

Looking for geo-neutrinos with Borexino

-- **Romain Roncin** on behalf of the Borexino Collaboration --Laboratori Nazionali del Gran Sasso

Applied Antineutrino Physics 2014

December 15, 2014

-- Anti- v_e in Borexino --

-- Borexino is currently exposed to geo-neutrinos and nuclear reactors neutrinos (core-collapse supernovae?)

-- Coming soon: anti- v_e from ¹⁴⁴Ce-¹⁴⁴Pr source

(sterile neutrino investigation)

-- Why geo-neutrinos? --

-- Geo-neutrinos are messengers from the Earth interior --> Especially of interest for the mantle knowledge

-- Radioactive decays inside the Earth --> $^{\bf 238}{\rm U},\,^{235}{\rm U},\,^{\bf 232}{\rm Th}$ decay series as well as $^{40}{\rm K}$ decay are involved and produced $\nu_{\rm e}$ and anti- $\nu_{\rm e}$ called geo-neutrinos

-- Differents Earth models exist (cosmochemical, geochemical, geodynamical etc...) and do not agree between themselves

--> Geo-neutrinos are a new source of information

-- Geo-neutrino measurements

--> KamLAND (Nature **436**, 499-503 (2005), Phys. Rev. D **88**, 033001 (2013))

--> Borexino (Phys. Lett. B **687**, 299-304 (2010), Phys. Lett. B **722**, 295-300 (2013))

-- Which geo-neutrinos? --

-- Anti-v_e detection through inverse beta decay interactions --> Threshold at 1.8 MeV

	$^{238}\mathrm{U}$	$^{235}\mathrm{U}$	²³² Th	$^{40}{ m K}(ar{ u}_e)$	$^{40}{ m K}(u_e)$
$ au_{1/2}$ (year)	4.47×10^9	7.04×10^8	1.40×10^{10}	1.28×10^9	1.28×10^9
$Q~({ m MeV})$	51.7	46.4	42.7	1.311	1.505
$Q_{ar{ u}_e}~(\mathrm{pJ})$	0.634	0.325	0.358	0.103	-
$\# ar{ u}_{e}$	6	4	4	1	-
$\mathcal{R}_{ar{ u}_e}\left(ar{ u}_e/(\mathrm{g}\cdot\mathrm{s}) ight)$	7.46×10^4	3.20×10^5	1.63×10^4	2.31×10^5	-
$\# \nu_e$	-	-	-	-	1
$\mathcal{R}_{ u_e}\left(u_e/(\mathrm{g}\cdot\mathrm{s}) ight)$		-		-	2.77×10^4
$E_{ m max}$ (MeV)	3.26	1.23	2.25	1.311	0.044

-- Only anti- v_e from ²³⁸U and ²³²Th can be detected

-- Geo-neutrinos oscillation? --

-- Anti-v_e from ²³⁸U and ²³²Th do oscillate --> Survival probability of the geo-neutrinos:

$$P_{ee} = \cos^4 \theta_{13} \left(1 - \sin^2(2\theta_{12}) \sin^2 \left(1.27 \, \frac{\Delta m_{21}^2 (\text{eV}^2) L(\text{m})}{E(\text{MeV})} \right) \right) + \sin^4 \theta_{13}$$

-- Oscillation length around 100 km << R_{Earth} --> Reasonable assumption of an averaged survival probability:

$$\langle P_{ee} \rangle = \cos^4 \theta_{13} \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \right) + \sin^4 \theta_{13} = 0.55 \pm 0.03$$

-- WARNING: not used for anti- $\nu_{\rm e}$ from nuclear reactors (individual calculations)

Mixing angles and mass square differences are taken from Phys. Rev. D **89**, 093018 (2014)

-- Detecting anti- v_e --

-- Anti- v_e detection through inverse beta decay interactions

-- The Borexino detector --

-- Selecting anti-v_e --

-- 2 s dead time window applied after an internal muon and 2 ms dead time window applied after an external muon

-- No neutron event in the 2 ms time window before the prompt signal and in the 2 ms time window after the delayed signal

46 candidates

(between December 2007 and August 2012)

-- Anti-v_e energy spectra --

-- Q_{prompt} spectrum contains both the geo-neutrino and the reactors neutrino components (and the backgrounds)

--> Since $E_{max}(^{238}U) = 3.26$ MeV and $E_{max}(^{232}Th) = 2.25$ MeV, geoneutrinos stand in the 4 first bins of the Q_{prompt} spectrum

-- Reactor background --

-- Anti- v_e from nuclear reactors are the main background

-- Estimation of the expected number of events from the spectral components of ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu

Detector-reactor distance Power fraction of component *i*

Effective thermal power of reactor *r* in month *m*

Average energy released per fission of component *i*

-- MC have been developed in order to take into account the 446 nuclear reactors running during the period of interest

-- Fit analysis --

-- Unbinned maximal likelihood method based on the prompt energy spectra of the candidates

-- BSE geological models --

-- Bulk Silicate Earth (BSE) models describe both the crust and the mantle

- -- Different BSE models:
 - Cosmochemical
 - Geochemical
 - Geodynamical

BSE S _{geo} [TNU]		Model		
- Low -	- High -			
23.6	31.44	Javoy et al. (2010) (a)		
26.6	35.24	Lyubetskaya & Korenaga (2007) (b)		
28.4	37.94	McDonough & Sun (1995) (c)		
28.4	37.94	Allegre et al. (1995) (d)		
29.6	39.34	Palme & O'Neil (2004) (e)		
33.3	44.24	Anderson (2007) (f)		
35.1	46.64	Turcotte & Schubert (2002) (g)		

1σ expectation band S_{geo} = 38.8 ± 12.0 TNU from the Borexino fit analysis

Borexino results in agreement with BSE models

Accessing geo-neutrinos from the mantle --

-- Measured signal = BSE signal = crust signal + mantle signal where crust = local crust (LOC) + rest of the crust (ROC)

-- Borexino:

- S_{geo} (total) = 38.8 ± 12.0 TNU S_{geo} (crust) = 23.4 ± 2.8 TNU

-- KamLAND:

- S_{geo} (mantle) = 5.0 ± 7.3 TNU

-- Combined (Sramek et al. (2013), Ludhova and Zavatarelli (2013))

-- Discrimination between different models is not yet possible, even when combining Borexino and KamLAND

-- Fit analysis with Th/U ratio left free --

-- Fit of U and Th spectra independently **S**_U = **26.5 ± 19.5 TNU S**_{Th} = **10.6 ± 12.7 TNU**

-- Conclusion and perspectives --

- -- Geo-neutrinos are of interest, especially for the mantle knowledge --> Borexino helps geoscience to better understand our planet
- -- 2 years more of statistics
 - --> Borexino alone should be able to reach the 5σ signal
- -- Future large scale detectors coming up soon
 - --> SNO+
 - --> JUNO
 - --> LENA
 - --> Hanohano

-- Anti- v_e from ¹⁴⁴Ce-¹⁴⁴Pr decays --> SOX --

- -- Several anomalies to be understood
 - 1 LSND and MiniBooNE
 - 2 Radiochemical solar experiments (GALLEX and SAGE)
 - ③ Short baseline reactor experiments
- -- Investigation on a possible new neutrino oscillation
 - --> **SOX** experiment (Short Oscillations with BoreXino)

How? Bringing a 100 kCi 144 Ce- 144 Pr source (anti- $\nu_{\rm e}$ emitter) below Borexino and looking for the L/E pattern

WHEN? End of 2015

STAY TUNED!

Thank you for your attention

-- Accidental background --

-- Looking for the off time coincidence in the [2 s, 20 s] range after the prompt signal

-- Δt distribution between prompt signal and delayed signal

-- ⁹Li-⁸He background --

-- Same anti- $\nu_{\rm e}$ cuts except that we are now looking in the [2 ms, 2 s] range after an internal muon

-- Δt distribution between internal muon and prompt signal

-- ²³⁸U decay chain --

Romain Roncin @ AAP 2014

-- ²³²Th decay chain --

Romain Roncin @ AAP 2014