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• Transverse spin decomposition

• Burkhardt-Cottingham sum rule (& old Burkardt sum rule)

• ELT sum rule 

• (new) Burkardt sum rule

• Schäfer-Teryaev sum rule

• BLT sum rule

I will discuss x and kt-integrations, comment on small-x and polarization, 
possibility of nodes, scale dependence, etc  

There are many transverse spin related sum rules (not all discussed):



Transverse spin 
decomposition



Philip G. Ratcliffe, at spin98 in Protvino, hep-ph/9811348:

What do we learn from the transverse spin decomposition? 
In lectures on spin physics I `dismissed’ this transverse spin sum rule as having no 
new content because of the BC sum rule, but is that really true? 

Also Harindranath, Mukherjee, Ratabole, 2000; Hatta, Tanaka, Yoshida, 2013

Transverse spin decomposition



Burkhardt-Cottingham sum rule

Burkhardt & Cottingham, 1970
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This sum rule applies to the structure function, not the parton distribution
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The BC sum rule applies at high Q, any power corrections are beyond twist-4

Other assumptions made by B&C were: rotational invariance in the proton rest 
frame, parity invariance, analyticity arguments (related to small x limit) 

One photon exchange hadronic tensor



Burkhardt-Cottingham sum rule
The BC sum rule on the parton level can be translated into:

This also happens to be the combination (q + q-bar) that is accessed in NC DIS

The BC sum rule for the structure function could also be satisfied by cancellation 
among quark flavors, but the above sum rule for parton distributions can be 
derived at the operator level for each flavor separately, from Lorentz invariance

The BC sum rule for the structure function can not be derived within the OPE 
though, as opposed to the other even and odd moments (NC, ± = W− ± W+)

E.g. Blümlein & Kochelev, 1996
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The following derivation does use properties of a particular local operator: 

Hence: � 1

−1
dx gq2(x) =

� 1

0
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�
gq2(x) + gq̄2(x)

�
= 0

Partonic version of the Burkhardt-Cottingham sum rule

Burkardt, 1995



This sum rule is stable under perturbative corrections & scale changes
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dx gq2(x,Q
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2) + gq̄2(x,Q
2)
�
= 0

despite some initial doubt (Mertig & Van Neerven, 1993)

Altarelli, Lampe, Nason & Ridolfi, 1994
Kodaira, Matsuda, Uematsu & Sasaki, 1994
Harindranath & Zhang, 1997
Belitsky, Ji, Lu & Osborne, 2001

Kodaira, Matsuda, Uematsu & Sasaki, 1994:  “we expect that future experiments on g2 will 
confirm the BC sum rule in its original form”

This overlooks two important issues: experiment cannot reach x=0 and at low x one is 
not guaranteed that the formalism applies in the first place (later more)

Partonic Burkhardt-Cottingham sum rule

Burkardt, 1993 & 1995
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−1
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Chiral-odd version of partonic BC sum rule (old Burkardt sum rule) 



� 1

−1
dx gq2(x) = 0 �=⇒

� 1

0
dx gq2(x) = 0

Using the e.o.m. and Lorentz invariance relations (and interchange of integrations) 
it follows: 

D.B., 1996

Lorentz invariance relations (Bukhvostov, Kuraev, Lipatov, 1984) in its x-unintegrated 
form have been questioned on the basis of n-dependence of the fully 
unintegrated quark correlator introduced by its gauge link 

Goeke, Metz, Pobylitsa & Polyakov, 2003

Albeit that deviations may be small
Metz, Schweitzer & Teckentrup, 2009

However, the fully unintegrated quark correlator including gauge link is 
not well-determined, so it is not clear whether the objection is valid 

In any case, integral need not vanish and its contribution can cancel among q & q-bar

Half the partonic BC sum rule

� 1

0
dx gq2(x) = −g(1)1T (0) =

m

M
h1(0)



Half the partonic BC sum rule
� 1

0
dx gq2(x)

Can this be tested in experiment? 

NC DIS (e.g. E155) probes q + q-bar, hence one needs CC DIS at an EIC

But again there are the objections: experiment cannot reach x=0 and at low x one 
is not guaranteed that the formalism applies

Possibility of δ(x) contributions has been considered

Heimann, 1973; Burkardt, 1995

These could either invalidate the BC sum rule or cancel any violation that is 
not associated with x=0, undermining the experimental check

If this vanishes there has to be a node in g2q (models for the structure function g2 
typically show a node, but are not clear on the individual quark contributions)

Stratmann 1993; Song, 1996; Weigel, Gamberg, 2000; Wakamatsu, 2000; ... 



x=0 contributions

A model calculation by Burkardt and Koike, 2002, does not exhibit δ(x) in gT, but 
it does in the chiral-odd twist-3 distribution functions hL and e 

Due to possibility of δ(x) no node is needed (for the integral from -1 to 1 no 
node is needed in the first place since it can be an odd function of x simply)

Jaffe, 1996



small x contributions

Multi-regge pole cuts may lead to a very singular g2 as x→0, which may 
invalidate the BC sum rule (for the structure function)

Heimann, 1973

Cf. also Anselmino, Efremov, Leader, 1995

In a partonic picture small x arguments may invalidate the formalism of leading twist 
parton distributions, one may not be able to restrict to leading twist simply 

Gluon diffusion towards small transverse momentum in ladder graphs in DGLAP 
treatment imply large nonperturbative contributions 

A.H. Mueller, 1997

But see also, Ciafaloni, Colferai, Salam, 2000

Ivanov, Nikolaev, Pronyaev, W. Schäfer, 1999

Diffraction gives steep rise and invalidates BC sum rule



Nonlinear effects

When x decreases, the density of gluons (n) increases

At some point n becomes so large (n → O(1/αs)) that the probability for gluons 
to interact approaches 1 (n × σgg → 1) 

Scattering off a proton becomes scatter off multiple gluons simultaneously 

It leads to nonlinear evolution equations, which show asymptotic solutions 
exhibiting saturation 

This is mainly an affair of gluons, 
but eventually it feeds into the 
quark distributions



Weizsäcker-Williams field

Photon spectrum of a relativistic charge 
consists mostly of low energy photons

                                          Dalitz & Yennie, 1957

Analogously for g(x,Q2): non-Abelian WW field consists of small-x gluons mainly
The WW gluon density exhibits saturation for x → 0 unlike the photon density
McLerran, Venugopalan, 1994

= ln 1/x



Nonlinear evolution equations

The first nonlinear evolution equation considered was the GLR equation:

∂2xg(x,Q2)

∂ ln 1/x∂ lnQ2
=

αsNc

π
xg(x,Q2)− α2

sNc

R2Q2
[xg(x,Q2)]2

But instead of looking at the gluon number density g(x, Q2) ∝ ⟨A✝A⟩, at small x it
becomes necessary to look at more general quantities than ⟨A✝A⟩2  (≠ ⟨A✝A✝A A⟩)
such as the multiple gluon correlation function  

Gribov, Levin & Ryskin, 1983; Laenen, Levin, 1995

Typical of potential scattering

At low gluon density (small coupling gs) 

N(x, r) → r2g(x,Q2 = 1/r2)

N(x, r) = �V †(r)V (0)� with V = P exp

�
igs

�
ds−A+(r⊥, s

−)

�
− 1



The BK equation reduces to the BFKL equation at low density (larger x, small r)
and to the GLR equation at large x (in DLLA) 

N (x, k) ≡
�

d2reikr
N(x, r)

r2

∂Y N = χ(−∂L)N −N 2

Nonlinear evolution equations

At small x: N(x,r) satisfies the nonlinear Balitsky-Kovchegov (BK) equation

Balitsky 1996; Kovchegov, 1999

ψ(z) = d lnΓ(z)/dz

χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ)

L = ln k2Y =
αsNc

π
ln

1

x

BFKL kernel:

The BK equation exhibits saturation, as does the generalization to multiple Wilson 
line correlators ⟨V✝...V✝V...V⟩, that yields an infinite tower of coupled nonlinear 
evolution equations: JIMWLK equations
Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner 1997-2001



Gluon polarization at small x

Is there a BK equation for the polarized gluons? Probably not

Small-x effects are suppressed in the polarized case, i.e. Δg at small x is 
suppressed w.r.t. g 

Evolution kernel does not have 1/x behavior, see e.g. Maul’s CCFM study, 2002

Does Δg(x) make sense when g(x) does not anymore?

If Δg(x)≈0 in region around xmin from experiment, then that is probably 
no problem for the spin decomposition 

But it is something to worry about

∆Pgg(z) =
2CA(2− z)

1− z



The Altarelli question

xmin = 0 xmin = 0.001

best fit ∆χ2 = 1 ∆χ2/χ2 = 2%

∆u+∆ū 0.813 0.793 +0.011
−0.012 0.793 +0.028

−0.034

∆d+∆d̄ -0.458 -0.416 +0.011
−0.009 -0.416 +0.035

−0.025

∆ū 0.036 0.028 +0.021
−0.020 0.028 +0.059

−0.059

∆d̄ -0.115 -0.089 +0.029
−0.029 -0.089 +0.090

−0.080

∆s̄ -0.057 -0.006 +0.010
−0.012 -0.006 +0.028

−0.031

∆g -0.084 0.013 +0.106
−0.120 0.013 +0.702

−0.314

∆Σ 0.242 0.366 +0.015
−0.018 0.366 +0.042

−0.062

DSSV first moments at Q2=10 GeV2

Altarelli questioned at some conference the DSSV fit because it suggests that there is 
a lot happening below x = 10-3, where the measured DIS asymmetry is essentially zero

But in the NNPDF study and new DSSV Δg this is already much less the case 

DSSV first moments at Q2=10 GeV2DSSV first moments at Q2=10 GeV2
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de Florian, Sassot, Stratmann, Vogelsang, 2014

DSSV first moments at Q2=10 GeV2DSSV first moments at Q2=10 GeV2

From RHIC asymmetry ALLjet 

NNPDF, Nocera et al., 2014

Errors on Δg from NNPDF large 

New central fit yields truncated moment from 
0.001 to 1 accounts for more than 90% of full 
moment at Q2  = 10 GeV2 



an interference between 
±1 helicity gluon states

±1

±1

∓1

±1

h⊥ g
1

fg
1

±1 ∓1

±1 ∓1

h⊥ g
1

Δg corresponds to circularly polarized gluons

Linearly polarized gluons exist in unpolarized hadrons

For                gluons prefer to be polarized along kT,  

with a cos 2φ distribution of linear polarization 
around it, where φ=∠(kT,εT) 

h⊥ g
1 > 0

Linearly polarization does grow with 1/x

Gluon polarization inside unpolarized protons

Mulders, Rodrigues, 2001

Is polarization completely irrelevant at small x then?

It affects the transverse momentum distribution in pp→HX (Higgs production)
Catani & Grazzini, 2010; Sun, Xiao, Yuan, 2011; D.B., Den Dunnen, Pisano, Schlegel, Vogelsang, 2012



At small x the WW (or CGC) gluon field and the dipole distribution have been studied:

h⊥g
1,WW � f⊥g

1,WW for k⊥ � Qs, h⊥g
1,WW = 2f⊥g

1,WW for k⊥ � Qs

Metz, Zhou, 2011

What do we know about the polarization?

One can also consider the perturbative tail, which is calculable

f̃g/P (x, b
2;µ, ζ) =

�

i=g,q

� 1

x

dx̂

x̂
Ci/g(x/x̂, b

2; g(µ), µ, ζ)fi/P (x̂;µ) +O((ΛQCDb)
a)

Φµν
g (x,pT )max pol =

2

x

pµT p
ν
T

p2
T

fg
1

At small x the kT-factorization approach implies maximum polarization too:

Catani, Ciafaloni, Hautmann, 1991



f̃g
1 (x, b

2;µ2
b , µb) = fg/P (x;µb) +O(αs)

h̃⊥g
1 (x, b2;µ2

b , µb) =
αs(µb)CA

2π

� 1

x

dx̂

x̂

�
x̂

x
− 1

�
fg/P (x̂;µb) +O(α2

s)

h̃⊥ g
1 (x, b2) =

�
d2pT

(b·pT )
2 − 1

2b
2p2

T

b2M2
e−ib·pT h⊥g

1 (x, p2T )

= −π

�
dp2T

p2T
2M2

J2(bpT )h
⊥g
1 (x, p2T )

The perturbative tail is driven by the unpolarized gluon distribution:

What do we know about the polarization?

There is no theoretical reason why the distribution should be small, especially at small x, 
except for its significant suppression by αs 

Fourier transform:

Nadolsky, Balazs, Berger,  Yuan, 2007; Catani, Grazzini, 2010 



small x contributions
The transverse spin decomposition as discussed by Ratcliffe (1998) and Harindranath, 
Mukherjee, Ratabole (2000) deals with the twist-3 gluon distribution ΔTg or gTg

Ji, 1992
Ali, Hoodbhoy, 1993
Mulders, Rodrigues, 2001

Probably small-x effects are not dominant for ΔTg, like for Δg  (cf. however Jian Zhou’s talk)

If there is no δ(x) contribution and the region below xmin from experiment is negligible, 
then the transverse spin sum rule can be considered testable



∆Σ =

� 1

0
dx

�
gq1(x) + gq̄1(x)

�
=

� 1

−1
dx gq1(x) =

� 1

−1
gqT (x) = ∆TΣ

∆g =

� 1

0
dx g(x) =

� 1

0
dx

�
g+ − g−

�
=

� 1

0
dx ggT (x) = ∆T g

∆Σ = ∆TΣ & ∆g = ∆T g ⇒ Lq+g
z = Lq+g

T

In this sense the transverse spin decomposition does indeed not add any new content

One may wish to check it experimentally though, it might shed light on the small x issue

Also there is a twist to the spin decomposition story: the OAM term cannot be split

The split of the OAM term does not need to be equal to the split of Lz 
Lzq,g are not local operators (neither is the gluon spin term, but it does rotate nicely) and 
need not rotate trivially (i.e. difference to LTq,g need not be zero due to Lorentz invariance) 

Transverse spin decomposition

Hatta, Tanaka, Yoshida, 2012

See also: Ji, Xiong, Yuan, 2012; Leader, 2013; Harindranath, Kundu, Mukherjee, Ratabole, 2013



Hatta, Tanaka, Yoshida, 2013

See also discussion following Ji, Xiong, Yuan, 2012, by Leader, 2012 and Harindranath, Kundu, 
Mukherjee, Ratabole, 2013

Transverse spin decomposition

Only the total orbital angular momentum of the full decomposition is rotationally invariant



Burkardt sum rule



�

a=q,g

�
f⊥(1)a
1T (x) dx = 0

Burkardt sum rule

f⊥(1)
1T (x) = − g

2M
T (x, ST )

Burkardt, 2004

D.B., Mulders, Pijlman, 2003

Burkardt sum rule already (approximately) satisfied by up and down quarks
which are approximately equal in magnitude and opposite in sign

f⊥(1)
1T (x) ≡

�
d2kT

k2T
2M2

f⊥
1T (x, k

2
T )

Integral of Sivers (“rhymes with rivers”) function over all of x and kT satisfies

Without worrying about QCD corrections one has the (gauge invariant) relation:

TF (x, x)
A+=0∝ F.T. �P | ψ(0)

�
dη− F+α(η−) γ+ ψ(ξ−) |P �

Qiu & Sterman,1991T(x,ST) is the collinear twist-3 Qiu-Sterman function TF(x,x):

Involves the conventional transverse moment:



f1(x,p
2
T )

p2
T�M2

∼ αs
1

p2
T

(K ⊗ f1) (x)

TMDs and collinear pdfs

Large transverse momentum (perturbative) tail of TMD determined by collinear pdf 

Tail of Sivers function determined by the collinear twist-3 Qiu-Sterman function 

Ji, Qiu, Vogelsang, Yuan, 2006; Koike, Vogelsang, Yuan, 2008

f⊥
1T (x,p

2
T )

p2
T�M2

∼ αs
M2

p4
T

(K � ⊗ TF ) (x)

One has to be careful when considering integrals over all transverse momenta
Convergence issue and does not automatically yield collinear pdfs
�

dkT f1(x,kT ;µ, ζ)
?
= f1(x;µ) ζ = 2M2

px
2e2(yP−ys)

Collins, 2011



f̃ (n)(x, b2T ) = n!

�
− 2

M2
∂b2

T

�n

f̃(x, b2T )

f̃⊥(1)
1T (x, b2T )

b2
T→0−→ f⊥(1)

1T (x)

Bessel moments

Generalization of the conventional transverse moments 

The limit should be considered with care

�py(x)�BT
TU =

�
d|pT | |pT |

�
dφp

2J1(|pT |BT )
BT

sin(φp − φS)Φ(+)[γ+](x, pT , P, S, µ2, ζ)
�
d|pT | |pT |

�
dφpJ0(|pT |BT ))Φ(+)[γ+](x, pT , P, S, µ2, ζ)

�����
|ST |=1

= M
f̃⊥(1)
1T (x,BT ;µ2, ζ)

f̃ (0)
1 (x,BT ;µ2, ζ)

For finite bT one can calculate ratios of Bessel moments that in principle can be 
evaluated on the lattice, e.g. the so-called Sivers shift:

D.B., Gamberg, Musch, Prokudin, 2011

f̃ (n)(x, b2T ) = n!

�
− 2

M2
∂b2

T

�n

f̃(x, b2T )
b2
T→0−→ f (n)(x)

To avoid the convergence issue one can consider Bessel moments:



Sivers function on the lattice

SIDIS�� DY

Sivers�Shift, u�d � quarks
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The first `first-principle’ demonstration in QCD that the Sivers function is nonzero
It clearly corroborates the sign change relation

f⊥[SIDIS]
1T = −f⊥[DY]

1T to be tested
compatible with fits and models: 
up Sivers (f1T⊥) of SIDIS < 0 and down Sivers of SIDIS > 0
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‘?’ because of rapidity dependence of r.h.s., identification meaningful when viewed 
as part of the full cross section expression, just like for:

Qiu-Sterman function from the lattice

f⊥(1)
1T (x) ≡

�
d2kT

k2T
2M2

f⊥
1T (x, k

2
T ) ∝ TF (x, x)

TF (x, x)
A+=0∝ F.T. �P | ψ(0)

�
dη− F+α(η−) γ+ ψ(ξ−) |P �

Nevertheless, a very interesting limit to consider, since Qiu-Sterman function itself is 
intrinsically non-local along the lightcone and cannot be evaluated on the lattice

But first Bessel-moment of Sivers function can be evaluated (for given rapidity)

The limit bT → 0 tells us something about the Qiu-Sterman function

lim
bT→0

f̃ (0)
1 (x, b2T ;µ, ζ)

?
= f1(x;µ)

lim
bT→0

f̃ (1)[+]
1T (x, b2T ;µ, ζ)

?
=

TF (x, x;µ)

2M



lim
bT→0

f̃ (1)[+]
1T (x, b2T ;µ, ζ)

?
=

TF (x, x;µ)

2M

This is especially promising if the limits bT→0 and large ζ are constant/flat

ζ̂ =
ζ

2mN
=

�v · �P�
|�v 2|

√
P 2

= sinh(yP − yv) �
ΛQCD

2mN
≈ 0.1

Engelhardt, 2013

The limit bT → 0 of Sivers shift tells us about the Qiu-Sterman function



Combining such a valence scenario with lattice data on Sivers shift yields:

Taking the lattice evaluation literally indicates the integral over Tu is not small 

It does not exclude the option of a node though, which has been suggested

There are experimental indications (COMPASS deuteron SIDIS & RHIC AN at 
midrapidity) and theoretical arguments (large Nc) that Tg is small

�

q

� 1

−1
T q(x, ST ) dx = −

� 1

0
T g(x, ST ) dx

Burkardt sum rule in terms of Qiu-Sterman function:

� 1

−1
Tu(x, ST ) dx ≈ −

� 1

−1
T d(x, ST ) dx

=⇒
� 1

−1
Tu−d(x, ST ) dx ≈ 2

� 1

−1
Tu(x, ST ) dx > 0



T (x, ST )

�
dη−F+α(η−)→�F+α�

−→ f1(x)

T (x, ST )
�
dη−F+α(η−)→F+α(0−)

�
dη−

−→ g̃T (x)

Γα ≡ �TβαS
β
T �n−

2iMP+

T (x, ST ) = i
M

P+

�
dλ

2π
eiλx�P, S|ψ(0)Γα

�
dη F+α(ηn−) ψ(λn−) |P, S�

Qiu & Sterman,1991

D.B., 2011

x dependence of Qiu-Sterman function

Qiu-Sterman function has been ``approximated’’ in two ways: 

1)

2)

This second option yields in an unintegrated ESGM relation

Since            has a node, so does T(x, ST) if the unintegrated ESGM relation holdsg̃T (x)

Ehrnsperger, Schäfer, Greiner, Mankiewicz, 1994

This does not imply that the integral of T(x,ST) vanishes



                                    and                                         cannot both be zero 
�

q

e2q

� 1

−1
T q(x, ST ) dx

�

q

� 1

−1
T q(x, ST ) dx

except for vanishing integrals for u and d separately, but lattice disfavors this option

This may indicate that the ESGM relation may simply not be valid, but still it does 
not exclude the option of a node

Ehrnsperger, Schäfer, Greiner, Mankiewicz, 1994

�

q

e2q

� 1

−1
T q(x, ST ) dx ∝ d2 ≈ 0

The original integrated ESGM relation implies:

The SLAC E155 experiment obtained d2 = 0.0032 ± 0.0017 for the proton (2003)

d2 = 3

� 1

0
x2 g2(x)|twist-3 dx E.g. Blümlein & Kochelev, 1996

x dependence of Qiu-Sterman function



Kanazawa, Koike, Metz, Pitonyak, 2014

Node in Sivers function

Kang, Prokudin, 2012

SIDIS data fit yielded node in u Sivers, but not in d Sivers, but then Brahms data not 
describable when one assumes the Sivers-QS relation 

It also assumes that AN comes from QS effect, which need not be the case

Suggested solution of the sign mismatch problem allows for a node in T(x,ST) 



Some model calculations show a node, but not for all flavors
d: Lu, Ma, 2004; Courtoy, Fratini, Scopetta, Vento, 2008
u: Bacchetta, Conti, Radici, 2008

Node in Sivers function

f⊥u
1T (x, k2T ) = −f⊥d

1T (x, k2T ) +O(N−1
c )

Pobylitsa, 2003; Drago, 2005

Nodes can be at different places for different flavors, although one expects:

However most model calculations of the Sivers function do not show a node 
Brodsky, Hwang, Schmidt, 2002;  Yuan, 2003; Bacchetta, Schäfer, Yang, 2004;
Cherednikov, D’Alesio, Kochelev, Murgia, 2006; Gamberg, Goldstein, Schlegel, 2008;
Courtoy, Scopetta, Vento, 2009; Pasquini, Yuan, 2010

These model calculations of the Sivers functions all consider the gauge link to lowest 
nontrivial order in g, the first order expansion of the Wilson line

It is unclear what the size of the higher order corrections is and whether these could 
change the sign in a particular x region



f⊥[SIDIS]
1T = −f⊥[DY]

1T to be tested

Overall sign relation test

For the experimental test the functions must be compared at the same x and kT2

Possible future EIC data could be directly compared with Drell-Yan data, 
but other SIDIS data from HERMES, COMPASS, JLab, require TMD evolution

Nodes are very important for the test of the Sivers sign relation

The Sivers function may have a scale dependent node as a function x and/or kT
D.B., 2011; Kang, Qiu, Vogelsang, Yuan, 2011

TMD evolution of the Sivers asymmetry is under control by now
Aybat, Prokudin & Rogers, 2012; Anselmino, Boglione, Melis, 2012; Sun & Yuan, 2013; Echevarria, 
Idilbi, Kang, Vitev, 2014; ...

But TMD evolution of the first transverse moment of Sivers function is very difficult
It is not autonomous, except for the nonsinglet part at large x 

This is relevant for demonstrating the scale invariance of the Burkardt sum rule



Evolution of TF is known; tricky because dTF(x,x)/dlnμ depends on TF(x,y) for x≠y 
Kang, Qiu, 2009; Zhou, Yuan, Liang, 2009; Vogelsang, Yuan, 2009; Braun, Manashov, Pirnay, 2009 

Evolution of the QS function

Braun, Manashov, Pirnay, 2009

It evolves logarithmically with Q2, 
but faster than f1

Simplification in the 
large x limit

Effect of large x evolution on Burkardt sum rule studied by Ratcliffe & Teryaev (2014)



Final comments on sum rules

There is no Burkardt sum rule for h1⊥, nor a Schäfer-Teryaev sum rule for D1T⊥ 

�

a=q,g

�
f̃⊥(1)[±]a
1T (x, b2T ) dx

?
= 0

Similar comments apply to the Schäfer-Teryaev sum rule (2000) for Collins function:
�

h

�
dz z H

⊥(1)
1 (z) = 0, H

⊥(1)
1 (z) ≡ z

2

�
d
2kT

k2
T

2M2
H

⊥
1 (z, z2k2

T )

Bessel moment of Sivers function is safer to consider than conventional transverse 
moment, but not clear whether sum rule applies for nonzero bT

Collins function is link independent though



Conclusions
• the transverse spin decomposition is not interesting when it comes to the 

values of the contributions (the same as in the longitudinal sum rule), but it 
shows that the OAM and hence the full decomposition is not simply 
rotationally invariant, even after x integration

• validity of Burkhardt-Cottingham and any other sum rule crucially depends 
on the small-x behavior of functions, which is not a fully settled matter yet

• extrapolation of the Bessel-weighted Sivers shift on the lattice tells us 
about the Qiu-Sterman function

• the transverse moment of the Sivers function may require regularization 
that may not preserve the Burkardt sum rule automatically

• Node in Sivers and Qiu-Sterman function not ruled out yet, but probably 
not needed to satisfy Burkardt sum rule

Main message: transverse spin sum rules are nontrivial and force us to think about the 
limitations of the theoretical description, which is very useful beyond the sum rules


