# The quark Orbital Angular Momentum with experimental prospect

#### **Aurore Courtoy**

Université de Liège, Belgium & INFN-LNF, Italy

**ECT\***, Trento

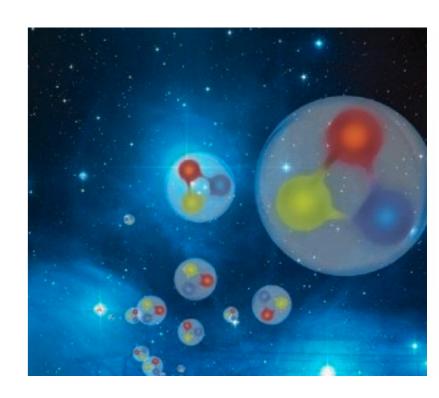
**August 26th, 2014** 





# **Outline**

- Where is the Orbital Angular Momentum?
  - ...theoretically
    - helicity amplitudes
    - models
  - ...experimentally



Based on Phys.Lett. B731 (2014) 141-147

with
Gary Goldstein
Osvaldo González Hernández
Simonetta Liuti
Abha Rajan

# **Spin crisis**

$$\Delta \Sigma \sim 30\%$$
 ≠100%

... the rest must be in gluon and Orbital Angular Momentum

# Spin crisis

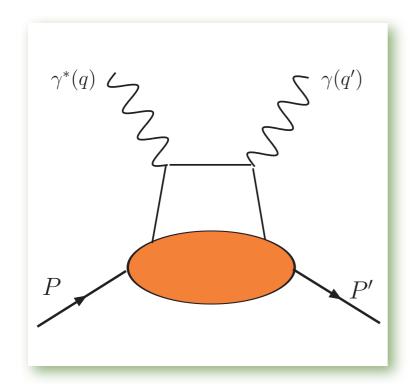
$$\Delta\Sigma \sim 30\%$$
 ≠100%

... the rest must be in gluon and Orbital Angular Momentum

- Fransverse spin?
  - higher-twist: g<sub>T</sub>
  - role of  $k_{\perp}$  highlighted long ago (e.g. Jackson, Ross & Roberts, PLB226)
  - **formalized by Mulders & Tangerman, NPB461** → Transverse Momentum Distributions
- Nucleon spin decomposition
  - Ji PRL78: related fo Form Factors of non-forward matrix elements
  - off-forward PDFs → Generalized Parton Distributions

# **Generalized Functions**

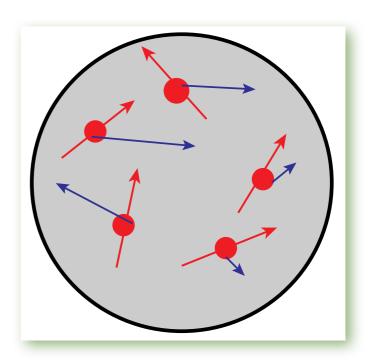
#### Momentum transfer b/w initial and final state



Generalized Parton Distributions

$$f(x) \rightarrow f(x, (P'-P)^2, n.(P'-P))$$

#### **Intrinsic quark transverse motion**



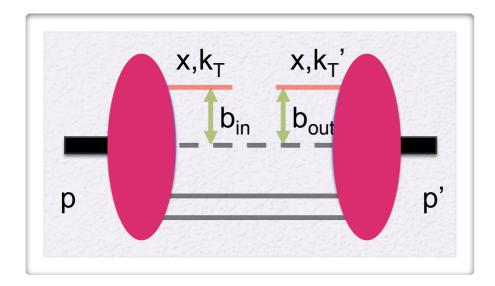
Transverse Momentum Distributions

$$f(x) \rightarrow f(x, k_{\perp})$$

# **Partonic meaning**

#### Generalized Parton Distributions

$$f(x) \rightarrow f(x, (P'-P)^2, n.(P'-P))$$



$$\Delta_T = P_T' - P_T = k_T' - k_T$$

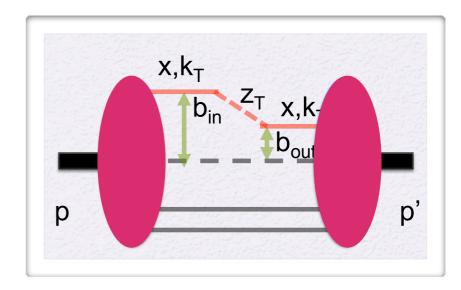
$$\int \frac{d^2 \Delta_T}{(2\pi)^2} e^{i\Delta_T \cdot b_T} \Rightarrow b_T = \frac{b_{T,in} + b_{T,out}}{2}$$

#### **Average**



#### Transverse Momentum Distributions

$$f(x) \rightarrow f(x, k_{\perp})$$



$$\bar{k}_T = \frac{k_T + k_T'}{2}$$

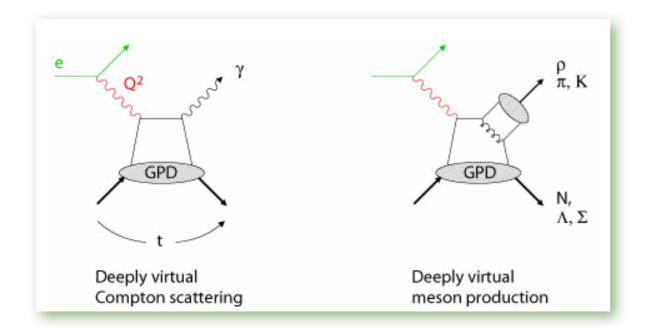
$$\int d^2k_T e^{-ik_T \cdot z_T} \Rightarrow z_T = b_{T,in} - b_{T,out}$$



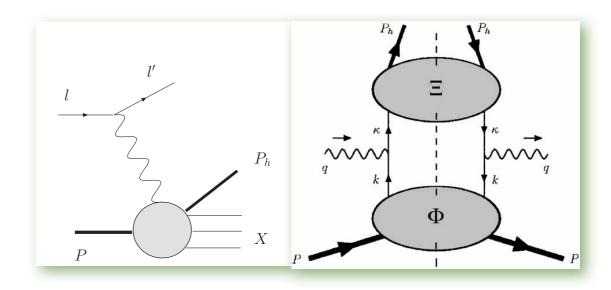
Shift

# **Generalized Functions**

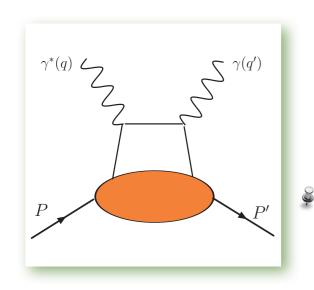
### **Exclusive processes**



#### **Semi-inclusive processes**



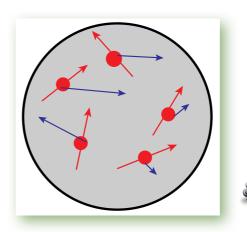
#### Momentum transfer b/w initial and final state



**Generalized Parton Distributions** 

 $f(x) \rightarrow f(x, \Delta^2, n.\Delta)$ 

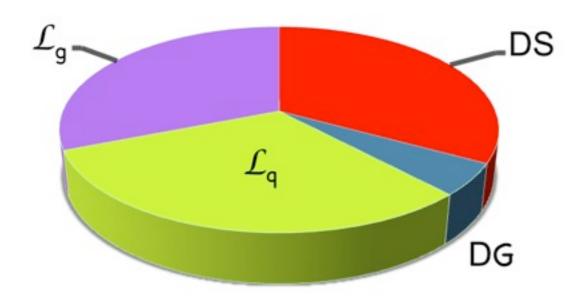
#### **Intrinsic quark transverse motion**

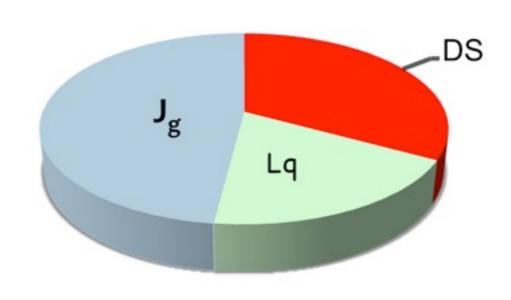


**Transverse Momentum Distributions** 

$$f(x) \rightarrow f(x, k_{\perp})$$

# The one and only (motivation): Proton spin decomposition





Jaffe-Manohar

Find the differences! Purpose of this workshop.

### **Beyond the OAM chronicle:**

what can we experimentally access and what is its physical content?

That's our pragmatic approach

Ji

### **OAM definitions**

### Wigner functions, natural framework

$$\hat{\mathcal{W}}(\vec{r},k) = \int d^4\xi \, e^{ik\cdot\xi} \bar{\Psi}_{GL}(\vec{r}-\xi/2)\gamma^+ \Psi_{GL}(\vec{r}+\xi/2)$$

$$\langle \hat{O} \rangle = \int d\vec{r} dk \, O(\vec{r}, k) \, \hat{\mathcal{W}}(\vec{r}, k)$$

See Cédric Lorcé's publications and Ji, Xiong & Yuan, PRL109

> GL=choice of gauge link r=phase-space position k=phase-space 4-mmt

### **OAM definitions**

### Wigner functions, natural framework

$$\hat{\mathcal{W}}(\vec{r},k) = \int d^4\xi \, e^{ik\cdot\xi} \bar{\Psi}_{GL}(\vec{r}-\xi/2)\gamma^+ \Psi_{GL}(\vec{r}+\xi/2)$$

quantum average →

$$\langle \hat{O} \rangle = \int d\vec{r} dk \, O(\vec{r}, k) \, \hat{\mathcal{W}}(\vec{r}, k)$$

See Cédric Lorcé's publications and Ji, Xiong & Yuan, PRL109

> GL=choice of gauge link r=phase-space position k=phase-space 4-mmt

gauge-invariant



### **OAM definitions**

### Wigner functions, natural framework

$$\hat{\mathcal{W}}(\vec{r},k) = \int d^4\xi \, e^{ik\cdot\xi} \bar{\Psi}_{GL}(\vec{r}-\xi/2)\gamma^+ \Psi_{GL}(\vec{r}+\xi/2)$$

quantum average →

$$\langle \hat{O} \rangle = \int d\vec{r} dk \, O(\vec{r}, k) \, \hat{\mathcal{W}}(\vec{r}, k)$$

See Cédric Lorcé's publications and Ji, Xiong & Yuan, PRL109

> GL=choice of gauge link r=phase-space position k=phase-space 4-mmt

gauge-invariant

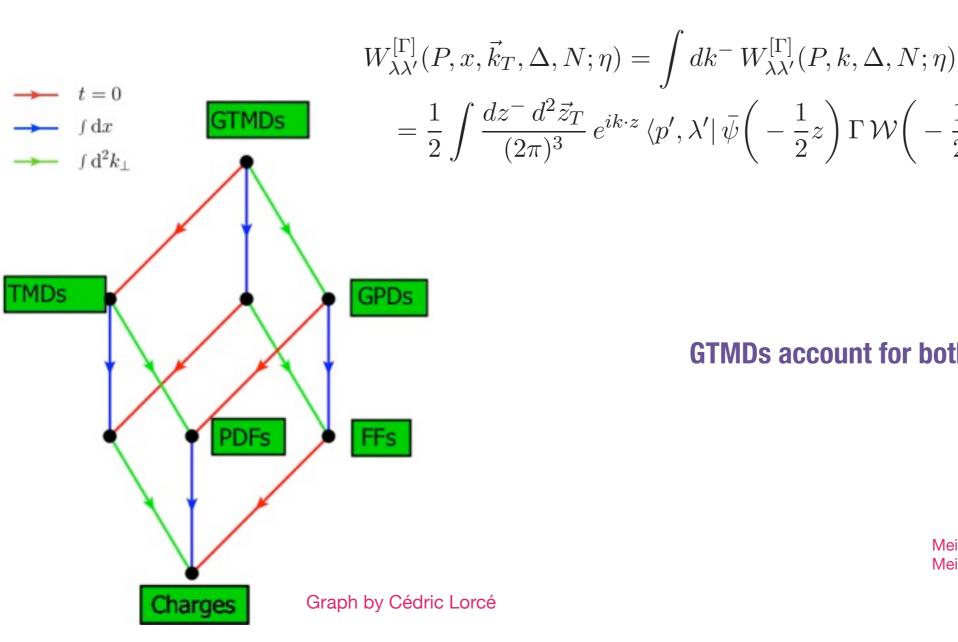
Ji, Xiong & Yuan, PRL109

canonical

$$l_{q} = \frac{\langle PS| \int d^{3}\vec{r} \, \overline{\psi}(\vec{r}) \gamma^{+}(\vec{r}_{\perp} \times i\vec{\partial}_{\perp}) \psi(\vec{r}) | PS \rangle}{\langle PS| PS \rangle}$$
$$= \int (\vec{b}_{\perp} \times \vec{k}_{\perp}) W_{LC}(x, \vec{b}_{\perp}, \vec{k}_{\perp}) dx d^{2}\vec{b}_{\perp} d^{2}\vec{k}_{\perp}$$

# (Generalization)<sup>2</sup> of distributions

**Wigner function** quantized at light-cone time ———— Generalized TMDs



 $= \frac{1}{2} \int \frac{dz^{-} d^{2}\vec{z}_{T}}{(2\pi)^{3}} e^{ik\cdot z} \langle p', \lambda' | \bar{\psi}\left(-\frac{1}{2}z\right) \Gamma \mathcal{W}\left(-\frac{1}{2}z, \frac{1}{2}z | n\right) \psi\left(\frac{1}{2}z\right) | p, \lambda \rangle \Big|_{z^{+}=0}$ 

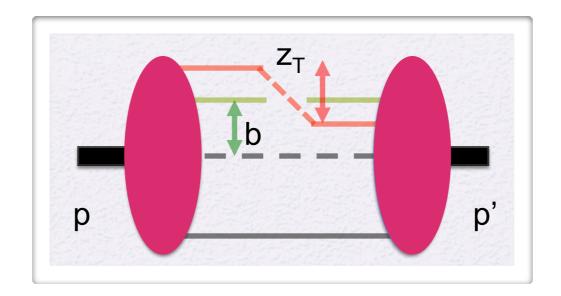
GTMDs account for both  $k_{\perp}$  &  $\Delta$ 

Meissner, Metz, Schlegel & Goeke, JHEP 0808 (2008) 038 Meissner, Metz & Schlegel, JHEP 0908 (2009) 056

# **Partonic meaning**

#### GTMDs account for both $k_{\perp}$ & $\Delta$

#### 2 transverse momenta



$$\bar{k}_T = \frac{k_T + k_T'}{2} \Rightarrow z_T = b_{T,in} - b_{T,out}$$

$$\Delta_T = k_T' - k_T \Rightarrow b_T = \frac{b_{T,in} + b_{T,out}}{2}$$

**Average + Shift** 

Impact parameter space

**Interpretation in terms of 2-body scattering??** 

- Still need to define/find process related to GTMD (à la Goloskokov & Kroll, EPJC 53 ??/ see S. Liuti's talk)
- Purely theoretical object
- Don't know behavior with a possible factorization
- No constraint from pQCD so far
- Only limits to GPDs & TMDs.

- Still need to define/find process related to GTMD (à la Goloskokov & Kroll, EPJC 53 ??/ see S. Liuti's talk)
- Purely theoretical object
- Don't know behavior with a possible factorization
- No constraint from pQCD so far
- Only limits to GPDs & TMDs.

#### **Main motivations:**

- Orbital Angular Momentum
- Wigner functions b/c of quantum average

- Still need to define/find process related to GTMD (à la Goloskokov & Kroll, EPJC 53 ??/ see S. Liuti's talk)
- Purely theoretical object
- Don't know behavior with a possible factorization
- No constraint from pQCD so far
- Only limits to GPDs & TMDs.

Lorcé & Pasquini, PRD84 Lorcé, Pasquini, Xiong & Yuan, PRD85

#### **Main motivations:**

- Orbital Angular Momentum
- Wigner functions b/c of quantum average

$$\ell_{z}^{q} \equiv \langle \hat{L}_{z}^{q} \rangle^{[\gamma^{+}]} (\vec{e}_{z})$$

$$= \int dx d^{2}k_{\perp} d^{2}b_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_{z} \rho^{[\gamma^{+}]q} (\vec{b}_{\perp}, \vec{k}_{\perp}, x, \vec{e}_{z})$$

$$\ell_{z}^{q} = -\int dx d^{2}k_{\perp} \frac{\vec{k}_{\perp}^{2}}{M^{2}} F_{1,4}^{q}(x, 0, \vec{k}_{\perp}^{2}, 0, 0)$$

New structure only from GTMD

- Still need to define/find process related to GTMD (à la Goloskokov & Kroll, EPJC 53 ??/ see S. Liuti's talk)
- Purely theoretical object
- Don't know behavior with a possible factorization
- No constraint from pQCD so far
- Only limits to GPDs & TMDs.

Lorcé & Pasquini, PRD84 Lorcé, Pasquini, Xiong & Yuan, PRD85

#### **Main motivations:**

- Orbital Angular Momentum
- Wigner functions b/c of quantum average

$$\begin{split} \ell_z^q &\equiv \langle \hat{L}_z^q \rangle^{[\gamma^+]} (\vec{e}_z) \\ &= \int dx d^2 k_{\perp} d^2 b_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z \rho^{[\gamma^+]q} (\vec{b}_{\perp}, \vec{k}_{\perp}, x, \vec{e}_z) \\ \ell_z^q &= -\int dx d^2 k_{\perp} \frac{\vec{k}_{\perp}^2}{M^2} F_{1,4}^q (x, 0, \vec{k}_{\perp}^2, 0, 0) \end{split}$$

New structure only from GTMD

### **Classification of GTMDs**

Recipe from M. Diehl, EPJC 19

### Meissner, Metz & Schlegel [JHEP 0908 (2009) 056]

- Lorentz scalar
- Hermiticity
- Charge-conjugation
- Parity conservation



$$\begin{split} W_{\Lambda\Lambda'}^{\gamma^+} &= \frac{1}{2P^+} \left[ \overline{U}(p',\Lambda') \gamma^+ U(p,\Lambda) F_{11} + \overline{U}(p',\Lambda') \frac{i\sigma^{i+}\Delta_T^i}{2M} U(p,\Lambda) (2F_{13} - F_{11}) \right] \\ &+ \left[ \overline{U}(p',\Lambda') \frac{i\sigma^{i+}\overline{k}_T^i}{2M} U(p,\Lambda) (2F_{12}) + \overline{U}(p',\Lambda') \frac{i\sigma^{ij}\overline{k}_T^i\Delta_T^j}{M^2} U(p,\Lambda) F_{14} \right] \\ &= \delta_{\Lambda,\Lambda'} F_{11} + \delta_{\Lambda,-\Lambda'} \frac{-\Lambda\Delta_1 - i\Delta_2}{2M} (2F_{13} - F_{11}) + \delta_{\Lambda,-\Lambda'} \frac{-\Lambda\overline{k}_1 - i\overline{k}_2}{2M} (2F_{12}) + \delta_{\Lambda,\Lambda'} i\Lambda \frac{\overline{k}_1\Delta_2 - \overline{k}_2\Delta_1}{M^2} F_{14} \end{split}$$

related to the Sivers fct

# Discrete symmetries

### Behavior on the variables constrained by discrete symmetries

### Parton correlations defined on the light-cone:

- → customary to check combined P and T invariance to constrain LC variables
- → the observable must be P and T-invariant

### **Helicity vs. LF helicity**

A single particle state is assumed to transform similarly,

$$P|\vec{p}\,s\rangle = \eta_P|-\vec{p}\,s\rangle, \qquad P|\vec{p}\,h\rangle = \eta_P|-\vec{p}\,-h\rangle,$$

- → from the matrix element, we get that h→-h
- → overall the LF combination of discrete symmetries is conserved

# **Parity relations**

- $\Rightarrow \qquad A_{\Lambda',\,\lambda';\,\Lambda,\,\lambda}: q'(k',\lambda') + N(p,\Lambda) \to q(k,\lambda) + N'(p',\Lambda')$
- **3** 16 HA related through parity relations →  $A_{-\Lambda', -\lambda'; -\Lambda, -\lambda} = (-1)^{\eta} A_{\Lambda', \lambda'; \Lambda, \lambda}^*$
- Figure 1 leaving 8 independent amplitudes.
- so, the combinations  $-i\frac{\bar{k}_1\Delta_2-\bar{k}_2\Delta_1}{M^2}F_{14} = (A_{++,++}+A_{+-,+-}-A_{-+,-+}-A_{--,--})/4$   $i\frac{\bar{k}_1\Delta_2-\bar{k}_2\Delta_1}{M^2}G_{11} = (A_{++,++}-A_{+-,+-}+A_{-+,-+}-A_{--,--})/4$

... are Not indpt in CoM frame

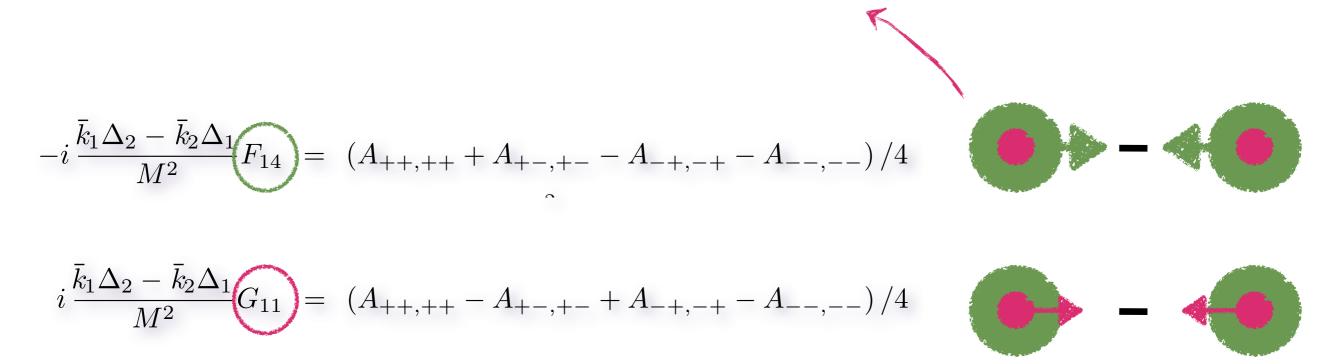


 $F_{14}$  &  $G_{11}$ : Non zero b/c imaginary  $\Rightarrow A_{++,++} \neq A_{-+,-} \& A_{+-,+-} \neq A_{-+,-+}$ 

**Example: the bag model** 

$$Re(A_{+-,+-} \& A_{++,++}) = Re(A_{-+,-+} \& A_{--,--})$$
  
 $Im(A_{+-,+-} \& A_{++,++}) = -Im(A_{-+,-+} \& A_{--,--})$ 

### U/L polarized quarks in L/U polarized target



#### In terms of Generalized Parton Correlation Functions...

$$W_{\Lambda',\Lambda}^{\gamma^+} = \overline{U}(p',\Lambda') \left[ \underbrace{\frac{P^+}{P^+(A_1^F + xA_2^F - 2\xi A_3^F)}_{P^+(A_1^F + xA_2^F - 2\xi A_3^F)}_{P^+(A_1^F + xA_2^F - 2\xi A_3^F)} + \underbrace{\frac{i\sigma^{+k}}{M}A_5^F + \frac{i\sigma^{+\Delta}}{M}A_6^F}_{P^+(A_1^F + xA_2^F)} \right] U(p,\Lambda)$$

$$+ \underbrace{\frac{P^+i\sigma^{kN}}{M^3}(A_{11}^F + xA_{12}^F) + \frac{P^+i\sigma^{\Delta N}}{M^3}(A_{14}^F - 2\xi A_{15}^F)}_{type4}}_{p+1} U(p,\Lambda)$$

$$= A_{\Lambda'+;\Lambda^+}^{[\gamma^+]} + A_{\Lambda'-;\Lambda^-}^{[\gamma^+]}$$

# Gauge-link to be thought of...

Usual distribution functions depend on a vector *n* that comes from the gauge link

**Proposed most general correlator:** 

Goeke et al, Phys.Lett. B567

$$\Phi_{ij}(P,k,S|n) = \int \frac{d^4\xi}{(2\pi)^4} e^{ik\cdot\xi} \langle P,S|\bar{\psi}_j(0)\mathcal{W}(0,\xi|n)\psi_i(\xi)|P,S\rangle.$$

Choice of  $n \rightarrow$  leading contribution of the correlator in view of factorization theorems

- → turns out that DIS & SIDIS are LC dominated
- → the hard photon selects the "+"-direction as leading contribution

PDFs & TMDs: z-direction cannot be arbitrarily rotated.

GPCFs: no known probes

n unconstrained: chosen to reproduce PDF & TMD limits

# **Leading-order** ⇔ 2-body scattering

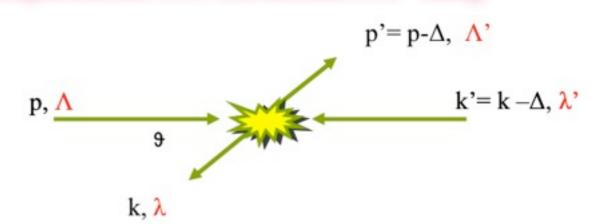
Landshoff, Polkinghorne and Short, NPB28

### CoM 2-body scattering must occur on a plane

Helicity amplitudes do not contain info on the LF

**Our statement:** 

if it cannot be explained by 2-body scattering  $\Rightarrow$  the dependence in n introduces a 3<sup>rd</sup> body



# **Leading-order** ⇔ 2-body scattering

Landshoff, Polkinghorne and Short, NPB28

### CoM 2-body scattering must occur on a plane

Helicity amplitudes do not contain info on the LF

**Our statement:** 

if it cannot be explained by 2-body scattering  $\Rightarrow$  the dependence in n introduces a 3<sup>rd</sup> body

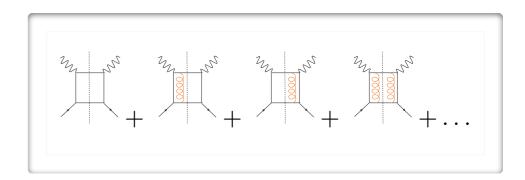
#### **Example:**

#### **Sivers function**

 $p'=p-\Delta, \Lambda'$   $p'=k-\Delta, \lambda'$   $k'=k-\Delta, \lambda'$ 

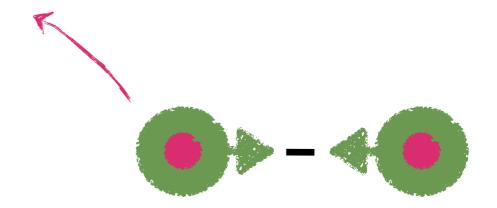
- T-odd, so not allowed as if 2-body scattering
- Needs a third body: different symmetries, more flexibility
- That 3<sup>rd</sup> body comes from the gauge link→ final state interaction

#### Here?



What is the concept of twist when adding scales?

### Unpolarized quarks in longitudinally polarized target



### What happens in models? Is it zero?

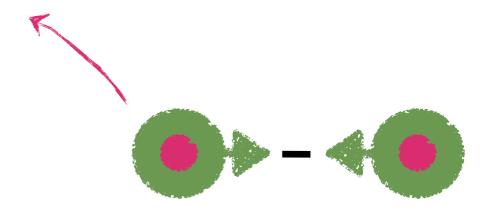
Not in quark models E.g. in the bag...

$$i\frac{\left(\vec{k}_T \times \vec{\Delta}_T\right)_z}{M^2} F_{14}^u \propto i\frac{2}{3} \frac{\left(\vec{k}_T \times \vec{\Delta}_T\right)_z}{k_3 k'} t_1(k) t_1(k')$$

A. Rajan et al, in preparation

Other calculations are also non-zero, but I cite the one I control. See Meissner et al, Lorce et al, Kanazawa et al, Mukherjee et al and A. Rajan et al [in preparation]]for more results....

### Unpolarized quarks in longitudinally polarized target



### What happens in models? Is it zero?

Not in quark models E.g. in the bag...

$$i\frac{\left(\vec{\bar{k}}_T \times \vec{\Delta}_T\right)_z}{M^2} F_{14}^u \propto i\frac{2}{3} \frac{\left(\vec{\bar{k}}_T \times \vec{\Delta}_T\right)_z}{k_3 k'} t_1(k) t_1(k')$$

A. Rajan et al, in preparation

Why is it so?

Other calculations are also non-zero, but I cite the one I control. See Meissner et al, Lorce et al, Kanazawa et al, Mukherjee et al and A. Rajan et al [in preparation]]for more results....

We think

- the "low-energy quark" (constituent, preconfined...) implies complex dynamics
- expansion in twist does not match model content
- interpretation still in progress

### Warning:

it is a sketched observable, we only care for the helicity amps

See S. Liuti's talk for more info on observables and GTMDs

#### We consider the HELICITY AMPLITUDES for the EW DIS processes

$$T_{\Lambda_{(W,Z)}\Lambda,\Lambda'_{(W,Z)}\Lambda'} = \operatorname{Amp}\left[ (W^{\pm}, Z^{0}) + \operatorname{Nucleon} \rightarrow (W^{\pm}, Z^{0})' + \operatorname{Nucleon}'. \right]$$

The hard part comes from the subprocess

$$g_{\lambda,\lambda'}^{\pm 1,\pm 1} = \text{Amp}\left[ (W^{\pm}, Z^{0}) + \text{quark} \to (W^{\pm}, Z^{0}) + \text{quark'}. \right]$$

for transversely polarized vector bosons

and the quark EW current

$$J^{\mu} = \bar{\psi}\gamma^{\mu}(g_V \mathbb{1} - g_A \gamma^5)\psi$$

X.D. Ji, Nucl.Phys.B402

### **Parity conserving structure**

AC et al, drafting

$$G_1 \propto T_{1+,1+} - T_{1-,1-} - T_{-1+,-1+} + T_{-1-,--}$$

$$G_1 \propto g_{++}^{1,1} \otimes (A_{+,+;+,+} - A_{-,+;-,+}) - g_{--}^{-1-1} \otimes (A_{+,-;+,-} - A_{-,-;-,-})$$

with 
$$g_{\pm\pm}^{\pm 1,\pm 1} = \frac{q^-\sqrt{2k^+k'^+}}{\hat{s}} \left[ (g_V'g_V + g_A'g_A) \mp (g_V'g_A + g_A'g_V) \right]$$

$$G_1 \propto (g'_V g_V + g'_A g_A) \otimes (A_{++,++} - A_{-+,-+} + A_{--,--} - A_{+-,+-})$$
$$- (g'_V g_A + g'_A g_V) \otimes (A_{++,++} - A_{-+,-+} - A_{--,--} + A_{+-,+-})$$

X.D. Ji, Nucl.Phys.B402

### **Parity conserving structure**

AC et al, drafting

$$G_1 \propto T_{1+,1+} - T_{1-,1-} - T_{-1+,-1+} + T_{-1-,--}$$

$$G_1 \propto g_{++}^{1,1} \otimes (A_{+,+;+,+} - A_{-,+;-,+}) - g_{--}^{-1-1} \otimes (A_{+,-;+,-} - A_{-,-;-,-})$$

with 
$$g_{\pm\pm}^{\pm 1,\pm 1} = \frac{q^-\sqrt{2k^+k'^+}}{\hat{s}} \left[ (g_V'g_V + g_A'g_A) \mp (g_V'g_A + g_A'g_V) \right]$$

#### P-even struct.

$$G_1 \propto (g'_V g_V + g'_A g_A) \otimes (A_{++,++} - A_{-+,-+} + A_{--,--} - A_{+-,+-})$$

$$- (g'_V g_A + g'_A g_V) \otimes (A_{++,++} - A_{-+,-+} - A_{--,--} + A_{+-,+-})$$

P-odd struct.

G<sub>11</sub>

F<sub>14</sub>

X.D. Ji, Nucl.Phys.B402

### **Parity conserving structure**

AC et al, drafting

$$G_1 \propto T_{1+,1+} - T_{1-,1-} - T_{-1+,-1+} + T_{-1-,--}$$

$$G_1 \propto g_{++}^{1,1} \otimes (A_{+,+;+,+} - A_{-,+;-,+}) - g_{--}^{-1-1} \otimes (A_{+,-;+,-} - A_{-,-;-,-})$$

with 
$$g_{\pm\pm}^{\pm 1,\pm 1} = \frac{q^-\sqrt{2k^+k'^+}}{\hat{s}} \left[ (g_V'g_V + g_A'g_A) \mp (g_V'g_A + g_A'g_V) \right]$$

#### P-even struct.

$$G_1 \propto (g'_V g_V + g'_A g_A) \otimes (A_{++,++} - A_{-+,-+} + A_{--,--} - A_{+-,+-})$$
$$- (g'_V g_A + g'_A g_V) \otimes (A_{++,++} - A_{-+,-+} - A_{--,--} + A_{+-,+-})$$

G<sub>11</sub>

F<sub>14</sub>

P-odd struct.

### Parity non-conserving structure

#### P-even struct.

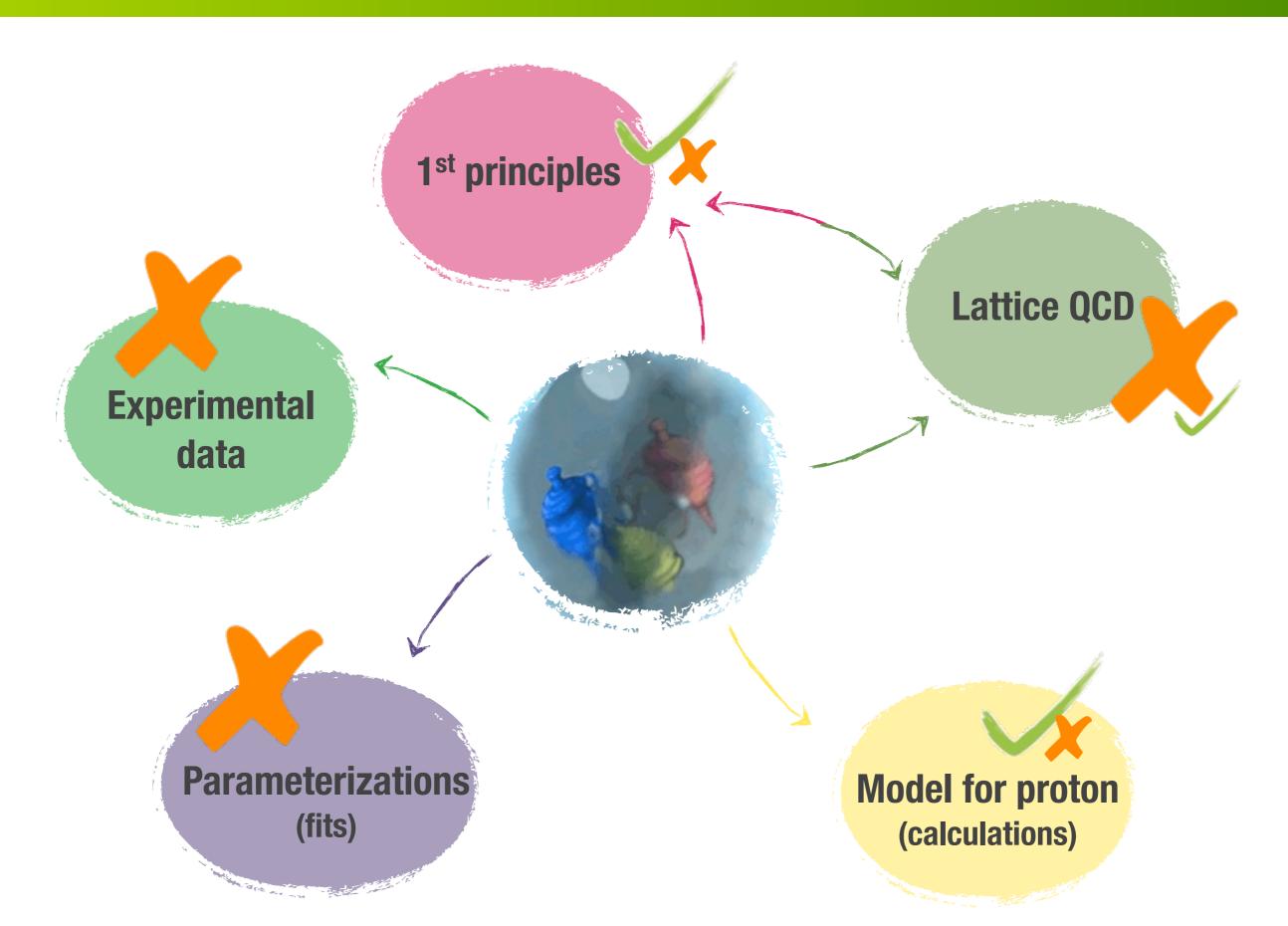
$$A_1 \propto (g'_V g_V + g'_A g_A) \otimes (A_{++,++} - A_{-+,-+} - A_{--,--} + A_{+-,+-}) - (g'_V g_A + g'_A g_V) \otimes (A_{++,++} - A_{-+,-+} + A_{--,--} - A_{+-,+-}),$$

**G**11

F<sub>14</sub>

P-odd struct.

# How can we access OAM?



# **Higher-twist contributions**

- Helicity amplitude combinations of "F<sub>14</sub>" do exist
- Final state interactions transform differently under parity
  - ho It comes at twist-3 with the structure  $\langle {f S}_L imes {f \Delta}_T 
    angle$
  - $\textbf{ Helicity amplitudes here follow } \qquad A^{tw3}_{\Lambda'\pm,\Lambda\pm} \to A^{tw2}_{\Lambda'\pm,\Lambda\mp}$
  - so that we can build the "LU" structure in terms of twist-3 GTMDs

$$-\frac{4}{P^{+}} \left[ \frac{\bar{\mathbf{k}}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}} F_{27} + \Delta_{T} F_{28} - \left( \frac{\bar{\mathbf{k}}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}} G_{27} + \Delta_{T} G_{28} \right) \right] = A_{++,++}^{tw3} + A_{+-,+-}^{tw3} - A_{-+,-+}^{tw3} - A_{--,--}^{tw3}$$

### Great news is that those GTMDs do admit a GPD limit!



$$2\widetilde{H}_{2T} + E_{2T} = \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) F_{21} + F_{22} \right]$$

$$\widetilde{E}_{2T} = -2 \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) F_{27} + F_{28} \right] = G_{2} = \widetilde{H}_{-}^{3}$$

$$2\widetilde{H}_{2T}' + E_{2T}' = \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) G_{21} + G_{22} \right]$$

$$\widetilde{E}_{2T}' = -2 \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) G_{27} + G_{28} \right]$$

MMS Kiptily & Polyakov EPJC37 Belitsky *et al* NPB629

### Great news is that those GTMDs do admit a GPD limit!



$$2\widetilde{H}_{2T} + E_{2T} = \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) F_{21} + F_{22} \right]$$

$$\widetilde{E}_{2T} = -2 \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) F_{27} + F_{28} \right] = G_{2} = \widetilde{H}_{-}^{3}$$

$$2\widetilde{H}_{2T}' + E_{2T}' = \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) G_{21} + G_{22} \right]$$

$$\widetilde{E}_{2T}' = -2 \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) G_{27} + G_{28} \right]$$

MMS Kiptily & Polyakov EPJC37 Belitsky *et al* NPB629

gauge-invariant



### Great news is that those GTMDs do admit a GPD limit!



$$2\widetilde{H}_{2T} + E_{2T} = \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) F_{21} + F_{22} \right]$$

$$\widetilde{E}_{2T} = -2 \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) F_{27} + F_{28} \right] = G_{2} = \widetilde{H}_{-}^{3}$$

$$2\widetilde{H}_{2T}' + E_{2T}' = \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) G_{21} + G_{22} \right]$$

$$\widetilde{E}_{2T}' = -2 \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) G_{27} + G_{28} \right]$$

MMS Kiptily & Polyakov EPJC37 Belitsky *et al* NPB629

Ji, Xiong & Yuan, PRL109



$$\begin{split} l_{q} &= \frac{\langle PS | \int d^{3}\vec{r} \, \overline{\psi}(\vec{r}) \gamma^{+}(\vec{r}_{\perp} \times i \vec{\partial}_{\perp}) \psi(\vec{r}) | PS \rangle}{\langle PS | PS \rangle} \\ &= \int (\vec{b}_{\perp} \times \vec{k}_{\perp}) W_{\text{LC}}(x, \vec{b}_{\perp}, \vec{k}_{\perp}) dx d^{2} \vec{b}_{\perp} d^{2} \vec{k}_{\perp} \end{split}$$

### Great news is that those GTMDs do admit a GPD limit!



$$2\widetilde{H}_{2T} + E_{2T} = \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) F_{21} + F_{22} \right]$$

$$\widetilde{E}_{2T} = -2 \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) F_{27} + F_{28} \right] = G_{2} = \widetilde{H}_{-}^{3}$$

$$2\widetilde{H}_{2T}' + E_{2T}' = \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) G_{21} + G_{22} \right]$$

$$\widetilde{E}_{2T}' = -2 \int d^{2}\mathbf{k}_{T} \left[ \left( \frac{\mathbf{k}_{T} \cdot \boldsymbol{\Delta}_{T}}{\Delta_{T}^{2}} \right) G_{27} + G_{28} \right]$$

MMS Kiptily & Polyakov EPJC37 Belitsky *et al* NPB629

LFS= 
$$\frac{\langle PS|\int d^{3}\vec{r}\,\bar{\psi}(\vec{r})\gamma^{+}(\vec{r}_{\perp}\times i\vec{D}_{\perp})\psi(\vec{r})|PS\rangle}{\langle PS|PS\rangle}$$
$$=\int (\vec{b}_{\perp}\times \vec{k}_{\perp})W_{FS}(x,\vec{b}_{\perp},\vec{k}_{\perp})dxd^{2}\vec{b}_{\perp}d^{2}\vec{k}_{\perp}$$

related to twist-2 & twist-3 GPDs

Ji, Xiong & Yuan, PRL109



$$l_{q} = \frac{\langle PS| \int d^{3}\vec{r} \, \overline{\psi}(\vec{r}) \gamma^{+}(\vec{r}_{\perp} \times i\vec{\partial}_{\perp}) \psi(\vec{r}) | PS \rangle}{\langle PS| PS \rangle}$$
$$= \int (\vec{b}_{\perp} \times \vec{k}_{\perp}) W_{LC}(x, \vec{b}_{\perp}, \vec{k}_{\perp}) dx d^{2}\vec{b}_{\perp} d^{2}\vec{k}_{\perp}$$

related to twist-2 GPDs & its gauge-invariant extension is twist-3

### **Relation to GPDs**

Ji's Sum Rule PRL97

**Sum Rule** 

$$J_{q(g)} = \frac{1}{2} \int_{-1}^{1} dx \, x (H_{q(g)}(x) + E_{q(g)}(x))$$

$$\Rightarrow L_{q} = \frac{1}{2} \int_{-1}^{1} dx \, x (H_{q}(x) + E_{q}(x)) - \frac{1}{2} \int_{-1}^{1} dx \, \widetilde{H}(x)$$

Penttinen et al PLB491

**Sum Rule** 

$$\int dx \, x \, G_2^q(x) = \frac{1}{2} \left[ -\int dx \, x (H^q(x) + E^q(x)) + \int dx \tilde{H}^q(x) \right]$$
$$= -L_q$$

Hatta et al JHEP10

**WW** approx

$$L_q(x) = x \int_x^1 \frac{dy}{y} (H_q(y) + E_q(y)) - x \int_x^1 \frac{dy}{y^2} \widetilde{H}_q(y)$$

We've pointed out an observable in DVCS to access G2

### Conclusions

- The combination A<sub>++,++</sub>+A<sub>+-,+-</sub>-A<sub>-+,-+</sub>-A<sub>--,--</sub> at twist-2 cannot be explained by 2-body scattering
- $\checkmark$  The combination  $A_{++,++}+A_{+-,+-}-A_{-+,-+}-A_{--,--}$  at twist-3 is related to Ji's OAM
  - from unp. quarks in L pol proton to transverse direction corr. with FSI/3rd body
- The Helicity Amps  $A_{++,++}+A_{+-,+-}-A_{-+,-+}-A_{--,-}$  appear with parity-odd structure in EW DIS
- Outlook
  - What is the role of the gauge link?
  - soon model interpretations



# Canonical vs. gauge-invariant

In WW approximation, doesn't matter

$$L_{q}(x) = L_{q}^{WW}(x) + \overline{L}_{q}(x)$$

$$\mathcal{L}_{q}(x) = L_{q}^{WW}(x) + \overline{\mathcal{L}}_{q}(x)$$



genuine twist-3 contribution

- Anyway, we know very little about twist-3 GPDs, so WW is fine for now except for some model calculations
- genuine twist-3 contributions are expected to be smaller than the WW's

# Canonical vs. gauge-invariant

In WW approximation, doesn't matter

$$L_{q}(x) = L_{q}^{WW}(x) + \overline{L}_{q}(x)$$

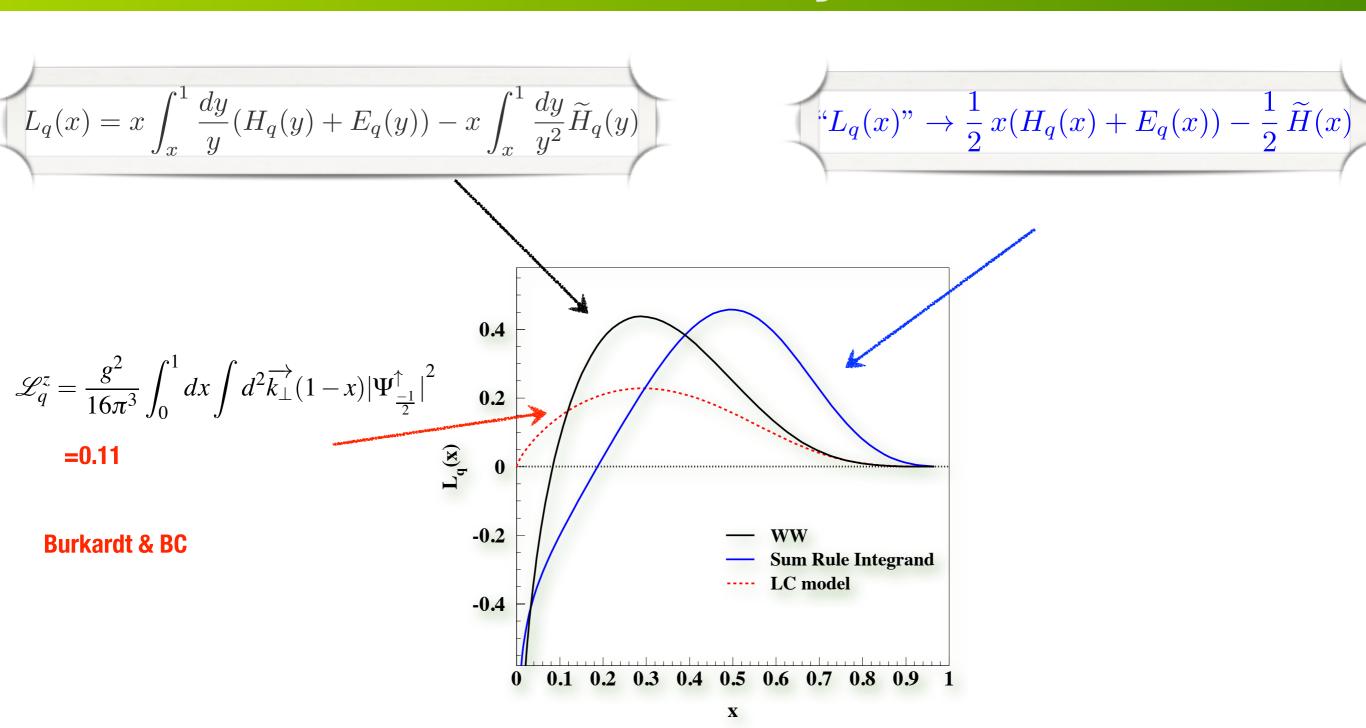
$$\mathcal{L}_{q}(x) = L_{q}^{WW}(x) + \overline{\mathcal{L}}_{q}(x)$$



genuine twist-3 contribution

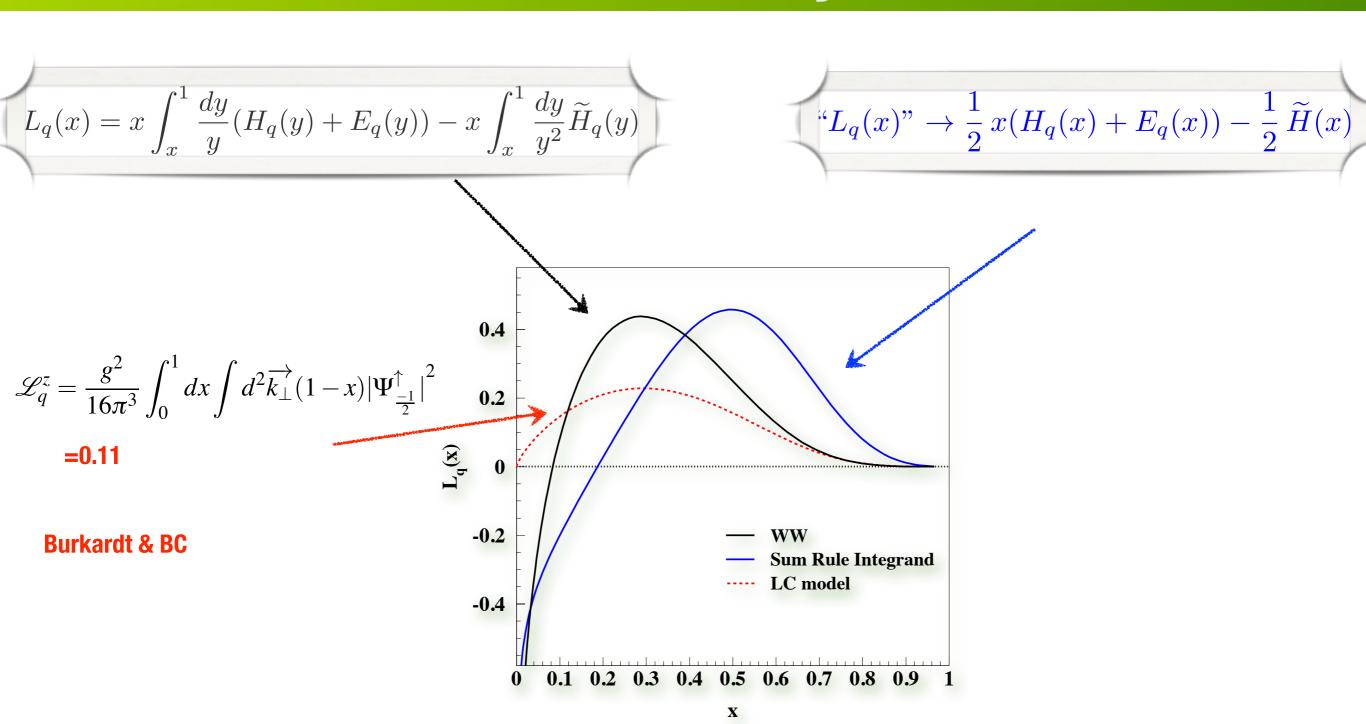
- Anyway, we know very little about twist-3 GPDs, so WW is fine for now except for some model calculations
- genuine twist-3 contributions are expected to be smaller than the WW's
- To evaluate  $L_q^{WW}(x)$ , we can
  - use a parameterization for twist-2 GPDs (Goldstein, Gonzalez-Hernandez & Liuti, PRD84)
  - apply WW formula

# **OAM density**



Black and blue give the same integrated result  $L_q^{WW}$ =0.13

# **OAM density**



Black and blue give the same integrated result  $L_q^{WW}$ =0.13

Ok, so, now, can we access G<sub>2</sub>?

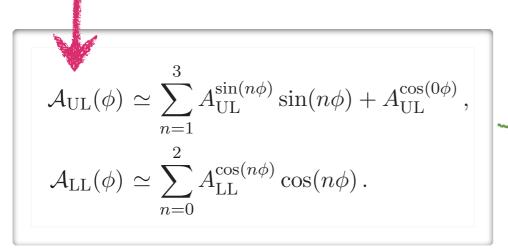
# DVCS @ HERMES (JHEP06)

formalism from Belitsky et al NPB629

$$G_2 = \widetilde{E}_{2T} = \widetilde{H}_-^3$$

#### follow the arrows

### **HERE IS THE OBSERVABLE**



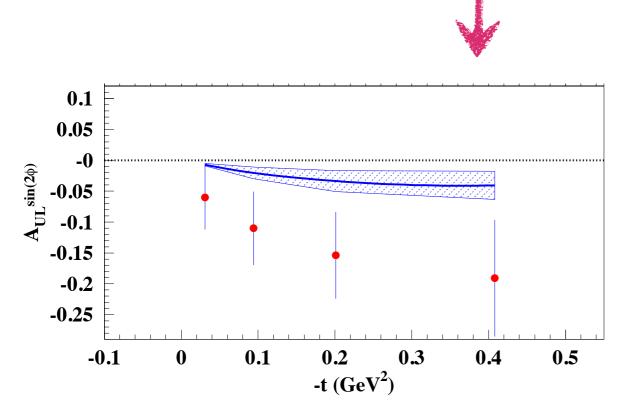
| Asymmetry                 | Contributory Fourier-               | Power of $\frac{1}{Q}$ | Dominant CFF                                                                                               | Twist |
|---------------------------|-------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------|-------|
| Amplitude                 | Coefficients                        | Suppression            | Dependence                                                                                                 | Level |
| $A_{ m UL}^{\sin(2\phi)}$ | $s_{2,\mathrm{LP}}^{\mathrm{I}}$    | 2                      | $\operatorname{Im}\mathcal{C}_{\operatorname{LP}}^{\operatorname{I}}$                                      | 3     |
|                           | $s_{2,\mathrm{LP}}^{\mathrm{DVCS}}$ | 2                      | $\operatorname{Im}\mathcal{C}^{	ext{DVCS}}_{	ext{T,LP}}$                                                   | 2     |
| $A_{ m LL}^{\cos\phi}$    | $c_{1,\mathrm{LP}}^{\mathrm{I}}$    | 1                      | $\mathrm{Re}\mathcal{C}_{\mathrm{LP}}^{\mathrm{I}}$ $\mathrm{Re}\mathcal{C}_{\mathrm{LP}}^{\mathrm{DVCS}}$ | 2     |
|                           | $c_{1,\mathrm{LP}}^{\mathrm{DVCS}}$ | 3                      | $\mathrm{Re}\mathcal{C}^\mathrm{DVCS}_\mathrm{LP}$                                                         | 3     |

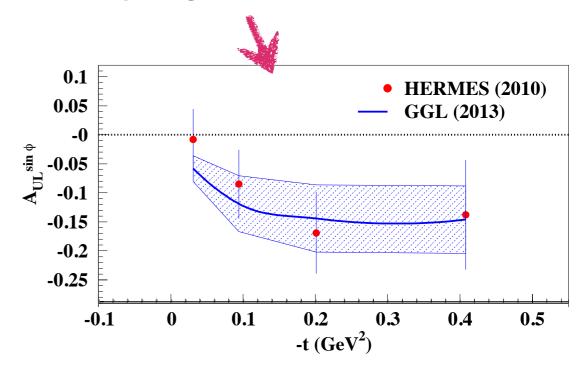
$$\begin{cases} c_{2,\text{LP}}^{\mathcal{I}} \\ s_{2,\text{LP}}^{\mathcal{I}} \end{cases} = \frac{16\Lambda K^2}{2 - x_{\text{B}}} \begin{cases} -\lambda y \\ 2 - y \end{cases} \begin{cases} \Re \\ \Im \\ \end{bmatrix} \mathcal{C}_{\text{LP}}^{\mathcal{I}}(\mathcal{F}^{\text{eff}}), \qquad \text{with} \qquad \mathcal{F} = \{\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}\} \qquad \mathcal{F}^{\text{eff}} \equiv -2\xi \left(\frac{1}{1 + \xi} \mathcal{F} + \mathcal{F}_{+}^{3} - \mathcal{F}_{-}^{3}\right) \\ \mathcal{C}_{\text{LP}}^{\mathcal{I}} = \frac{x_{\text{B}}}{2 - x_{\text{B}}} (F_{1} + F_{2}) \left(\mathcal{H} + \frac{x_{\text{B}}}{2} \mathcal{E}\right) + F_{1} \widetilde{\mathcal{H}} - \frac{x_{\text{B}}}{2 - x_{\text{B}}} \left(\frac{x_{\text{B}}}{2} F_{1} + \frac{\Delta^{2}}{4M^{2}} F_{2}\right) \widetilde{\mathcal{E}}, \\ \widetilde{\mathcal{H}}^{eff} = -2\xi \left(\frac{1}{1 + \xi} \widetilde{\mathcal{H}} + \widetilde{\mathcal{H}}_{3}^{+} - \widetilde{\mathcal{H}}_{3}^{-}\right) \end{cases}$$

### **OAM from sin(2φ) modulation**

Here we use the WW expression with the GPD fits of GGL

- $\varphi$  the sin( $\varphi$ ) is prediction and autoconsistency check. They do great!
- $\geqslant$  the sin(2 $\varphi$ ) is prediction
  - first try to "access" to OAM!





Nonzero! and even sizable!

### **Conclusions**

- $\checkmark$  The combination  $A_{++,++}+A_{+-,+-}-A_{-+,-+}-A_{--,--}$  is parity-odd at twist-2
- The combination  $A_{++,++}+A_{+-,+-}-A_{-+,-+}-A_{--,--}$  is not parity-odd at twist-3
  - from unp. quarks in L pol proton to transverse direction corr. with FSI/3rd body

- to be translated in terms of Wigner functions (à la Ji, does the gauge link matter?, ....)
- can we go beyond WW approximation?

- Anyhow, we've spotted an observable!
  - TSA for DVCS

$$A_{UL} = \frac{a\sin\phi + b\sin 2\phi}{c_0 + c_1\cos\phi + c_2\cos 2\phi}$$