L'ionosphère : effet sur la propagation des ondes électromagnétiques

Pierre-Louis BLELLY IRAP

Plan

- L'ionosphère
 - Processus de création
 - ✓l'atmosphère
 - ✓le soleil
 - ✓la chimie
 - Structure
- Effet sur les ondes électromagnétiques
 - Effet dispersif
 - Utilisation pour sondage du milieu
 - ✓Ionogramme
 - ✓ Radio-occultation
 - TEC

Nomenclature ionosphérique

Profil de température

Température de l'atmosphère en fonction de l'activité solaire

6

Structure de l'atmosphère

Source primaire : Spectre EUV solaire

- Combinaison
 - Continuum
 - Raies d'émission
- Variabilité de 11 ans

Pénétration du rayonnement

- Loi de Beer-Lambert
 - Intensité lumineuse à λ au sommet de l'atmosphère
 - $I_{\infty}(\lambda)$
 - Absorption dans l'atmosphère

 $dI(s,\lambda) = -\sigma_a(\lambda)N_n(z)I(s,\lambda)ds$

Profondeur optique
 $\tau = \int_{-\infty}^{z} \sigma_a(\lambda) N_n(z) \frac{ds}{dz} dz$ Décroissance du flux

$$I(s,\lambda) = I_{\infty}(\lambda)e^{-\tau}$$

Profondeur de pénétration

Cas des photons énergétiques

libre parcours moyen d'un photon

6 juin

Production des ions primaires

- Atmosphère multi-composantes
 - Production d'ions
 - Production de photoélectrons
- Transport des photoélectrons
 - Production secondaire d'ions par impact électronique

 $P(z) = \sum_{\lambda} \sigma_i(\lambda) N_n(z) I(z, \lambda)$

Production des ions secondaires

• Réactions chimiques Échange de charge $A^+ + B \rightarrow A + B^+$ Échange de charge ionique $A^+ + BC \rightarrow AB^+ + C$ $AB^+ + C \rightarrow A + BC^+$ Recombinaison dissociative $AB^+ + e^- \rightarrow A + B$

Région D: ions négatifs

6 juin 2014, Nantes

N₂,CO₂

Régions E et F

Autre source : la magnétosphère

Ceintures de radiations

• Mécanisme d'énergisation

- Couplé à un mécanisme de stockage par effet miroir
- Ceinture interne (L~1) : protons 0.1-40 MeV
- Ceinture externe (L = 3 à 10): électrons few keV- MeV

L'ovale auroral Electron flux [m⁻².s⁻¹] for Kp = 4

- Précipitations de particules
 - électrons
 - protons
- Dissipation dans l'atmosphère
 - Ionisation
 - Chauffage

Electrons de grande énergie

6 juir

Structure de l'ionosphère

Structure de l'ionosphère

Structure de l'ionosphère

Variabilité ionosphérique

EISCAT - d:\data\930216\93021617-CP1.VIT

Quelques chiffres

Altitude [km]	75	100	150	200	400	800	1200	3000
Region	D	E	F ₁	F ₂		F _{sup}		
$n_n [{ m m}^{-3}]$	10 ²¹	10 ¹⁸	5×10 ¹⁶	8×10 ¹⁵	10 ¹⁴	10 ¹²	2×10 ¹¹	10 ¹⁰
n_e / n_n	10 -12	3×10 - 9	4×10 - 6	10 - 4	4×10 ⁻³	4×10 ⁻²	10 - 1	1
T _e	200	200	600	1500	2500	3000	3200	3500
T _i	200	200	700	800	1000	2500	3000	3400
λ_D [cm] (Debye)	3	0,6	0,4	0,3	0,5	1,7	2,7	4,4
λ_{Ne} [cm] (mfp)	3	3×10 ²	6,4×10 ⁴	4×10 ⁵	3×10 ⁷	3×10 ⁹	1,6×10 ¹⁰	3×10 ¹¹
v _e [cm.s ⁻¹]	10 ⁷	10 ⁷	2×10 ⁷	2,5×10 ⁷	3×107	3,5×10 ⁷	3,7×10 ⁷	4×10 ⁷
λ_{Be} [cm] (Larmor)	1,2	1,2	2,5	3,3	4,3	6,4	8,0	16,2
v_e [s ⁻¹] (gyrofreq.)	1,3×10 ⁷	1,3×10 ⁷	1,3×10 ⁷	1,2×10 ⁷	1,1×10 ⁷	8,7×10 ⁵	7,4×10 ⁵	3,9×10 ⁵
v _{en} [s ⁻¹] (coll.)		10 ⁵	10 ³	130	20			
v _i [cm.s ^{−1}]	3×10 ⁴	4×10 ⁴	8×10 ⁴	1,2×10 ⁵	1,4×10 ⁵	2×10 ⁵	4×10 ⁵	10 ⁶
λ_{Bi} [cm] (Larmor)	3,5×10 ²	2,8×10 ²	4×10 ²	5,1×10 ²	6,2×10 ²	6,6×10 ²	6,3×10 ²	8,6×10 ²
v_i [s ⁻¹] (gyrofreq.)	13,6	22,7	31,8	37,4	35,9	48,2	101	1,9×10 ²
ν _{in} [s ⁻¹] (coll.)		6×10 ³	30	4	0,5			

Spécificités du plasma

• Définition

Milieu constitué de particules neutres et de particules chargées avec une charge globale nulle

- Milieu extrêmement réactif
 - Champs électromagnétiques
 - Interaction longue portée
- Milieu multi-échelle
 - Échelle spatiale individuelle
 - Échelle spatiale collective
 - ✓longueur de Debye
 - Échelle temporelle électronique
 - ✓ fréquence plasma
 - Échelles temporelles ioniques

Équation de dispersion

• Conditions de propagation

$$\left(k^{2}c^{2}-\omega^{2}+\omega_{pe}^{2}+\omega_{pi}^{2}
ight)\widehat{E}=c^{2}\left(ec{k}\cdot\widehat{E}
ight)ec{k}$$

- Onde transverse $\vec{k} \cdot \hat{\vec{E}} = 0$
 - Équation de dispersion $\omega^2 = \omega_{pe}^2 + \omega_{pi}^2 + k^2 c^2$
 - Vitesse de phase $v_{\phi} = \frac{\omega}{k} = \frac{c}{N}$
 - Vitesse de groupe $v_g = \frac{d\omega}{dk} = \frac{c^2}{v_{\phi}} = Nc$ Indice de réfraction $N^2 = 1 \left(\frac{\omega_{pe}^2}{\omega^2} + \frac{\omega_{pi}^2}{\omega^2}\right)$

Réflexion

- Condition pour une réflexion dans l'ionosphère
 - Vitesse de groupe nulle
 - N = 0

$$\checkmark \omega^2 = \omega_{pe}^2 + \omega_{pi}^2 \qquad f_{pe} \approx 9\sqrt{\overline{n}_e} \qquad f_{pH^+} \approx \frac{1}{5}\sqrt{\overline{n}_e}$$

Altitude [km]	75	100	150	250	400	800	1200	3000
Region	D	E	F ₁	F ₂		F _{sup}		
n _e	10 ⁸	10 ⁹	6×10 ¹⁰	4×10 ¹¹	2×10 ¹¹	3×10 ¹⁰	10 ¹⁰	6×10 ⁸
T _e	200	180	700	1900	2500	3000	3200	3400
T _i	200	180	650	900	1000	2600	3000	3200
f_{pe} [Hz] (plasma)	9×10 ⁴	2,8×10 ⁵	2,2×10 ⁶	5,7×10 ⁶	4×10 ⁶	1,6×10 ⁶	9×10 ⁵	2,2×10 ⁵
λ_D [cm] (Debye)	10	3	0,8	0,5	0,8	2,2	3,9	16
f_e [Hz] (gyrofreq.)	1,4×10 ⁶	1,3×10 ⁶	1,3×10 ⁶	1,2×10 ⁶	1,2×10 ⁶	9,8×10 ⁵	8,3×10 ⁵	4,4×10 ⁵
λ_{Be} [cm] (Larmor)	0,7	0,6	1,3	2,2	2,7	3,5	4,2	8,2

Application : l'ionosonde

- L'indice de réfraction est une fonction de n_e
 Vitesse de groupe v_g = N(n_e)c = dz/dt
 ✓Relation temps et altitude
 Mesure du retard de propagation τ(f) = 2/c ∫_{z₀}^{z_p} dz/√(1-(f_p²(z))/f²)
 - information sur n_e le long du chemin
- Inversion nécessaire

 $\tau(n_e, f) \to n_e(\tau, f)$

Ionogramme depuis l'espace

ЯD

- Délai plus grand quand la pente de n_e(z) est faible
- Ralentissement significatif au pic autour de f_{p,max}
- Délai supplémentaire pour trajet depuis le pic jusqu'à la surface
- \Rightarrow cusp au maximum de n_e
- Réduction de vitesse plus faible quand la fréquence augments

Réfraction atmosphérique aux hautes fréquences

- L'indice de réfraction de l'atmosphere est proche de 1
- Il dépend de
 - La composition atmosphérique
 - ✓ e.g.: pression de vapeur d'eau (e)
 - La pression atmosphéqrique (P) and la température (T)
- Pour la Terre, on a:

$$n = 1 + 77.6 \times 10^{-6} \left(\frac{P}{T}\right) + 37.3 \left(\frac{e}{T^2}\right)$$

- Dans la haute atmosphère, il dépend de:
 - La concentration atmosphérique
- On peut définir:
 - La réfractivité atmosphérique $\mu = 10^6 \times (N-1)$

Radio occultation

- Take profit of ground-satellite communication links
- Example: Mars Express
 - High Gain Antenna (HGA) as a primary antenna for receiving telecommands and transmitting high rate telemetry
 - MaRS uses two radio link modes:

6 juin 2014, Nantes

Radio occultation

- Remote sensing technique for measuring physical properties of a planetary atmosphere
- The trajectory of a S/C is occulted by a planetary body as seen from the G/S
- Its radio signal cuts through successively deeper layers of the planetary atmosphere before being blocked
- Sequence reversed upon emergence of the S/C
- Mars Express can only observe the INGRESS into occultation
- Venus Express can observe both INGRESS and EGRESS

Radio occultation

- Alteration of the characteristics of the radio wave:
 - refractive index of the gases in the ionosphere and atmosphere
 - ✓ Ionosphere: n<1
 - ✓ Atmosphere: n>1
- Change in the propagation path
- Degree of bending depends on
 - strength of the refractivity gradient

Règle de Bouguer

SO.

asymptote

 \mathcal{A}

- $1^{\text{ère}}$ couche = vacuum ($n_1 = 1$)
 - $r_p = \text{periapse} \implies a = r_1 \sin i_1 = n_p r_p$

 r_3

 $r_p = -$

r____

• Règle de Bouguer

 r_1

 \dot{l}_1

n

Refractivité µ

• Définie à partir de l'indice de réfraction N

 $\mu = 10^6 \times (N-1)$

- Pour l'atmosphère
 - deux contributions
 - ✓ Neutres
 - ✓ Espèces ionisées

$$\mu(r) = \underbrace{C_1 N_n(r)}_{\text{atmosphère neutre}} - C$$

- Ionosphère:
 - Réfractivité négative
 - Au-dessus de 80 km
- Région de transition
 faible réfraction
 entre 60 et 80 km
- Atmosphère neutre
 refractivité positive
 En dessous de 50 km

Résultats pour MEX

• 25-Mar-2006, DOY 84, ORBIT 2829

Résultats pour MEX

• 25-Mar-2006, DOY 84, ORBIT 2829

GPS : How does it works?

- What for
 - Navigation system
 - Positionning system
- How
 - Different systems : Navstar, Glonass, Galileo,...
 - At least 24 satellites
 - ✓ 31 satellites in operation (Navstar)
 - Orbits
 - ✓ Altitude: 20200 km
 - ✓ 6 equally distributed planes (60°) with 55° inclination
 - ✓ Orbital period: 12 hours
 - Guarantee to see at least 4 satellites

GPS : transmission

- Core of the system
 - High precision atomic clock (δt/t<10⁻¹²)
 - Fundamental frequency f_o = 10.23 MHz
 - Two carrier waves
 - \checkmark f₁ = 154 f_o = 1575.42 MHz (λ = 19.05 cm)
 - ✓ f2 = 120 f_0 = 1227.60 MHz (λ = 24.45 cm)
 - Modulation by binary random codes
 - ✓ Coarse acquisition (C/A) code on f_1
 - Pseudo-random code with period 1ms at frequency $f_0/10$
 - Unencrypted code
 - Low resolution (civilian)
 - ✓ Precision code (P ou Y) on f_1 and f_2
 - Pseudo-random code with period 267 j at f_o
 - Encrypted code
 - High resolution (military)
 - Binary modulation at 50 Hz
 - ✓ Navigation message

GPS : sources d'erreurs

Geometric distance	$ ho_i{}^j$	~20000 km
transmitter i to receiver j		
Offset receiver clock	dt _i	< 300 km
Offset transmitter clock	dt ^j	< 300 km
Ionospheric delay	I ^{.j}	1 to 50 m
Tropospheric delay	T _i j	1 to 20 m
System errors Tx et Rx	M_i^{j}, m_i^{j}	< 3 m
Other errors	ε ^j	30 cm (P), 3 m (C/A)
Relativistic effects	R _i ^j	~10 m

Exploitation de la partie ionosphérique

• Le retard ionosphérique dépend de la fréquence

 $PI = P1 - P2 = 40.3 \left(\frac{1}{f_2^2} - \frac{1}{f_1^2}\right) STEC$

On obtient le slant TEC
Pour chaque récepteur
Pour chaque satellite vu
On détermine le VTEC
Indépendant de l'élévation
Fortes hypothèses
Grande erreur en mode rasant

GPS : exploitation

• Un exemple de carte TEC

06/03/10 20:50 UT

Ionospheric TEC Map

Reconstruction par tomographie

- Principe
 - L'espace est divisé en volumes élémentaires (voxels)
 - L'ionosphère est uniforme dans un voxel
 - Un voxel contribue au TEC s'il est éclairé

• Chaque voxel doit être éclairé plus qu'une fois 6 juin 2014, Nantes

Reconstruction (fin)

GPS en mode radio occultation

- Nécessite un satellite Low-Earth Orbit
 - Un récepteur GPS en LEO peut suivre des signaux radio GPS qui sont réfractés par l'atmosphère

- RO provides best results between 8-30 km
 <u>effects of moisture and ionosphere are negligible</u>
- Capable of resolving the structure of the tropopause and gravity waves above the tropopause.

