Neutrino Directionality measurement with the Double Chooz experiment Applied Antineutrino Physics 2014 - Paris

Vincent Fischer

CEA/IRFU/SPP

December 15th, 2014

Vincent Fischer : CEA/IRFU/SPP

Outline

1 Neutrino directionality

2 Directionality with Double Chooz

3 Application to nuclear non-proliferation

Perspectives and conclusion

Vincent Fischer : CEA/IRFU/SPP

Motivations

- Neutrino directionality consists of retrieving the direction of a neutrino flux.
- Locating supernovas especially if non-visible optically.
- Studying geo-neutrinos from the Earth's crust and mantle.
- Detecting and monitoring nuclear reactors.

Antineutrino sources

Natural sources

- Core-collapse supernovas:
 - Core collapse of massive stars (M > 8M_☉)
 - + 99 % of energy emitted as neutrinos (6 flavors) in a 10 s time window $\to \sim 10^{58}$ neutrinos
- Geo-neutrinos:
 - U and Th chains elements in Earth's crust and mantle
 - Detected by KamLAND and Borexino
 - Provide insight of Earth radiogenic heat and crust/mantle composition

Artificial sources

- Nuclear reactors:
 - Emit $\bar{\nu_e}$ via β -decay of fission products
 - Powerful source of $\bar{\nu_e} \rightarrow \sim ~10^{20} \ {\rm s}^{-1}.{\rm GW}^{-1}$

The Inverse Beta Decay process

- Inverse beta decay: $\bar{\nu_e} + p \rightarrow e^+ + n$
- Higher cross section than other ν interactions $\sigma_{IBD} \sim 10^{-43} {\rm cm}^2$
- Signature \rightarrow Prompt signal (e^+ energy deposition) followed by delayed signal (neutron capture on Gd or H at 8 or 2.2 MeV).
- Look for: Energy signature ([0.3-20] MeV for prompt, \sim 8 MeV or 2.2 MeV for delayed), time and space coincidence \rightarrow Huge background reduction !

Directionality with IBD

Positron

- Positron energy: $E_e = E_{\nu} - (M_n - M_p) + \sigma (E_{\nu}, \cos \theta)$
- Emission angle: $\frac{d\sigma}{d\cos\theta} \sim 1 + V_e a \left(E_\nu \right) \cos\theta$
- At low energies \rightarrow Backward emission
- $ightarrow ar{
 u_e}$ interaction \simeq Prompt event

From Vogel&Beacom, PRD, VOLUME 60, 053003

Directionality with IBD

Neutron

- Neutron kinetic energy: $T_n \simeq \frac{E_{\nu}E_e}{M_n - M_p} \left(1 - V_e \cos \theta\right)$
- Emission angle:

 $\cos \theta_{n,max} = \frac{\sqrt{2E_{\nu}\Delta - (\Delta^2 - m_e^2)}}{E_{\nu}}$

- Forward emission but energy-dependant spread
- Moderation + Diffusion + Capture \rightarrow Delayed event
- Neutron diffusion smears directional information → Statistical-only behavior

Vincent Fischer : CEA/IRFU/SPP

Directionality with IBD

Outline

Neutrino directionality

2 Directionality with Double Chooz

3 Application to nuclear non-proliferation

Perspectives and conclusion

Vincent Fischer : CEA/IRFU/SPP

Back-up

The Double Chooz collaboration

The experimental site

Vincent Fischer : CEA/IRFU/SPP

Vincent Fischer : CEA/IRFU/SPP

Vincent Fischer : CEA/IRFU/SPP

Vincent Fischer : CEA/IRFU/SPP

Vincent Fischer : CEA/IRFU/SPP

- Outer Veto -Cover of plastic scintillator strip for muon tagging

- Inner Veto -90 m³ of scintillating oil for muon tagging

390 photomultiplier tubes

- Target -10 m³ of scintillating mineral oil doped with Gadolinium

- Gamma Catcher -23 m³ of scintillating mineral oil

- Buffer -110 m³ of non-scintillating mineral oil

Vincent Fischer : CEA/IRFU/SPP

- Glovebox -For calibration sources deployment

- Outer Veto -Cover of plastic scintillator strip for muon tagging

- Inner Veto -90 m³ of scintillating oil for muon tagging

390 photomultiplier tubes

- Target -10 m³ of scintillating mineral oil doped with Gadolinium

- Gamma Catcher -23 m³ of scintillating mineral oil

- Buffer -110 m³ of non-scintillating mineral oil

The detector (for real)

Vincent Fischer : CEA/IRFU/SPP

Neutrino candidates

Selection (Gd and H)

- Prompt event: $0.3 < E < 20 \ MeV$, $3.5 < E < 12.2 \ MeV$
- Delayed event: $6 < E < 12 \ MeV$, $1.5 < E < 3 \ MeV$
- Coincidence: $2 < \Delta t < 100 \ \mu s$, $10 < \Delta t < 600 \ \mu s$, $\Delta R < 900 \ mm$
- No muon signal
- Multiplicity cut: No other events in a 500 $\mu {\rm s},\,1600\;\mu {\rm s}$ window around prompt event

 \rightarrow 8246 and 7498 neutrino candidates in Gd and H

Vincent Fischer : CEA/IRFU/SPP

The Double Chooz layout

From the detector, the reactors are 6° apart \rightarrow Localized neutrino source Simple layout \rightarrow Ideal for directionality studies

Vincent Fischer : CEA/IRFU/SPP

Position reconstruction

- Maximum likelihood method using charge and time information on PMT's
- Use of calibration sources (light attenuation and angular response) and laser diodes (charge/time likelihoods)
- Resolution : ~20 cm for a point-like source

Direction reconstruction

Angles

The neutrino wind components gives the azimuthal (θ) and zenithal (ϕ) reconstruction angles with $\theta = \arctan \frac{p_z}{\sqrt{p_x^2 + p_y^2}}$ and $\phi = \arctan \frac{p_y}{p_x}$

Gd analysis

H analysis

Summary

	ϕ (azimuthal)	θ (zenithal)
Real (geometry)	$84.0 \pm 3.0^{\circ}$	$1.96\pm0.11^\circ$
Reconstructed	$84.6\pm9.4^\circ$	$-4.7\pm9.4^\circ$

First measurement ever using H !

- \rightarrow Proves directionality will be possible in the large scale scintillator detectors.
 - \rightarrow Paves the way for JUNO, LENA or RENO-50

Outline

1 Neutrino directionality

2 Directionality with Double Chooz

3 Application to nuclear non-proliferation

4 Perspectives and conclusion

Vincent Fischer : CEA/IRFU/SPP

Non-proliferation

- Application of antineutrinos detection for nuclear safeguards
- Nuclear reactor monitoring \rightarrow Pu diversion detection via burnup effect
- Rogue reactors detection from unexpected $\bar{\nu_e}$ rate
- Directionality via triangulation would provide useful localization

Vincent Fischer : CEA/IRFU/SPP

1^{st} example: Ton scale detector

Detector design

- Size: 1 ton liquid scintillator tank \rightarrow Nucifer-like concept
- Location: 10-25 m away from a 900 MW_{th} reactor

 \rightarrow 1500 $\bar{\nu_e}$ /d expected @ 25 m

Results

- Strong but hardly useful directional information
- Design incompatible with efficient reconstruction
- High sensitivity to burnup effect

\rightarrow Dedicated to Pu diversion monitoring

Vincent Fischer : CEA/IRFU/SPP

2^{nd} example: 10~100-ton scale detector

Detector design

- Size: 50 tons liquid scintillator tank \rightarrow Double Chooz-like concept
- Location: 1-5 km away from a 900 MW_{th} reactor

 \rightarrow 50 $\bar{\nu_e}/d$ expected @ 1 km

Results

- Somewhat useful directional information
- Medium sensitivity to burnup effect

 \rightarrow Dedicated to distant reactor monitoring

3^{rd} example: kt-scale detector

Detector design

- Size: 138 ktons liquid scintillator tank \rightarrow SNIF-like concept (see arXiV:1011.3850)
- LAB filled oil tanker \rightarrow Movable detector
- Location: 50-300 km away from a 900 MW_{th} reactor

 $\rightarrow \sim 1 \ \bar{\nu_e}/d$ expected @ 300 km

Results

- Low sensitivity to burnup effect
- Not enough statistics for IBD directionality
- Useful however weak directional information via triangulation using 3 locations or more

\rightarrow Dedicated to rogue reactor detection

Vincent Fischer : CEA/IRFU/SPP

Nucifer-like case

Neutrino rate:

1500 d⁻¹ @ 25 m

No directional information

Double Chooz-like case

Neutrino rate:

50 d $^{-1}$ @ 1 km

Limited directional information

SNIF-like case

Neutrino rate:

 $\sim 1~ar{
u_e}/{
m d}$ expected @ 300 km

Nucifer-like case

Neutrino rate:

 $1500 \ d^{-1}$ @ 25 m

No directional information

Double Chooz-like case

Neutrino rate:

50 d⁻¹ @ 1 km

Limited directional information

SNIF-like case

Neutrino rate:

 $\sim 1 \; ar{
u_e}/{
m d}$ expected @ 300 km

Nucifer-like case

Neutrino rate:

 $1500 \ d^{-1}$ @ 25 m

No directional information

Double Chooz-like case

Neutrino rate:

50 d $^{-1}$ @ 1 km

Limited directional information

SNIF-like case

Neutrino rate:

 $\sim 1 \; ar{
u_e}/{
m d}$ expected @ 300 km

Nucifer-like case

Neutrino rate:

 $1500 \ d^{-1}$ @ 25 m

No directional information

Double Chooz-like case

Neutrino rate:

50 d $^{-1}$ @ 1 km

Limited directional information

SNIF-like case

Neutrino rate:

 $\sim 1 \; \bar{
u_e}/{
m d}$ expected @ 300 km

Outline

Neutrino directionality

2 Directionality with Double Chooz

3 Application to nuclear non-proliferation

New detector concepts

Segmented detectors

- Existing concept: PROSPECT, NuLat, MiniTimeCube, PANDA, etc...
- Detector divided into several cells
- Huge background reduction
- Very precise position reconstruction \rightarrow Good directional capabilities

Water-based liquid scintillator detectors

- Advanced Scintillator Detector Concept (ASDC) \rightarrow see *arXiV*:1409.5864
- Development in future detectors: WATCHMAN, ANNIE, EGADS
- Mixing of scintillating molecules and water
- High light yield (LS) and strong directional capabilities (Čerenkov)
- Enhanced by the use of high-precision photosensors (LAPPD's)

Conclusion

- Directionality measurement is now achieved with Double Chooz using Gd AND H !
- We decreased the reconstruction uncertainty from 18° (CHOOZ results) to 9° !
- $\bar{\nu_e}$ detection via IBD offers statistical directionality
- Application to nuclear non-proliferation is yet hardly achievable but could be strongly enhanced by new detection concepts

Thanks

Thank you for your attention !

Neutrino oscillations

- Infered in 1957 by Pontecorvo and discovered in 1998 by Super-Kamiokande (atmospheric ν 's).
- Neutrinos have mass and oscillate between 3 flavors ν_e , ν_μ , ν_τ via the PMNS matrix.

History of θ_{13} measurement

Vincent Fischer : CEA/IRFU/SPP

Measuring θ_{13} with a reactor

- Look for a deficit of $\bar{\nu_e}$
- $P(\bar{\nu_e} \to \bar{\nu_e}) \simeq 1 \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 (eV^2) L(m)}{4E(MeV)}$
- Near detector \rightarrow Reference measurement (no oscillation)

Backgrounds

- Accidental background → Random coincidence created by radioactivity (easily substracted).
- Fast neutron background \rightarrow Energetic spallation neutron entering the detector (tagged by the vetoes).
- Cosmogenic background → Long-lived isotope created by muon interaction in the detector (main background in DC).

Latest results

Next steps and future plans

What happens next ?

- Near detector ready for fall 2014 !
- Major improvement on systematic errors
- More statistic everyday

Parallel studies and analysis

- + θ_{13} analysis using reactor rate modulation (arXiv:1401.5981 and PLB)
- Pure background measurement with both reactors shut down (Phys.Rev. D87 (2013) 011102)
- Lorentz violation test (Phys.Rev. D86 (2012) 112009)
- Neutrino directionality

Directionality methods

Direction information comes from the detection reaction 2 favorite reactions: Electron scattering $(\nu + e^- \rightarrow \nu + e^-)$ and IBD $(\bar{\nu_e} + p \rightarrow e^+ + n)$

Liquid scintillators

- Scintillation: Process by which ionization produced by charged particles excites a material and light is emitted by fluorescence
- Liquid scintillators: Organic molecules diluted in an optically-inert liquid (mineral oil,..)
- Basically: Charged particle ionizes liquid \rightarrow Excites molecules that de-excites emitting light
- This light is detected using photomultiplier tubes (PMT's) that amplifies it into a detectable current

Other reactor experiments

Daya Bay RENO • 8 detectors, each $2 \times$ DC detector • 2 detectors, each $2 \times$ DC detector • $6 \times 2.3 GW_{th}$ reactors • $6 \times 2.9 GW_{th}$ reactors 923 m.w.e 1,600m 35000 S.C. 230 m.w.e 291 m.w.e v-target 20t ×8 481m 1,380m 1,985m 3000 1,146m 2.3GW. 255 m.w.e v-target 675m.w.e 2.9GW 360m 20t ×2

Large Scale Scintillator Detectors

KamLAND, Borexino, SNO+ Spherical detectors, large size (KamLAND and SNO+: 1000t, Borexino: 300t) Deep underground, very low background rate

LVD and MiniBoone

LVD: 1000 t of scintillator, deep underground, main goal: supernova detection

MiniBoone: 680 t at sea level

The future: JUNO and LENA

JUNO: Spherical, 20 kt, construction started LENA: 50 kt, project ongoing

The reactor antineutrino anomaly (RAA)

- Revised calculation of the $\bar{\nu_e}$ rate from nuclear reactors \rightarrow 3.5 % $\bar{\nu_e}$ deficit
- New $\bar{\nu_e}$ cross-sections ightarrow Another 3.5 % $\bar{\nu_e}$ deficit
- This new flux gives a mean $\bar{\nu_e}$ deficit of $R^R = 0.938 \pm 0.011 (Detection) \pm 0.023 (Prediction) (2.7 \sigma)$ for 19 previous short range experiments

Type II Supernova

- Core collapse of massive stars ($M>8M_{\odot}$)
- Chain fusion of H into Fe \rightarrow Core collapse (see slide on SN phases)
- + 99 % of energy emitted as neutrinos (6 flavors) in a 10 s time window $\to \sim 10^{53}$ neutrinos
- Neutrino conversion and oscillation effects \rightarrow Modify amplitude and shape of the energy spectrum

Type II Supernova phases

- Hydrogen burning phase (main phase) withstand gravitation
- After this phase, gravity takes over and the increase of density induces H fusion
- H fuses till the creation of a Fe core
- Density rises till the core reaches the Chandrasekhar mass $(1.4 M_{\odot})$
- Electron capture on protons giving neutrons and neutrinos \rightarrow Neutron star creation and iron core collapse
- Fall of the outer shells on the core \rightarrow Shockwave and matter ejection

