Overview of spin angular momentum via TMD measurements in DIS and SIDIS ECT* Workshop on "Spin and Orbital Angular Momentum of Quarks and Gluons in the Nucleon" August 28th, 2014

Gunar.Schnell @ DESY.de

Universidad del País Vasco Euskal Herriko Unibertsitatea

Deep-inelastic scattering

Deep-inelastic scattering

Access to angular momentum in (SI)DIS

[M. Burkardt]

Access to angular momentum in (SI)DIS

(semi-)inclusive longitudinal double-spin asymmetries

[M. Burkardt]

Access to angular momentum in (SI)DIS

Overview of spin angular momentum via TMD measurements in DIS and SIDIS

- Polarized lepton beam
- Polarized target

- (E', p') (E, p)e q U
- Polarized lepton beam
- Polarized target
- Large acceptance spectrometer

- (E', p') (*E*, *p*) e q Polarized lepton beam u Polarized target Large acceptance spectrometer
- Good Particle IDentification (PID)

The COMPASS experiment @ CERN

HERMES Experiment (†2007) @ DESY

27.6 GeV polarized e⁺/e⁻ beam scattered off ...

unpolarized (H, D, He,..., Xe) as well as **transversely (H)** and longitudinally (H, D, He) polarized (pure) gas targets

6GeV e⁻ @ Jefferson Lab

Inclusive DIS

Gunan Schnel

OAM 2014, ECT* Trento

Check the details!

Check the details!

Gunar Schnell

15

OAM 2014, ECT* Trento

Two-photon exchange

- Candidate to explain discrepancy in form-factor k'_{j}
- Interference between oneand two-photon exchange amplitudes leads to SSAs in inclusive DIS off transversely polarized targets
- cross section proportional to S(kxk') either measure left-right asymmetries or sine modulation
- sensitive to beam charge due to odd number of e.m. couplings to beam

Signatures of two-photon exchange

Gunar Schnell

OAM 2014, ECT* Trento

Signatures of two-photon exchange

Hunting for the nucleon spin

Gunar Schnell

news from the low-energy frontier

CLAS

Gunar Schnell

news from the low-energy frontier

CLAS

Jefferson Lab Hall A

Gunar Schnell

OAM 2014, ECT* Trento

... the other polarized SF ...

Results on A2 and xg2

Iatest HERMES data consistent with (sparse) world data

rather low beam polarization during HERA II = small f.o.m.

Gunar Schnell

Results on A2 and xg2

... the neutron case

[M. Posik et al., PRL 113, 022002 (2014)]

- sizable in the lower- Q^2 / -x region
- opposite sign compared to proton case

 (as expected, e.g., by M. Burkardt, PRD 88, 114502 (2013)
 due to "instantaneous transverse color force")

Gunar Schnell

Semi-inclusive DIS

Spin-momentum structure of the nucleon

$$\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} + \lambda \gamma^{+} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right]$$

$$\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

			quark	pol.	$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$		
nucleon pol.		U	L	Т	each TMD describes a particular spin-		
	U	f_1		h_1^\perp	momentum correlation		
	L		g_{1L}	h_{1L}^{\perp}	functions in black survive integration over transverse momentum		
	Т	f_{1T}^{\perp}	g_{1T}	$h_1, \ egin{smallmatrix} h_1 \ h_{1T} \ egin{smallmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	functions in green box are chirally odd		

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Transverse spin $|\uparrow\downarrow\rangle = \frac{1}{2}(|+\rangle\pm|-\rangle)$ $\langle\uparrow|\hat{O}|\uparrow\rangle - \langle\downarrow|\hat{O}|\downarrow\rangle \propto \langle+|\hat{O}|-\rangle - \langle-|\hat{O}|+\rangle$

transverse-spin asymmetries involve helicity flip

27

- \mathbf{V} 2-hadron fragmentation
- Gunar Schnell Collins fragmentation

Quark polarimetry

- unpolarized quarks: easy "just" hit them (and count)
- Iongitudinally polarized quarks: use polarized beam

Quark polarimetry

- unpolarized quarks: easy "just" hit them (and count)
- Iongitudinally polarized quarks: use polarized beam

transversely polarized quarks: need final-state polarimetry, e.g.

TMD fragmentation functions

TMD fragmentation functions

TMD fragmentation functions

*) semi-inclusive DIS with unpolarized final state

*) semi-inclusive DIS with unpolarized final state

*) semi-inclusive DIS with unpolarized final state

*) semi-inclusive DIS with unpolarized final state

1-Hadron production ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) + \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right]$$

Bear

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504 OAM 2014, ECT* Trento 31

"Trento Conventions", Phys. Rev. D 70 (2004) 117504 OAM 2014, ECT* Trento

31

 σ_{X}

Beam 1

Gunar Schnell

$$\begin{aligned} & = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} \\ & + S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} \\ & + S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right\} \\ & + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) \\ & + \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{1T}^{13} \right] + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \end{aligned}$$
Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197
Boer and Mulders, Phys. Rev. D 57 (1998) 5780
Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093

"Trento Conventions", Phys. Rev. D 70 (2004) 117504 OAM 2014, ECT* Trento

Gunar Schnell

 σ_X

Beam

31

... possible measurements

$$\frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} \propto \left(1 + \frac{\gamma^{2}}{2x}\right) \{F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_{h}}\cos\phi_{h} + \epsilon F_{UU}^{\cos2\phi_{h}}\cos2\phi_{h}\}$$

hadron multiplicity:
normalize to inclusive DIS
cross section

$$\frac{d^{2}\sigma^{\text{incl.DIS}}}{dxdy} \propto F_{T} + \epsilon F_{L}$$

$$\frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} \propto \left(1 + \frac{\gamma^{2}}{2x}\right) \frac{F_{UU,T} + \epsilon F_{UU,L}}{F_{T} + \epsilon F_{L}}$$

$$+ \sqrt{2\epsilon(1 - \epsilon)} F_{UU}^{\cos\phi_{h}} \cos\phi_{h} + \epsilon F_{UU}^{\cos2\phi_{h}} \cos2\phi_{h} \}$$

moments: normalize to azimuthindependent cross-section

Gunar Schnell

Gunar Schnell

Azimuthal spin asymmetries

Azimuthal spin asymmetries

Fit azimuthal modulations, e.g., using Max.Likelihood:

 $PDF(2\langle\sin(\phi\pm\phi_S)\rangle_{UT},\ldots,\phi,\phi_S) = \frac{1}{2}\{1+P_T(2\langle\sin(\phi\pm\phi_S)\rangle_{UT}\sin(\phi\pm\phi_S)+\ldots)\}$

... some complications

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects [Diehl & Sapeta, EPJ C 41 (2005) 515], e.g.,

$$\begin{pmatrix} \left\langle \sin\phi\right\rangle_{UL}^{\mathsf{I}} \\ \left\langle \sin(\phi-\phi_S)\right\rangle_{UT}^{\mathsf{I}} \\ \left\langle \sin(\phi+\phi_S)\right\rangle_{UT}^{\mathsf{I}} \end{pmatrix}^{\mathsf{I}} = \begin{pmatrix} \cos\theta_{\gamma^*} & -\sin\theta_{\gamma^*} & -\sin\theta_{\gamma^*} \\ \frac{1}{2}\sin\theta_{\gamma^*} & \cos\theta_{\gamma^*} & 0 \\ \frac{1}{2}\sin\theta_{\gamma^*} & 0 & \cos\theta_{\gamma^*} \end{pmatrix} \begin{pmatrix} \left\langle \sin\phi\right\rangle_{UL}^{\mathsf{q}} \\ \left\langle \sin(\phi-\phi_S)\right\rangle_{UT} \\ \left\langle \sin(\phi+\phi_S)\right\rangle_{UT} \end{pmatrix}$$

($\cos \theta_{\gamma^*} \simeq 1$, $\sin \theta_{\gamma^*}$ up to 15% at HERMES energies)

Gunar Schnell

OAM 2014, ECT* Trento

 $\mathbf{P}_{h\perp}$

 \mathbf{P}_h

... back to results ...

Gunar Schnell

Т

U

L

Gunar Schnell

36

flavor separation of quark-helicity distribution using DIS data only

Т

 h_1^\perp

U

 f_1

 f_{1T}^{\perp}

U

 \mathbf{L}

Τ

L

 g_{1L}

 g_{1T}

	U	L	Т		
U	f_1		h_1^\perp		1elicity density
L		g_{1L}	h_{1L}^{\perp}	THE COL	•
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$		[M. Alekseev et al., PLB 693 (2010) 227]
				0.4 x∆u	_ x∆d
				0	
				-0.2	
_					
				Extrapolation	DSSV
	Δu			$0.71 \pm 0.02 \pm 0.03$	$0.71 \pm 0.02 \pm 0.03$
	Δd			$-0.34 \pm 0.04 \pm 0.03$	$-0.35 \pm 0.04 \pm 0.03$
	$\Delta \overline{u}$			$0.02\pm 0.02\pm 0.01$	$0.03 \pm 0.02 \pm 0.01$
	$\Delta \bar{d}$			$-0.05 \pm 0.03 \pm 0.02$	$-0.07\pm 0.03\pm 0.02$
	Δs	$(\Delta \bar{s})$		$-0.01 \pm 0.01 \pm 0.01$	$-0.05 \pm 0.01 \pm 0.01$
	Δu	ν		$0.68 \pm 0.03 \pm 0.03$	$0.68 \pm 0.03 \pm 0.03$
	Δd	ν		$-0.29 \pm 0.06 \pm 0.03$	$-0.28 \pm 0.06 \pm 0.03$
	$\Delta \Sigma$	2		$0.32 \pm 0.03 \pm 0.03$	$0.22 \pm 0.03 \pm 0.03$

flavor separation of quark-helicity distribution using DIS data only

caveat: potentially large dependences on knowledge of FFs!

caveat: potentially large dependences on knowledge of FFs! \blacksquare global analysis of DIS, pp, and e^+e^- data

Helicity density

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {oldsymbol{h}}_{1T}^\perp$

gluon helicity from (mainly) polarized pp collision

Helicity density

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {oldsymbol{h}}_{1T}^\perp$	

gluon helicity from (mainly) polarized pp collision

🖛 talk by L. Bland

OAM 2014, ECT* Trento

gluon helicity from (mainly) polarized pp collision

Gunar Schnell

Т

 h_1^{\perp}

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

U

 f_1

 f_{1T}^{\perp}

U

L

Τ

L

 g_{1L}

 g_{1T}

Т

 h_1^\perp

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

U

 f_1

 f_{1T}^{\perp}

U

 \mathbf{L}

Τ

L

 g_{1L}

 g_{1T}

CLAS data hints at width μ_2 of g_1 that is less than the width μ_0 of f_1

$$f_1^q(x, k_T) = f_1(x) \frac{1}{\pi \mu_0^2} \exp\left(-\frac{k_T^2}{\mu_0^2}\right)$$
$$g_1^q(x, k_T) = g_1(x) \frac{1}{\pi \mu_2^2} \exp\left(-\frac{k_T^2}{\mu_2^2}\right)$$

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {m h_{1T}^\perp}$	

Helicity density

CLAS data hints at width μ_2 of g_1 that is less than the width μ_0 of f_1

$$f_1^q(x, k_T) = f_1(x) \frac{1}{\pi \mu_0^2} \exp\left(-\frac{k_T^2}{\mu_0^2}\right)$$
$$g_1^q(x, k_T) = g_1(x) \frac{1}{\pi \mu_2^2} \exp\left(-\frac{k_T^2}{\mu_2^2}\right)$$

New CLAS data will allow multi-D binning to study $P_{h\perp}$ dependence for fixed x

No significant $P_{h\perp}$ dependences seen at HERMES and COMPASS

Gunar Schnell

0.6

0.5

0.4

0.3

0.2

0.1

0

CLAS

CLAS-2009 (projected)

Ł

OAM 2014, ECT* Trento

Lattice

The quest for transversity

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Transverse-spin transfer)

compatible with zero

- low sensitivity to u & d quark polarization?
- measured at lower x where
 transversity is expected not
 to be large
- 2010 data will reduce statistical uncertainty by factor 2
- if spin transfer related to hyperon spin structure, Lambda potentially bad probe

Quark polarizations in hyperons

[G.S., Ph.D. thesis, NMSU (1999)]

	Δu	- 16'	Δd		Δs	
р	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
n	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
Σ^+	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^0	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^{-}	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma+D+3F)$	$\textbf{0.79} \pm \textbf{0.04}$	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Λ	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$rac{1}{3}(\Delta\Sigma+2D)$	0.58 ± 0.04
Ξ^0	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04
Ξ	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04

Quark polarizations in hyperons

[G.S., Ph.D. thesis, NMSU (1999)]

	Δu		Δd		Δs	
р	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
n	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
Σ^+	$rac{1}{3}(\Delta\Sigma+D+3F)$ (0.79 ± 0.04	$\frac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^0	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^{-}	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Λ	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$rac{1}{3}(\Delta\Sigma+2D)$	0.58 ± 0.04
Ξ^0	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04
 [1]	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04

better sensitivity to u and d quarks via charged Sigma's

- ullet large analyzing power of the parity-violating decay $\Sigma^+ o {f p} \pi^0$
 - good probe of u-quark polarization

need good acceptance and neutral pion reconstruction
 Gunar Schnell
 AM 2014, ECT* Trento

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

Transversity (Collins fragmentation)

- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

leads to various cancellations in SSA observables

Non-zero transversity Non-zero Collins function

COMPASS [PLB 692 (2010) 240, PLB 717 (2012) 376]

HERMES [PLB 693 (2010) 11]

> Jefferson Lab [PRL 107 (2011) 072003]

Collins amplitudes

OAM 2014, ECT* Trento

COMPASS [PLB 692 (2010) 240, PLB 717 (2012) 376]

HERMES [PLB 693 (2010) 11]

> Jefferson Lab [PRL 107 (2011) 072003]

2⟨sin(∲_h+∲_s)⟩ (Collins) Neutron $\bullet \pi^+$ $\mathbf{A}\pi$ Quark-diquark Phenomenological Fit Light-Cone Quark -0.5 Axial Diquark Fit 1117 Exp. 0.2 0.3 0.4 0.1 0.1 0.2 0.3 0.4 X_{bi} X_{bi}

excellent agreement of various proton data, also with neutron results

Collins amplitudes

45

• COMPASS

[PLB 692 (2010) 240, PLB 717 (2012) 376, arXiv:1408.4405]

HERMES

[PLB 693 (2010) 11]

Jefferson Lab [PRL 107 (2011) 072003]

comns amplitudes

 10^{-2}

 10^{-1}

 10^{-2}

 10^{-1}

• COMPASS

[PLB 692 (2010) 240, PLB 717 (2012) 376, arXiv:1408.4405]

HERMES

[PLB 693 (2010) 11]

Jefferson Lab [PRL 107 (2011) 072003]

comins amplitudes

 10^{-2}

 10^{-1}

cancelation of (unfavored) u and d fragmentation (opposite signs of up and down transversity)?

OAM 2014, ECT* Trento

46

10⁻²

 10^{-1}

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

COMPASS

[PLB 692 (2010) 240, PLB 717 (2012) 376, arXiv:1408.4405]

HERMES

[PLB 693 (2010) 11]

Jefferson Lab

[PRL 107 (2011) 072003, arXiv:1404.7204]

Collins amplitudes

but relatively large K- asymmetry on ³He? (however, no full Fourier decomposition in JLab analysis -> possible mixing with other moments?) 47 OAM 2014, ECT* Trento

Transversity

(2-hadron fragmentation)

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

Transversity (2-hadron fragmentation)

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign [A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	

Transversity

(2-hadron fragmentation)

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign

²H results consistent with zero [A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp	

Transversity (2-hadron fragmentation)

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign

²H results consistent with zero

n, [GeVic

n, [GeV/c²]

Gunar Schnell

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

data from e⁺e[−] by BELLE

OAM 2014, ECT* Trento

49

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Transversity

(2-hadron fragmentation)

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign

²H results consistent with zero

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

data from e⁺e⁻ by BELLE allow first (collinear) extraction of transversity (compared to Anselmino et al.)

updated analysis available (incl. COMPASS) 49 OAM 2014, ECT* Trento

collinear extraction of valence transversity

OAM 2014, ECT* Trento

collinear extraction of valence transversity

OAM 2014, ECT* Trento

collinear extraction of valence transversity

Gunar Schnell

50

OAM 2014, ECT* Trento

d_v-transversity Soffer bound

Gunar Schnell

OAM 2014, ECT* Trento

suggested common origin of Collins and di-hadron FF in PLB 736 (2014) 124

Т

 h_1^{\perp}

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

U

 f_1

 f_{1T}^{\perp}

U

L

Т

L

 g_{1L}

 g_{1T}

Т

 h_1^{\perp}

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

U

 f_1

 f_{1T}^{\perp}

U

L

Τ

L

 g_{1L}

 g_{1T}

- apparent similarity of Collins and dihadron asymmetries
- suggested common origin of Collins and di-hadron FF in PLB 736 (2014) 124

Gunar Schnell

0 -0.05 [C. Adolph et al., PLB 736 (2014) 124] -0.10 10^{-2} 10^{-1} X "Collins angle" of $\boldsymbol{R}_N = \hat{\boldsymbol{p}}_{T,h^+} - \hat{\boldsymbol{p}}_{T,h^-}$

2010 proton data h^+h^-

• $A_{UT,p}(\phi_{RS}) \sin\theta$

 $\bigcirc A_{UT,p}(\phi_{2h,S}) \sin\theta$

OAM 2014, ECT* Trento

0.05

Т

 h_1^{\perp}

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

U

 f_1

 f_{1T}^{\perp}

U

L

Τ

L

 g_{1L}

 g_{1T}

- apparent similarity of Collins and dihadron asymmetries
- suggested common origin of Collins and di-hadron FF in PLB 736 (2014) 124

Gunar Schnell

0 -0.05 [C. Adolph et al., PLB 736 (2014) 124] -0.10 10^{-2} 10^{-1} X "Collins angle" of $\boldsymbol{R}_N = \hat{\boldsymbol{p}}_{T,h^+} - \hat{\boldsymbol{p}}_{T,h^-}$

2010 proton data h^+h^-

• $A_{UT,p}(\phi_{RS}) \sin\theta$

 $\bigcirc A_{UT,p}(\phi_{2h,S}) \sin\theta$

OAM 2014, ECT* Trento

0.05

Di-hadron vs. Collins fragmentation

Т

 h_1^{\perp}

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

U

 f_1

 f_{1T}^{\perp}

Gunar Schnell

U

L

Т

L

 g_{1L}

 g_{1T}

53

Transversity's friends

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Pretzelosity

- chiral-odd 🛏 needs Collins FF (or similar)
- ¹H, ²H & ³He data consistently small
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of $P_{h\perp}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

sin2≬

- again: chiral-odd
- evidence from CLAS (violating isospin symmetry?)
- consistent with zero at COMPASS and HERMES

 $igodoldsymbol{()}$

Worm-Gear I

 $igodoldsymbol{0}$

56

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

- again: chiral-odd
- evidence from CLAS (violating isospin symmetry?)
- consistent with zero at COMPASS and HERMES
- new preliminary data from CLAS closer to HERMES/ COMPASS (and to zero)

Worm-Gear I

XB

igl(igr)

"Wilson-line physics" naively T-odd distributions

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

 $2 \left< sin(\phi - \phi_S) \right>_{UT}$

 $2 \left< sin(\phi - \phi_S) \right>_{UT}$

Sivers amplitudes for pions

Gunar Schnell

10 ⁻¹

X

0.4

0.6

Ζ

-0.05

0.5 1 P_{h⊥} [GeV]

OAM 2014, ECT* Trento

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, egin{smallmatrix} h_1, eta_{1T}^ot \end{pmatrix}$

Sivers amplitudes for pions $2\langle \sin(\phi - \phi_S) \rangle_{\rm UT} = -\frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$

 π^+ dominated by u-quark scattering:

 $\simeq - \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$

u-quark Sivers DF < 0

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

Sivers amplitudes for pions $2\langle \sin(\phi - \phi_S) \rangle_{\rm UT} = -\frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$

 π^+ dominated by u-quark scattering:

 $\simeq - \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$

u-quark Sivers DF < 0</p>

d-quark Sivers DF > 0 (cancelation for π^{-})

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, oldsymbol{h}_{1T}^\perp$

 cancelation for D target supports opposite signs of up and down Sivers

Sivers amplitudes

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

x amplitudes COMPASS vs. HERMES

Gunar Schnell

OAM 2014, ECT* Trento

 π^+

.

-1

10

0.1 F

0.05

0

2 ⟨sin(φ-φ_s)⟩_{u1}

Sivers amplitudes pions vs. kaons

hermes somewhat unexpected if dominated by scattering off u-quarks:

$$- \ \frac{\mathbf{f_{1T}^{\perp,\mathbf{u}}}(\mathbf{x},\mathbf{p_T^2}) \otimes_{\mathcal{W}} \mathbf{D_1^{\mathbf{u} \rightarrow \pi^+/K^+}}(\mathbf{z},\mathbf{k_T^2})}{\mathbf{f_1^u}(\mathbf{x},\mathbf{p_T^2}) \ \otimes \mathbf{D_1^{\mathbf{u} \rightarrow \pi^+/K^+}}(\mathbf{z},\mathbf{k_T^2}))}$$

 \simeq

X

0.2 K⁺

0.1

0

1 1 1 1 1

10

-1

hermes

X

Sivers amplitudes pions vs. kaons

0.1 0.2 K⁺ 2 ⟨sin(φ-φ_S)⟩_U hermes hermes somewhat unexpected if π dominated by scattering off 0.05 0.1 u-guarks: $\simeq - \; \frac{f_{1T}^{\perp,\mathbf{u}}(\mathbf{x},\mathbf{p_T^2}) \otimes_{\mathcal{W}} \mathbf{D}_1^{\mathbf{u} \rightarrow \pi^+/\mathbf{K}^+}(\mathbf{z},\mathbf{k_T^2})}{f_1^{\mathbf{u}}(\mathbf{x},\mathbf{p_T^2}) \; \otimes \mathbf{D}_1^{\mathbf{u} \rightarrow \pi^+/\mathbf{K}^+}(\mathbf{z},\mathbf{k_T^2}))}$ 0 0 -1 -1 10 10 Χ X \mathbf{A}_{Siv}^{h} $\circ \pi^+$ • K⁺ 0.05 larger amplitudes seen also by COMPASS [arXiv:1408.4405] -0.05 10^{-2} 10^{-1} Gunar Schnell 62

Sivers amplitudes pions vs. kaons

0.1 0.2 K⁺ $\langle \sin(\phi - \phi_S) \rangle_{U}$ hermes hermes somewhat unexpected if π dominated by scattering off 0.05 0.1 u-quarks: $\simeq - \; \frac{f_{1T}^{\perp,\mathbf{u}}(\mathbf{x},\mathbf{p_T^2}) \otimes_{\mathcal{W}} D_1^{\mathbf{u} \rightarrow \pi^+/\mathbf{K}^+}(\mathbf{z},\mathbf{k_T^2})}{f_1^{\mathbf{u}}(\mathbf{x},\mathbf{p_T^2}) \; \otimes D_1^{\mathbf{u} \rightarrow \pi^+/\mathbf{K}^+}(\mathbf{z},\mathbf{k_T^2}))}$ 0 0 -1 10 10 X X $\overset{i}{\mathbf{V}}^{D}\mathbf{V}^{D}$ Phenomenological Fit 0.2 [Zhao et al., arXiv:1404.7204] Sivers $\circ \pi^+$ • K⁺ -0.2 0.05 Exp. 0.1 0.2 0.3 0.4 X_{bj} $\overline{0.4}$ \mathbf{x}_{bj} 0.2 0.3 0.1 surprisingly large K² asymmetry for ³He [arXiv:1408.4405] -0.05target (but zero for K⁺?!) 10^{-2} 10^{-1} Gunar Schnell 62

Х

Modulations in spin-independent SIDIS cross section $d^5\sigma$ $\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}\phi_{h}\,\mathrm{d}P_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left\{ 1 + \frac{\gamma^{2}}{2x} \right\} \left\{ A(y) F_{\mathrm{UU,T}} + B(y) F_{\mathrm{UU,L}} + C(y) \cos\phi_{h} F_{\mathrm{UU}}^{\cos\phi_{h}} + B(y) \cos 2\phi_{h} F_{\mathrm{UU}}^{\cos 2\phi_{h}} \right\}$ BOER-MULDERS $\frac{\text{leading twist}}{F_{UU}^{\cos 2\phi_h}} \propto C \left[-\frac{2(\hat{P}_{h\perp} \cdot \vec{k}_T)(\hat{P}_{h\perp} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} - \frac{1}{MM_h} + \frac{1}{MM_h} \right]$ EFFECT CAHN EFFECT $\frac{\text{next to leading twist}}{F_{UU}^{\cos\phi_h} \propto \frac{2M}{O}} C \left[-\frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\hat{P}_{h\perp} \cdot \vec{k}_T}{M} x f_1 D_1 + \dots \right]^{\text{ter}}$ Interaction dependent terms neglected

(Implicit sum over quark flavours)

Gunar Schnell

OAM 2014, ECT* Trento

[Airapetian et al., PRD 87 (2013) 012010]

[Airapetian et al., PRD 87 (2013) 012010]

opposite sign for charged pions with larger magnitude for π⁻
 -> same-sign BM-function for valence quarks?

[Airapetian et al., PRD 87 (2013) 012010]

not zero!

- opposite sign for charged pions with larger magnitude for π⁻
 -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons

[Airapetian et al., PRD 87 (2013) 012010]

not zero!

- opposite sign for charged pions with larger magnitude for π^- -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons
- available in multidimensional binning both from HERMES and from COMPASS

Summary

- first round of SIDIS measurements coming to an end
- current knowledge on quark- and gluon-spin contribution to nucleon spin leaves room for orbital angular momentum
- transversity is non-zero and quite sizable
 - can be measured, e.g., via Collins effect or s-p interference in
 2-hadron fragmentation
- Sivers and Boer-Mulders effects are also non-zero
 - Sivers: opposite sign for up and down quarks in line with their contributions to the nucleon's anomalous magnetic moment
- so far no sign of a non-zero pretzelosity distribution
- first evidences for non-vanishing worm-gear functions
- precision measurements at ongoing and future SIDIS facilities needed to fully map TMD landscape