lower limits of the integration respectively, Q is the large scale

µ can be safely taken to be zero provided the quark mass is non-zero
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Quark Orbital Angular Momentum

F1,4 is not reducible to any GPDs or transverse-momentum dependent parton

distributions (TMDs) in any limit: related to the canonical OAM as

lqz = −
∫

dxd2k⊥
k2
⊥

m2
F14.

Canonical quark OAM in the dressed quark model becomes

lqz = −2N

∫

dx(1− x2)

[

I1 −m2(x− 1)2I2

]

.

Agrees with

Harindranath and Kundu (1999); Hikmat and Burkardt(2012),

Kanazawa, Lorce, Metz, Pasquini, Schlegel, arXiv:1403.5226[hep-ph]

Gauge link does not contribute to these GTMDs and the result is independent of the

choice of the gauge link
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Correlation Between Quark Spin and OAM

Correlation between the quark spin and its OAM is given by

Cq
z =

∫

dxd2k⊥
k2
⊥

m2
G11.

As in our model F14=−G11, the above correlation is the same as the cannonical OAM

Spin-orbit correlation for the quark in the dressed quark is negative

This is opposite to what is observed in chiral quark-soliton model and constituent quark

model, namely here the quark spin is anti-aligned with its OAM, unlike the other two

models where there is no gluon
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Orbital Angular Momentum : Results
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AM, Nair, Ojha, PRD 90 (2014) 014024

Both OAM decrease in magnitude with increasing mass of the quark

In models without any gluonic degrees of freedom, the contribution to the OAM from

different quark flavors were found to be different, but the sum over all flavors were equal

for the two definitions of OAM
Here the magnitude of the two OAM differs : effect of gluonic degree of freedom

In this model gluon intrinsic helicity contribution to the helicity sum rule cancels the

contribution from the quark and gluon OAM and the helicity sum rule is satisfied

Harindranath and Kundu, PRD,(1999)

Contribution from the single particle sector (at x = 1) is important
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Helicity Sum Rule

In light-front quantization, with A+ = 0 gauge, J 3 = J3 (the naive canonical form

independent of interactions) at the operator level, provided the fields vanish at the

boundary

J3
f(o) =

∫

dx−d2x⊥ψ+†
i(x1∂2 − x2∂1)ψ+,

J3
f(i) =

1

2

∫

dx−d2x⊥ψ+†
Σ3ψ+,

J3
g(o) =

1

2

∫

dx−d2x⊥
{

x1[∂+A1∂2A1 + ∂+A2∂2A2]− x2[∂+A1∂1A1 + ∂+A2∂1A2]

}

,

J3
g(i) =

1

2

∫

dx−d2x⊥[A1∂+A2 −A2∂+A1]

Helicity sum rule for the fermion target is given by

1

N 〈PS |
[

J3
q(i) + J3

q(o) + J3
g(i) + J3

g(o)

]

| PS〉 = ±1

2
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Helicity Sum Rule

For a dressed quark target having helicity + 1
2

we get

1

N 〈P, ↑| J3
f(i) | P, ↑〉q =

∫

dx

[

1

2
δ(1− x) +

α

2π
Cf ln

Q2

µ2

[ 1 + x2

(1− x)+
+

3

2
δ(1− x)

]

]

=
1

2

1

N 〈P, ↑| J3
f(o) | P, ↑〉q = − α

2π
Cf ln

Q2

µ2

∫

dx (1− x) (1 + x)

1

N 〈P, ↑| J3
g(i) | P, ↑〉q =

α

2π
Cf ln

Q2

µ2

∫

dx (1 + x)

1

N 〈P, ↑| J3
g(o) | P, ↑〉q = − α

2π
Cf ln

Q2

µ2

∫

dx x (1 + x).

Harindranath and Kundu, PRD,(1999)

Adding all the contributions, we get

1

N 〈P, ↑| J3
f(i) + J3

f(o) + J3
g(i) + J3

g(o) | P, ↑〉q =
1

2
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Wigner Distributions for the Gluon

Wigner distribution for gluons can be defined as

xW g(x, k⊥, b⊥) =

∫

d2q⊥

(2π)2
e−iq⊥.b⊥

∫

dz−d2z⊥

(2π)3
eik.z

〈

p+,
∆⊥

2
, S

∣

∣

∣

∣

F+i

(

− z

2

)

F+i

(

z

2

)∣

∣

∣

∣

p+,−∆⊥

2
, S

〉∣

∣

∣

∣

z+=0

Ji, Xiong, Yuan (2013)

Operator contains gauge links : we chose the light front gauge and took the gauge link to

be unity

We calculate the above for a quark dressed with a gluon

Contribution comes from the two-particle light-front wave function

We define the unpolarized gluon Wigner distribution as

WUU =W ↑↑(x, k⊥, b⊥) +W ↓↓(x, k⊥, b⊥)

↑ and ↓ correspond to the helicity of the target state
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Gluon Wigner Distributions: Results

Wigner distribution corresponding to the distortion due to longitudnal polarization of the

target as

WLU =W ↑↑(x, k⊥, b⊥)−W ↓↓(x, k⊥, b⊥)

We calculate the Wigner distributions for the gluon in the same model : results are given

by

WUU (x, k⊥, b⊥) = N

∫

d∆x

∫

d∆y
cos(∆⊥ · b⊥)

D(q⊥)D(q′
⊥
)

[−4

(

(q⊥q
′
⊥
)(x2 − 2x+ 2) +m2x4

)

x3(x− 1)2

]

;

WLU (x, k⊥, b⊥) = N

∫

d∆x

∫

d∆y
sin(∆⊥ · b⊥)

D(q⊥)D(q′
⊥
)

[

4(2− x)(q2q′1 − q1q′2)

x2(x− 1)2

]

;

where Ax, Ay are x, y component of A⊥ and N is a normalization constant

D(k⊥) =

(

m2 − m2 + (k⊥)2

1− x
− (k⊥)2

x

)
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Gluon Wigner Distributions : Results

AM, Nair, Ojha, ongoing work

For all plots we took m = 0.33 GeV

∆max is the upper limit of ∆⊥ integration
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Gluon Wigner Distributions : Results

AM, Nair, Ojha, ongoing work

Integrated over x (all plots)
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Gluon Wigner Distributions : Results

AM, Nair, Ojha, ongoing work
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Gluon Wigner Distributions : Results

AM, Nair, Ojha, ongoing work
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The Wigner distribution for the gluon can be related to gluon GTMDs : and gluon OAM is

related to WLU
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Summary and Conclusions

• We calculated the Wigner distributions for a quark state dressed with a gluon using the

overlap representation in terms of the LFWFs

• This is a simple composite relativistic spin-1/2 system which has a gluonic degree of

freedom : used light-front wave functions

• Although the Wigner distributions in quantum mechanics are not measurable and do

not have probabilistic interpretation, after integrating out some of the variables a

probabilistic interpretation is possible to obtain

• We calculated the Wigner distributions both for unpolarized and longitudinally polarized

target state and showed the correlations in transverse momentum and position space

• We also calculated the kinetic quark OAM using the GPD sum rule and the canonical

OAM in light-front gauge and showed that these are different in magnitude

• Presented Wigner distributions for the gluon

• Further study would be to calculate the GTMDs for the gluons and include transverse

polarization

. – p.38/38


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

