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There are many transverse spin related sum rules (not all discussed):

® Transverse spin decomposition

® Burkhardt-Cottingham sum rule (& old Burkardt sum rule)
® ELT sum rule

® (new) Burkardt sum rule

® Schafer-Teryaev sum rule

® BLT sum rule

| will discuss x and kt-integrations, comment on small-x and polarization,
possibility of nodes, scale dependence, etc






Transverse spin decomposition

Philip G. Ratcliffe, at spin98 in Protvino, hep-ph/981 1348:
1.3 Global Sum Rules

Another important and intuitive decomposition is that of the z-axis projec-
tion of the total nucleon spin:

I 1

JP= S = SAS+ Ag+ LI, (2)
together with the twin sum rule for the transverse projection:
p 1 1 q+g

I include the transverse-spin sum rule merely as a reminder of its existence.
There are extra subtleties here: for example, the densities, Ar>., have twist-3
contributions (absent for longitudinal polarisation).

Also Harindranath, Mukherjee, Ratabole, 2000; Hatta, Tanaka, Yoshida, 201 3
What do we learn from the transverse spin decomposition?

In lectures on spin physics | "dismissed’ this transverse spin sum rule as having no
new content because of the BC sum rule, but is that really true!?



Burkhardt-Cottingham sum rule

One photon exchange hadronic tensor

: UV poO
1elPq,
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Sagl (mBa QQ) - (Sa

1
/ dzx gg(w,QQ) =
0

Burkhardt & Cottingham, 1970
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This sum rule applies to the structure function, not the parton distribution

Z q91
Z qu

At tree level:

(vaQ

g1(r5, Q%) + g2(2p, Q

The BC sum rule applies at high Q, any power corrections are beyond twist-4

Other assumptions made by B&C were: rotational invariance in the proton rest

frame, parity invariance, analyticity arguments (related to small x limit)



Burkhardt-Cottingham sum rule

The BC sum rule on the parton level can be translated into:

/1 dx g () Z/Oldl‘ 95(2) + g3(2)] =0

—1
This also happens to be the combination (q + g-bar) that is accessed in NC DIS
The BC sum rule for the structure function could also be satisfied by cancellation
among quark flavors, but the above sum rule for parton distributions can be

derived at the operator level for each flavor separately, from Lorentz invariance

The BC sum rule for the structure function can not be derived within the OPE
though, as opposed to the other even and odd moments (NC, £ =W~ £ W)

1 2 7\2\,,
/ (l;zr;zfngévc’+(;z?, Q%) = Z (gv)” + (9a) )n- n=24..
0

1 q\2 q\2 n(d=9 — =9
/ (Z;'If;'lfngg_ (;'17, QQ) _ Z ((gV) T (gA) )72-((71 a,, ) Cn=1. 9
0 (N

E.g. Blumlein & Kochelev, 1996



Partonic version of the Burkhardt-Cottingham sum rule

The following derivation does use properties of a particular local operator:

1 d)\ Burkardt, 1995
§Tr [D(z)V 5] = e e (P, S[¢(0)v*vs0(An_)| P, S)
M AM*>
= Anflgi(x) + o r(x) + (P+)2n‘_‘g3(m). (3.53)

For completeness we have included the twist-four distribution function ¢;. If we take the
first moment this leads to:

Lip ST | M Sy AM 2k
§(P,S\*u’)(O)v”“vgzp(O)]P, S) = /_] dx lz\?lfj_g] () + P+TgT( r) + (P)? g3(z)| . (3.54)

Since the l.h.s. must be proportional to S*. one can easily calculate the proportionality
factor. since we know that P - S = 0. This leads to:

/dfrg] /d?rgcr (3.55)
/_ dr gi(7) = —2 /_ da gy(2). (3.56)

Hence: /_ 11 dz gd(z) = /O ' 93(2) + g3(x)] =0



Partonic Burkhardt-Cottingham sum rule

[ e @@= [ (o807 + 0% =0

This sum rule is stable under perturbative corrections & scale changes
despite some initial doubt (Mertig & Van Neerven, 1993)

Altarelli, Lampe, Nason & Ridolfi, 1994
Kodaira, Matsuda, Uematsu & Sasaki, | 994
Harindranath & Zhang, 1997

Belitsky, i, Lu & Osborne, 2001

Kodaira, Matsuda, Uematsu & Sasaki, 1 994: “we expect that future experiments on g, will
confirm the BC sum rule in its original form”

This overlooks two important issues: experiment cannot reach x=0 and at low x one is
not guaranteed that the formalism applies in the first place (later more)

Chiral-odd version of partonic BC sum rule (old Burkardt sum rule)

1 1 1
/ dr hi(x) = / dr hr(x) = / dx hs(x) =0 Burkardt, 1993 & 1995
~1

—1 —1



Half the partonic BC sum rule

[arg@=0 = [ arow=c

Using the e.o.m.and Lorentz invariance relations (and interchange of integrations)
it follows:

m

1
/ dx g5(x) = —9%2(0) — Mhl(()) D.B., 1996
0

Lorentz invariance relations (Bukhvostov, Kuraev, Lipatoy, 1984) in its x-unintegrated
form have been questioned on the basis of n-dependence of the fully
unintegrated quark correlator introduced by its gauge link

Goeke, Metz, Pobylitsa & Polyakov, 2003

Albeit that deviations may be small
Metz, Schweitzer & Teckentrup, 2009

However, the fully unintegrated quark correlator including gauge link is
not well-determined, so it is not clear whether the objection is valid

In any case, integral need not vanish and its contribution can cancel among q & g-bar



Half the partonic BC sum rule

/01 dz g3 (z)

If this vanishes there has to be a node in g9 (models for the structure function g;
typically show a node, but are not clear on the individual quark contributions)

Stratmann 1993; Song, 1996;Weigel, Gamberg, 2000; VWakamatsu, 2000; ...

Can this be tested in experiment?
NC DIS (e.g. EI55) probes q + g-bar, hence one needs CC DIS at an EIC

But again there are the objections: experiment cannot reach x=0 and at low x one
is not guaranteed that the formalism applies

Possibility of 0(x) contributions has been considered
Heimann, 1973; Burkardt, 1995

These could either invalidate the BC sum rule or cancel any violation that is
not associated with x=0, undermining the experimental check



x=0 contributions

g2(, Q%) = g5 "*"(, Q%) + cd (). (4.33)
Then since experimenters cannot reach x = 0, the BC sum rule reads

1 1
/ dxggbservable(x’ Q?) — _50’ (434)
0

which is useless.

This pathology — a é—function at x = 0 — is not as arbitrary as it looks. Instead it
is an example of a disease known as a “J = 0 fized pole with non-polynomial residue”. First
studied in Regge theory,’ a &(z) in go(x, Q*) corresponds to a real constant term in a spin
flip Compton amplitude which persists to high energy. There is no fundamental reason to

Jaffe, 1996

A model calculation by Burkardt and Koike, 2002, does not exhibit 0(x) in gr, but
it does in the chiral-odd twist-3 distribution functions h. and e

Due to possibility of d(x) no node is needed (for the integral from -1 to | no
node is needed in the first place since it can be an odd function of x simply)



small x contributions

Multi-regge pole cuts may lead to a very singular g, as x—0, which may

invalidate the BC sum rule (for the structure function)
Heimann, 1973

Cf. also Anselmino, Efremoyv, Leader, 1995
Diffraction gives steep rise and invalidates BC sum rule
lvanov, Nikolaev, Pronyaev,W. Schafer, 1999

In a partonic picture small x arguments may invalidate the formalism of leading twist
parton distributions, one may not be able to restrict to leading twist simply

Gluon diffusion towards small transverse momentum in ladder graphs in DGLAP

treatment imply large nonperturbative contributions
A.H. Mueller, 1997

But see also, Ciafaloni, Colferai, Salam, 2000



Nonlinear effects

CTEQ6.5paton & _
3.5} distribution functions .
2 =10 GeV? ]

3.0F gluons E
This is mainly an affair of gluons,
but eventually it feeds into the
quark distributions

Momentum Fraction Times Parton Density

0.1 R

0.0001 0.001 0.01
Fraction of Overall Proton Momentum Carried by Parton

When x decreases, the density of gluons (1) increases

At some point n becomes so large (n — O(1/as)) that the probability for gluons
to interact approaches | (n x ggg — 1)

Scattering off a proton becomes scatter off multiple gluons simultaneously

It leads to nonlinear evolution equations, which show asymptotic solutions
exhibiting saturation



Weizsacker-Williams field

Il}ll

IR B Photon spectrum of a relativistic charge
consists mostly of low energy photons

Dalitz & Yennie, 1957
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Figure 15.8 Frequency spectrum of virtual quanta for a relativistic particle, with the '
energy per unit frequency dI(w)/dw in units of ¢g*/mc and the frequency in units of - _ | |
vu/bmin- The number of virtual quanta per unit energy interval is obtained by dividing 0 5 4 6 8 10
by #*w.
Yy=Inl/x

Analogously for g(x,Q?): non-Abelian WW field consists of small-x gluons mainly

The WWV gluon density exhibits saturation for x — 0 unlike the photon density
McLerran,Venugopalan, 1994



Nonlinear evolution equations

The first nonlinear evolution equation considered was the GLR equation:

0°xg(z, Q?) g N, o 2N,
Olnl/z0nQ? =« vg(z, Q) R?()?

Gribov, Levin & Ryskin, 1983; Laenen, Levin, 1995

zg(x, Q%))

But instead of looking at the gluon number density g(x, Q2) « (ATA), at small x it
becomes necessary to look at more general quantities than (ATA)? (# (ATATA A))

such as the multiple gluon correlation function
N(z,r) = (VT(r)V(0)) with V = Pexp <7Jgs /dS_AJF(rl, 3_)> — 1
Typical of potential scattering

At low gluon density (small coupling gs)

N(z,r) = r°g(z,Q* = 1/r°)



Nonlinear evolution equations

At small x: N(x,r) satisfies the nonlinear Balitsky-Kovchegov (BK) equation

Oy N = x(—0L)N — N?

Balitsky 1996; Kovchegov, 1999

N(z, k) = /d%emN(x’T) Y = s Ve In 1 L = Ink?
x

72

BFKL kernel: X(W) — 2¢(1) — w(’y) — w(l _ ’7>
Y(z) =dInl(z)/dz

The BK equation reduces to the BFKL equation at low density (larger x, small r)
and to the GLR equation at large x (in DLLA)

The BK equation exhibits saturation, as does the generalization to multiple Wilson
line correlators <V'-V'V-V) that yields an infinite tower of coupled nonlinear

evolution equations: JIMWLK equations
Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner 1997-2001



Gluon polarization at small x

Is there a BK equation for the polarized gluons? Probably not

Small-x effects are suppressed in the polarized case, i.e. Ag at small x is
suppressed w.r.t. g

Evolution kernel does not have |/x behavior, see e.g. Maul's CCFM study, 2002

QCA 2 —z
APyy(z) = 1(_ ~ )

Does Ag(x) make sense when g(x) does not anymore?

If Ag(x)=0 in region around xmin from experiment, then that is probably
no problem for the spin decomposition

But it is something to worry about



The Altarelli question

DIS asymmetry A
DSSV first moments at Q=10 GeV? Y YA

0.8 prrrm LY R AR N UL
Zain = 0 Zamin = 0.001 0 £ COMPASS AM™ ;I COMPASS AP /T E
best fit Ax? =1 Ax?*/x*=2% T | ]
Au+ Ad 0.813  0.793 351 0.793 T0o28
7 0.011 0.035 .
Ad + Ad -0.458  -0.416 T p5e  -0.416 To0os :
Au 0.036  0.028 o5 0.028 15050 R - ::::::i_::::::I -
Ad -0.089 0035 -0.089 T0%0 E COMPASS A]™ | 1 COMPASS A}™|¢ -
As - -0.006Ng.012  -0.006 Togz1 o4 — - ggg&
Ag 20 0.013 10507 o —
015 0.042 C g i
AY .018 0.366 1_0.062 0 :_ ............................................... :
T S—— ':
de Florian, Sassot, Stratmann,Vogelsang, 2008 107 0!

Altarelli questioned at some conference the DSSV fit because it suggests that there is
a lot happening below x = 10-3, where the measured DIS asymmetry is essentially zero

But in the NNPDF study and new DSSV Ag this is already much less the case



(Af(@%)0 (Af(@))tom1

Af | NNDPFpol1.0 NNPDFpoll.1 | NNDPFpoll1.0 NNPDFpolil.1 DSSVO08
Aut | 40.77+0.10  +0.79+0.07 | +0.76 +0.06 +0.76 +0.04 +0.79375-92% (1.0.020)
Adt | —0464+0.10 —0.474+0.07 | —0.414+0.06 —0.41+0.04 —0.41670052(—0.042)
At — +0.06 + 0.06 — +0.044+0.05  +0.028F5025 (+0.008)
Ad — —0.11 £+ 0.06 — —0.09+£0.05 —0.08970020 (—0.026)
As | —0.074+0.06 —0.0740.05 | —0.06+0.04 —0.054+0.04 —0.00613-92% (—0.051)
AY | 40.164+0.30 +0.18+0.21 | 40.23+0.15 +0.25+0.10 +0.36670 022 (+0.124)

Table 12: Full and truncated first moments of the polarized quark distributions, Eq. (16), at Q? = 10 GeV?, for
NNPDFpol1l.1, NNPDFpol1l.0 (when available) and DSSV08. The uncertainties shown are one-sigma for NNPDF
and Lagrange multiplier with Ax?/x? = 2% for DSSV. The number in parenthesis for DSSV08 is the contribution
that should be added to the truncated moment in order to obtain the full moment.
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Gluon polarization inside unpolarized protons

Is polarization completely irrelevant at small x then?

Ag corresponds to circularly polarized gluons

Linearly polarized gluons exist in unpolarized hadrons

Mulders, Rodrigues, 2001 an interference between

+1| helicity gluon states

For hng > () gluons prefer to be polarized along kr,
with a cos 2¢ distribution of linear polarization

around it, where ¢=/(kr,E7)

Linearly polarization does grow with 1/x

It affects the transverse momentum distribution in pp—HX (Higgs production)
Catani & Grazzini, 2010; Sun, Xiao,Yuan, 201 I; D.B., Den Dunnen, Pisano, Schlegel,Vogelsang, 2012



What do we know about the polarization?

At small x the WW (or CGC) gluon field and the dipole distribution have been studied:

1 1
hl,%VW < fl WW for kJ_ < Qsa hl,%VW — 2f1 WW for ]‘CJ_ > QS

xht%P(xv ki) =2zf{ pp(x,ki)

Metz, Zhou, 2011

At small x the kr-factorization approach implies maximum polarization too:

v 2 p%p% g
(I)g (.CE, pT)maX pol = - p2 fl Catani, Ciafaloni, Hautmann, 1991
T

One can also consider the perturbative tail, which is calculable

fQ/P($,b2§,u7 Z / dx z/g .Cl’)/il’) b27g( ) M?C)fZ/P( )+O((AQCDb) )

1=4,q



What do we know about the polarization?

Fourier transform:

. b-pr)? — sb°ph .
9 (a,b2) = / deT( T;M; L w9 (@, i)

2
Pr L 2
The perturbative tail is driven by the unpolarized gluon distribution:

Fi(z, 0% pd, o) = forp (@5 1) + Olas)

Ei_g(xab2§ﬂgaﬂb) — @) O / d—m (— - 1> foyp (5 pp) + Ola )

27T T \x

Nadolsky, Balazs, Berger, Yuan,2007; Catani, Grazzini, 2010

There is no theoretical reason why the distribution should be small, especially at small x,
except for its significant suppression by O



small x contributions

The transverse spin decomposition as discussed by Ratcliffe (1998) and Harindranath,
Mukherjee, Ratabole (2000) deals with the twist-3 gluon distribution Arg or gr8
X

+1 é % 0
[ (x)= —iG;TiAGST(-")a I I
+

2 _[ AgT

We find (combining the polarizations)

B v Pt 3 .
[(x)= 5 ﬁ[—g%G(,\')—SLI'EIT]AG(-\')]

.. X ..
['7:(x) :;“IIZS[TAHST(-\' )

i, 1992
where G(x)=] d:kTG(.\‘,k%) and similarly for AGsr and {A\Ii, Hoodbhoy, 1993
AHz7, while AG(x)=[ dszAGL(.\‘,k‘}). The functions Mulders, Rodrigues, 2001
AG;r and AH;7 are in essence the functions H, and H, of
Ref. [6].

Probably small-x effects are not dominant for Arg, like for Ag (cf. however Jian Zhou'’s talk)

If there is no O(x) contribution and the region below xmin from experiment is negligible,
then the transverse spin sum rule can be considered testable



Transverse spin decomposition

AY = / e [g1(2) + g()] = / e () = / gh(x) = ArS

—1 —1

Ag:/()ld:vg(w)zfoldw[f—g} z/old-fvg%(w)zATg

Hatta, Tanaka, Yoshida, 2012

AY. =ArY & Ag=Apg = Lit9=[1"9

In this sense the transverse spin decomposition does indeed not add any new content
One may wish to check it experimentally though, it might shed light on the small x issue
Also there is a twist to the spin decomposition story: the OAM term cannot be split
The split of the OAM term does not need to be equal to the split of L,

L.%¢ are not local operators (neither is the gluon spin term, but it does rotate nicely) and

need not rotate trivially (i.e. difference to L1%8 need not be zero due to Lorentz invariance)

See also: Ji, Xiong,Yuan, 2012; Leader, 201 3; Harindranath, Kundu, Mukherjee, Ratabole, 201 3



Transverse spin decomposition

<PS|U/q splnIPS> PSlde‘EUAwW L)‘PS) 1 :
— d - i
2P+(27)353(0) 4 (27)353(0) ) / wgr (2)5" = 2AZS
(PSIW;_pinl PS) i [ GAC
2P+ (27)353(0) / vGar(w) =
/ ‘212 eN* (PS|FH(0)W F+(An)|PS) = —iaGar ()P S,
(P5|Wq,g|PS) = J, oS Hatta, Tanaka, Yoshida, 2013

2P+(27)353(0)

an additional frame-dependent contribution to .J, ,

1 | P
Jq,g — 5(‘4(1,9 T Bq,g) ' 2(P0 n A[) Cq,g

See also discussion following Ji, Xiong,Yuan, 2012, by Leader, 2012 and Harindranath, Kundu,
Mukherjee, Ratabole, 2013

Only the total orbital angular momentum of the full decomposition is rotationally invariant
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Burkardt sum rule

Integral of Sivers (“rhymes with rivers”) function over all of x and kr satisfies

Z /flJ_T(l)a(x) dx = 0 Burkardt, 2004

Involves the conventional transverse moment:
L(1) _ 2 k
17T (7) = /d kT Ve f1T($ kT)

Without worrying about QCD corrections one has the (gauge invariant) relation:

1(1 g
1T( )(x) — QMT(ZI’J, St) D.B., Mulders, Pijlman, 2003
T(x,S7) is the collinear twist-3 Qiu-Sterman function Tr(x,x): Qiu & Sterman, 1991

AT=0

Tp (2, 2) “o° F.T. (P (0 >/ 1~ FY() vt (e) |P)

Burkardt sum rule already (approximately) satisfied by up and down quarks
which are approximately equal in magnitude and opposite in sign



TMDs and collinear pdfs

Large transverse momentum (perturbative) tail of TMD determined by collinear pdf

e p2) P 0y (K@ ) (@)
PT

Tail of Sivers function determined by the collinear twist-3 Qiu-Sterman function

p2.>> M2 M2
fir(z,pp) "~ s — o (K'®TF) (v)
T

Ji, Qiu,Vogelsang, Yuan, 2006; Koike,Vogelsang, Yuan, 2008

One has to be careful when considering integrals over all transverse momenta
Convergence issue and does not automatically yield collinear pdfs

/dkal(CL’,kT;M,C) ;fl(l’;,u) ( =2MJz” e2 (VP —ys)

Collins, 201 |



Bessel moments

To avoid the convergence issue one can consider Bessel moments:

~S

) (z, b%) = nl ( M28b2)” f(z,b7)

Generalization of the conventional transverse moments

P b) =t~ 5730z ) o) 2 1

| b%—>0 1
1T<1)( bT) 1T<1)($)

The limit should be considered with care

For finite bt one can calculate ratios of Bessel moments that in principle can be
evaluated on the lattice, e.g. the so-called Sivers shift:

e [ dpr| |pr| [ dop 2 EEEL) sin(6, — ¢5) @D (2, pr, P, S, 42, C)
y\t)/TU [dlpr| |pr| [ dopJo(|pr|Br)) @O0 (2, pry P, S, 112, C) T

7 L(1
M 1’15 )(x78T5H27C)
7(0) C 2
1 (z, Br; p#, Q) D.B., Gamberg, Musch, Prokudin, 201 |



GSivers function on the lattice

Musch, Hagler, Engelhardt, Negele & Schafer, 2012
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The first first-principle’ demonstration in QCD that the Sivers function is nonzero
It clearly corroborates the sign change relation
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Qiu-Sterman function from the lattice

The limit bt — 0 tells us something about the Qiu-Sterman function

k2
0@ = [ @l fi () x Te(o, )

7 TF(CU,QU,M)

! F(1)[+ 2 . -
bq}I—I:Of ('I‘?bT?M? C) 2M

‘¥ because of rapidity dependence of r.h.s,, identification meaningful when viewed
as part of the full cross section expression, just like for:

bgglof V(b2 1, ) = f1(; )

Nevertheless, a very interesting limit to consider, since Qiu-Sterman function itself is
intrinsically non-local along the lightcone and cannot be evaluated on the lattice

Tr(z,2) “oC° F.T. (P w(O)@W@”ﬁ (&) |P)

But first Bessel-moment of Sivers function can be evaluated (for given rapidity)




The limit bt = 0 of Sivers shift tells us about the Qiu-Sterman function

- » Tr(z, x5 p)
1 (1)[+] bh2.- Ky MRl
H_I} flT (:Ea T3 My C) IM

This is especially promising if the limits br—0 and large T are constant/flat
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Figure 3: Generalized Boer-Mulders shift in the 1) — o= SIDIS limit as a function of |b7| (left) and 5 (right).
In the left panel, the data in the region below |b7| =~ 0.25fm may be significantly affected by finite lattice
cutoff effects. In the right panel, the congruence of the data obtained for P in different directions exhibits
the good rotational properties of the calculation. Engelhardt, 2013



Burkardt sum rule in terms of Qiu-Sterman function:

1 1
Z/ T x,ST) dx = —/ T9(x, St) dx
—J-1 0

There are experimental indications (COMPASS deuteron SIDIS & RHIC An at
midrapidity) and theoretical arguments (large Nc) that T¢ is small

Combining such a valence scenario with lattice data on Sivers shift yields:

1 1
/ TY(x,S7) de ~ —/ Tz, St) dx

1 —1

1

1
— / TV %z, St) do ~ 2/ TY(x,S7) dz >0
~1

—1

Taking the lattice evaluation literally indicates the integral over T is not small

It does not exclude the option of a node though, which has been suggested



x dependence of Qiu-Sterman function

M d
T(2.51) =iy | Goe™ (PS|BOTa [ dy F*(n_) w(hn_) |P.5)
_— T30Sk -
C T 2MPT

Qiu-Sterman function has been " approximated” in two ways:

dn~ FT%(n~ Fre
) T(m,ST) f L (L)_% > fl(a:) Qiu & Sterman, 1991

— o, — ta - -
2) T(QE,ST) fd"'7 F (77 ﬂ (O )fdn

gr(x) DB, 2011

This second option yields in an unintegrated ESGM relation

Ehrnsperger, Schafer, Greiner, Mankiewicz, 1994

Since gr(x) has a node, so does T(x, St) if the unintegrated ESGM relation holds

This does not imply that the integral of T(x,51) vanishes



x dependence of Qiu-Sterman function

The original integrated ESGM relation implies:

Z / T2, S7) dr o< dy =~ 0

Ehrnsperger, Schafer, Greiner, Mankiewicz, 1994

1
2 o
do = 3 / = §2(T)|twist.3 T  Eg Blimlein & Kochelev, 996
0

The SLAC EI55 experiment obtained d, = 0.0032 + 0.0017 for the proton (2003)

1 1
Z / ) T%(x,St) dz and Z 63 / 1 T9(xz,St) dr cannot both be zero
q o q T

except for vanishing integrals for u and d separately, but lattice disfavors this option

This may indicate that the ESGM relation may simply not be valid, but still it does
not exclude the option of a node



Node in Sivers function

J-Q(\ k2 ) — Nq(-\')h(kl)fq/A (x, ki)’ (16)  Kang, Prokudin, 2012

where the extra k| dependence h(k ) is given by
M

1

h(k,) = /2e e~ Ki/M}, (17)

with M the nucleon mass, and M, a fitting parameter. The
x-dependent part N (x) will be parametrlzed as

(g + By)\ %P

aquqq

N ,(x) = N, x%(1 — x)Pa (1 = n,x).

SIDIS data fit yielded node in u Sivers, but not in d Sivers, but then Brahms data not
describable when one assumes the Sivers-QS relation

It also assumes that AN comes from QS effect, which need not be the case

Kanazawa, Koike, Metz, Pitonyak, 2014

Suggested solution of the signh mismatch problem allows for a node in T(x,S7)



Node in Sivers function

Nodes can be at different places for different flavors, although one expects:
1w 2\ dd 2 —1
it (@, k) = —fir (x, k1) + O(N; )
Pobylitsa, 2003; Drago, 2005

Some model calculations show a node, but not for all flavors
d: Lu, Ma, 2004; Courtoy, Fratini, Scopetta,Vento, 2008
u: Bacchetta, Conti, Radici, 2008

However most model calculations of the Sivers function do not show a node
Brodsky, Hwang, Schmidt, 2002; Yuan, 2003; Bacchetta, Schafer, Yang, 2004;

Cherednikoyv, D’Alesio, Kochelev, Murgia, 2006; Gamberg, Goldstein, Schlegel, 2008;
Courtoy, Scopetta,Vento, 2009; Pasquini, Yuan, 2010

These model calculations of the Sivers functions all consider the gauge link to lowest
nontrivial order in g, the first order expansion of the Wilson line

It is unclear what the size of the higher order corrections is and whether these could
change the sign in a particular x region



Overall sign relation test

Nodes are very important for the test of the Sivers sign relation

flTSIDIS] flTDY] to be tested

For the experimental test the functions must be compared at the same x and k2

Possible future EIC data could be directly compared with Drell-Yan data,
but other SIDIS data from HERMES, COMPASS, JLab, require TMD evolution

The Sivers function may have a scale dependent node as a function x and/or kr
D.B.,, 201 I; Kang, Qiu,Vogelsang, Yuan, 201 |

TMD evolution of the Sivers asymmetry is under control by now
Aybat, Prokudin & Rogers, 2012; Anselmino, Boglione, Melis, 2012; Sun & Yuan, 201 3; Echevarria,
|dilbi, Kang,Vitev, 2014; ...

But TMD evolution of the first transverse moment of Sivers function is very difficult
It is not autonomous, except for the nonsinglet part at large x

This is relevant for demonstrating the scale invariance of the Burkardt sum rule



Evolution of the QS function

Evolution of Tk is known; tricky because dTr(x,x)/dInpg depends on Tr(x,y) for x+y
Kang, Qiu, 2009; Zhou, Yuan, Liang, 2009;Vogelsang, Yuan, 2009; Braun, Manashov, Pirnay, 2009

The evolution does simplify, however, in the large x
limit in which case the integration regions shrink to a
point. One obtains

1 PSP
d T p(n,z) = %/ gpgg’zﬁl(z)%,p(&g)’ (47) Simplification in the

'u@ 7 S large x limit
where, retaining singular terms at z — 1 only Braun, Manashoy, Pirnay, 2009
1 3
P2 7 (z) =2C “6(1 = 2)| = Ned(1—2).
NEETE) = 20k | G+ 3001 - 2)| - Ned(a2)

It evolves logarithmically with Q2
but faster than f ) ( s (Q

Effect of large x evolution on Burkardt sum rule studied by Ratcliffe & Teryaev (2014)




Final comments on sum rules

Bessel moment of Sivers function is safer to consider than conventional transverse
moment, but not clear whether sum rule applies for nonzero bt

) / B (g b2y da £ 0

a=q,9d

Similar comments apply to the Schafer-Teryaev sum rule (2000) for Collins function:

k2
Y faemte =0 #OE) =2 [ gt e )
h

Collins function is link independent though

There is no Burkardt sum rule for h;+, nor a Schafer-Teryaev sum rule for D1+



Conclusions

® the transverse spin decomposition is not interesting when it comes to the
values of the contributions (the same as in the longitudinal sum rule), but it
shows that the OAM and hence the full decomposition is not simply
rotationally invariant, even after x integration

® validity of Burkhardt-Cottingham and any other sum rule crucially depends
on the small-x behavior of functions, which is not a fully settled matter yet

® extrapolation of the Bessel-weighted Sivers shift on the lattice tells us
about the Qiu-Sterman function

® the transverse moment of the Sivers function may require regularization
that may not preserve the Burkardt sum rule automatically

® Node in Sivers and Qiu-Sterman function not ruled out yet, but probably
not needed to satisfy Burkardt sum rule

Main message: transverse spin sum rules are nontrivial and force us to think about the
limitations of the theoretical description, which is very useful beyond the sum rules



