Neutrino Directionality measurement with the Double Chooz experiment

Applied Antineutrino Physics 2014 - Paris

Vincent Fischer

CEA/IRFU/SPP

December 15th, 2014

Outline

¹ [Neutrino directionality](#page-1-0)

2 [Directionality with Double Chooz](#page-8-0)

3 [Application to nuclear non-proliferation](#page-26-0)

4 [Perspectives and conclusion](#page-35-0)

Motivations

- Neutrino directionality consists of retrieving the direction of a neutrino flux.
- Locating supernovas especially if non-visible optically.
- Studying geo-neutrinos from the Earth's crust and mantle.
- Detecting and monitoring nuclear reactors.

Antineutrino sources

Natural sources

- Core-collapse supernovas:
	- Core collapse of massive stars $(M > 8M_{\odot})$
	- 99 % of energy emitted as neutrinos (6 flavors) in a 10 s time window $\rightarrow \sim 10^{58}$ neutrinos
- Geo-neutrinos:
	- U and Th chains elements in Earth's crust and mantle
	- Detected by KamLAND and Borexino
	- Provide insight of Earth radiogenic heat and crust/mantle composition

Artificial sources

- Nuclear reactors:
	- Emit $\bar{\nu}_e$ via β -decay of fission products
	- Powerful source of $\bar{\nu_e} \rightarrow \sim 10^{20} \text{ s}^{-1}$. GW⁻¹

The Inverse Beta Decay process

- Inverse beta decay: $\bar{\nu_e} + p \rightarrow e^+ + n$
- Higher cross section than other ν interactions $\sigma_{IBD} \sim 10^{-43}$ cm²
- Signature \rightarrow Prompt signal $(e^{+}$ energy deposition) followed by delayed signal (neutron capture on Gd or H at 8 or 2.2 MeV).
- Look for: Energy signature ([0.3-20] MeV for prompt, ∼8 MeV or 2.2 MeV for delayed), time and space coincidence \rightarrow Huge background reduction !

Directionality with IBD

Positron

- Positron energy: $E_e = E_\nu - (M_n - M_p) + \sigma(E_\nu, \cos\theta)$
- Emission angle: $\frac{d\sigma}{d\cos\theta} \sim 1 + V_e a(E_\nu) \cos\theta$
- At low energies \rightarrow Backward emission
- $\rightarrow \bar{\nu_e}$ interaction \simeq Prompt event

From Vogel&Beacom, PRD, VOLUME 60, 053003

Directionality with IBD

Neutron

- Neutron kinetic energy: $T_n \simeq \frac{E_\nu E_e}{M_n - M_p} \left(1 - V_e \cos \theta\right)$
- Emission angle: $\cos\theta_{n,max}=$ $\sqrt{2E_{\nu}\Delta-(\Delta^2-m_e^2)}$ E_{ν}
- Forward emission but energy-dependant spread
- Moderation + Diffusion + Capture \rightarrow Delayed event
- Neutron diffusion smears directional information \rightarrow Statistical-only behavior

Directionality with IBD

Outline

2 [Directionality with Double Chooz](#page-8-0)

3 [Application to nuclear non-proliferation](#page-26-0)

4 [Perspectives and conclusion](#page-35-0)

The Double Chooz collaboration

The experimental site

- Outer Veto -Cover of plastic scintillator strip for muon tagging

- Inner Veto -90 m³ of scintillating oil for muon tagging

390 photomultiplier tubes

- Target -10 m³ of scintillating mineral oil doped with Gadolinium

- Gamma Catcher -23 m³ of scintillating mineral oil

- Buffer -110 m³ of non-scintillating mineral oil

- Glovebox -For calibration sources deployment

- Outer Veto -Cover of plastic scintillator strip for muon tagging

- Inner Veto -90 m³ of scintillating oil for muon tagging

390 photomultiplier tubes

- Target -10 m³ of scintillating mineral oil doped with Gadolinium

- Gamma Catcher -23 m³ of scintillating mineral oil

- Buffer -110 m³ of non-scintillating mineral oil

The detector (for real)

Neutrino candidates

Selection (Gd and H)

- Prompt event: $0.3 < E < 20 \; MeV$, $3.5 < E < 12.2 \; MeV$
- Delayed event: $6 < E < 12$ MeV , $1.5 < E < 3$ MeV
- Coincidence: $2 < \Delta t < 100 \,\mu s$, $10 < \Delta t < 600 \,\mu s$, $\Delta R < 900 \,\, mm$
- No muon signal
- Multiplicity cut: No other events in a 500 μ s, 1600 μ s window around prompt event

 \rightarrow 8246 and 7498 neutrino candidates in Gd and H

The Double Chooz layout

From the detector, the reactors are 6° apart \rightarrow Localized neutrino source Simple layout \rightarrow Ideal for directionality studies

Position reconstruction

- Maximum likelihood method using charge and time information on PMT's
- Use of calibration sources (light) attenuation and angular response) and laser diodes (charge/time likelihoods)
- Resolution : [∼]20 cm for a point-like source

Direction reconstruction

Angles

The neutrino wind components gives the azimuthal (θ) and zenithal (ϕ) reconstruction angles with $\theta = \arctan \frac{p_z}{\sqrt{p_x^2 + p_y^2}}$ and $\phi = \arctan \frac{p_y}{p_x}$

Gd analysis

H analysis

Summary

First measurement ever using H !

- \rightarrow Proves directionality will be possible in the large scale scintillator detectors.
	- \rightarrow Paves the way for JUNO, LENA or RENO-50

Outline

¹ [Neutrino directionality](#page-1-0)

2 [Directionality with Double Chooz](#page-8-0)

3 [Application to nuclear non-proliferation](#page-26-0)

4 [Perspectives and conclusion](#page-35-0)

Non-proliferation

- Application of antineutrinos detection for nuclear safeguards
- Nuclear reactor monitoring \rightarrow Pu diversion detection via burnup effect
- Rogue reactors detection from unexpected $\bar{\nu}_e$ rate
- Directionality via triangulation would provide useful localization

1^{st} example: Ton scale detector

Detector design

- Size: 1 ton liquid scintillator tank \rightarrow Nucifer-like concept
- Location: 10-25 m away from a 900 MW $_{th}$ reactor

 \rightarrow 1500 $\bar{\nu_e}$ /d expected @ 25 m

Results

- Strong but hardly useful directional information
- Design incompatible with efficient reconstruction
- High sensitivity to burnup effect

\rightarrow Dedicated to Pu diversion monitoring

2^{nd} example: $10 \sim 100$ -ton scale detector

Detector design

- Size: 50 tons liquid scintillator tank \rightarrow Double Chooz-like concept
- Location: 1-5 km away from a 900 MW $_{th}$ reactor

 \rightarrow 50 $\bar{\nu_e}$ /d expected @ 1 km

Results

- Somewhat useful directional information
- Medium sensitivity to burnup effect

 \rightarrow Dedicated to distant reactor monitoring

3^{rd} example: kt-scale detector

Detector design

- Size: 138 ktons liquid scintillator tank \rightarrow SNIF-like concept (see *arXiV:1011.3850*)
- LAB filled oil tanker \rightarrow Movable detector
- Location: 50-300 km away from a 900 MW $_{th}$ reactor

 $\rightarrow \sim 1 \bar{\nu_e}/d$ expected @ 300 km

Results

- Low sensitivity to burnup effect
- Not enough statistics for IBD directionality
- Useful however weak directional information via triangulation using 3 locations or more

\rightarrow Dedicated to rogue reactor detection

Nucifer-like case

Neutrino rate:

 1500 d⁻¹ \odot 25 m

No directional information

Double Chooz-like case

Neutrino rate:

 $50 d^{-1}$ 0 1 km

Limited directional information

SNIF-like case

Neutrino rate:

 $\sim 1 \bar{\nu_e}/d$ expected © 300 km

Source localization within a 20◦ cone in a month at 50 km (via

Nucifer-like case

Neutrino rate:

1500 d⁻¹ $\,$ 0 25 m

No directional information

Double Chooz-like case

Neutrino rate:

 $50 d^{-1}$ 0 1 km

Limited directional information

Neutrino rate:

 $\sim 1 \bar{\nu_e}/d$ expected © 300 km

Source localization within a 20◦ cone in a month at 50 km (via

Nucifer-like case

Neutrino rate:

1500 d⁻¹ $\,$ 0 25 m

No directional information

Double Chooz-like case

Neutrino rate:

50 d⁻¹ \otimes 1 km

Limited directional information

Neutrino rate:

 $\sim 1 \bar{\nu_e}/d$ expected © 300 km

Source localization within a 20◦ cone in a month at 50 km (via

Nucifer-like case

Neutrino rate:

1500 d⁻¹ $\,$ 0 25 m

No directional information

Double Chooz-like case

Neutrino rate:

50 d⁻¹ \otimes 1 km

Limited directional information

SNIF-like case

Neutrino rate:

 $\sim 1 \bar{\nu_e}$ /d expected © 300 km

Source localization within a 20◦ cone in a month at 50 km (via IBD)

Outline

¹ [Neutrino directionality](#page-1-0)

2 [Directionality with Double Chooz](#page-8-0)

3 [Application to nuclear non-proliferation](#page-26-0)

New detector concepts

Segmented detectors

- Existing concept: PROSPECT, NuLat, MiniTimeCube, PANDA, etc...
- Detector divided into several cells
- Huge background reduction
- Very precise position reconstruction \rightarrow Good directional capabilities

Water-based liquid scintillator detectors

- Advanced Scintillator Detector Concept $(ASDC) \rightarrow$ see *arXiV:1409.5864*
- Development in future detectors: WATCHMAN, ANNIE, EGADS
- Mixing of scintillating molecules and water
- High light yield (LS) and strong directional capabilities (Cerenkov)
- Enhanced by the use of high-precision photosensors (LAPPD's)

Conclusion

- Directionality measurement is now achieved with Double Chooz using Gd AND H !
- We decreased the reconstruction uncertainty from 18◦ (CHOOZ results) to 9[°]!
- $\bar{\nu}_e$ detection via IBD offers statistical directionality
- Application to nuclear non-proliferation is yet hardly achievable but could be strongly enhanced by new detection concepts

Thanks

Thank you for your attention !

Neutrino oscillations

- Infered in 1957 by Pontecorvo and discovered in 1998 by Super-Kamiokande (atmospheric ν 's).
- Neutrinos have mass and oscillate between 3 flavors ν_e , ν_μ , ν_τ via the PMNS matrix.

$$
\begin{pmatrix}\n\nu_e \\
\nu_\mu \\
\nu_\tau\n\end{pmatrix} = U_{PMNS} \begin{pmatrix}\n\nu_1 \\
\nu_2 \\
\nu_3\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 0 & 0 \\
0 & C_{23} & S_{23} \\
0 & -S_{23} & C_{23}\n\end{pmatrix} \begin{pmatrix}\nC_{13} & 0 & S_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-S_{13}e^{i\delta} & 0 & C_{13}\n\end{pmatrix} \begin{pmatrix}\nC_{12} & S_{12} & 0 \\
-S_{12} & C_{12} & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\sin^2 2\theta_{23} \sim 1 \qquad \frac{\sin^2 2\theta_{13} \sim 0.1}{\sin^2 2\theta_{12} \sim 0.8}
$$
\n
$$
\text{Atmospheric } \nu \text{'s} \qquad \text{Reactor } \nu \text{'s} \qquad \text{Solar } \nu \text{'s}
$$

History of θ_{13} measurement

Measuring θ_{13} with a reactor

- Look for a deficit of $\bar{\nu}_e$
- $P(\bar{\nu_e} \to \bar{\nu_e}) \simeq 1 \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 (eV^2) L(m)}{4E(MeV)}$ $4E(MeV)$
- Near detector \rightarrow Reference measurement (no oscillation)

Backgrounds

- Accidental background \rightarrow Random coincidence created by radioactivity (easily substracted).
- Fast neutron background \rightarrow Energetic spallation neutron entering the detector (tagged by the vetoes).
- Cosmogenic background \rightarrow Long-lived isotope created by muon interaction in the detector (main background in DC).

Latest results

Next steps and future plans

What happens next ?

- Near detector ready for fall 2014 !
- Major improvement on systematic errors
- More statistic everyday

Parallel studies and analysis

- θ_{13} analysis using reactor rate modulation (arXiv:1401.5981 and PLB)
- Pure background measurement with both reactors shut down (Phys.Rev. D87 (2013) 011102)
- Lorentz violation test (Phys. Rev. D86 (2012) 112009)
- Neutrino directionality

Directionality methods

Direction information comes from the detection reaction 2 favorite reactions: Electron scattering $(\nu + e^- \rightarrow \nu + e^-)$ and IBD $(\bar{\nu_e} + p \rightarrow e^+ + n)$

Liquid scintillators

- Scintillation: Process by which ionization produced by charged particles excites a material and light is emitted by fluorescence
- Liquid scintillators: Organic molecules diluted in an optically-inert liquid (mineral oil,..)
- Basically: Charged particle ionizes liquid \rightarrow Excites molecules that de-excites emitting light
- This light is detected using photomultiplier tubes (PMT's) that amplifies it into a detectable current

Other reactor experiments

Large Scale Scintillator Detectors

KamLAND, Borexino, SNO+

Spherical detectors, large size (KamLAND and SNO+: 1000t, Borexino: 300t) Deep underground, very low background rate

LVD and MiniBoone

LVD: 1000 t of scintillator, deep underground, main goal: supernova detection

MiniBoone: 680 t at sea level

The future: JUNO and LENA

JUNO: Spherical, 20 kt, construction started LENA: 50 kt, project ongoing

The reactor antineutrino anomaly (RAA)

- Revised calculation of the $\bar{\nu}_e$ rate from nuclear reactors $\rightarrow 3.5$ % $\bar{\nu_e}$ deficit
- New $\bar{\nu_e}$ cross-sections \rightarrow Another 3.5 % $\bar{\nu_e}$ deficit
- This new flux gives a mean $\bar{\nu}_e$ deficit of $R^R = 0.938 \pm 0.011 (Detection) \pm 0.023 (Prediction)$ (2.7 σ) for 19 previous short range experiments

Type II Supernova

- Core collapse of massive stars $(M > 8M_{\odot})$
- Chain fusion of H into Fe \rightarrow Core collapse (see slide on SN phases)
- 99 % of energy emitted as neutrinos (6 flavors) in a 10 s time window $\rightarrow \sim 10^{53}$ neutrinos
- Neutrino conversion and oscillation effects \rightarrow Modify amplitude and shape of the energy spectrum

Type II Supernova phases

- Hydrogen burning phase (main phase) withstand gravitation
- After this phase, gravity takes over and the increase of density induces H fusion
- H fuses till the creation of a Fe core
- Density rises till the core reaches the Chandrasekhar mass $(1.4M_{\odot})$
- Electron capture on protons giving neutrons and neutrinos \rightarrow Neutron star creation and iron core collapse
- Fall of the outer shells on the core \rightarrow Shockwave and matter ejection

