Status of Short BaseLine Neutrino Experiment (SBL) in Korea

Eunju Jeon

Center for Underground Physics, Institute for Basic Science

on the behalf of SBL Collaboration

2014.12.15

AAP 2014

Outline

- Reactor antineutrino anomaly
- Short baseline experiment and detector deployment sites in Korea
- Prototype detectors
 - Measurement of backgrounds above ground
 - Test on capability of PSD
 - Detector and background simulation
- Main detectors
 - Conceptual design and deployment site
 - Schedule and plan
- Summary

Reactor antineutrino anomaly

Short BaseLine Neutrino Experiment (SBL)

- Collaborators: 25 researchers from 8 universities and institutes
 - Sejong Univ.: 2
 - IBS: 7
 - Chonnam Nat'l Univ.: 5
 - Chonbuk Nat'l Univ.: 3
 - Chung-Ang Univ.: 2
 - · KRISS: 2
 - Kyungpook Nat'l Univ.: 2
 - KAERI: 2

Detector deployment sites: 3 candidates

HANARO

New Location

80- 6116	
	E: 1944 L.S B: 1944 13.5

Candidates	Baseline	Thermal	# of events/day	Overburden	S/N (w/ PSD)
HANARO	6m	30 MW	~250	-	?
HANBIT	~27m	2.8 GW	~1200	10~23 m.w.e	>5
KIJANG	5m	15 MW	~180	~ 23 m.w.e	~1

Increased Backgrounds above ground

- Main background events are from cosmic muons and neutrons and should be reduced and rejected relative to signal
 - Overburden over the detector is crucial to the ratio of signal to background
 - Detector requires good sensitivity of particle identification by PSD
- We made a prototype detector for the background studies above ground
 - We measured background events for different overburden over the detector at two places
 - KT1 lab with little overburden
 - Sejong lab with ~1.5 m.w.e overburden
 - We tested the capability of PSD with different target material filled in prototype detector
 - LAB-based LS
 - · DIN-based LS: UG-F

Prototype detector

- + 7 cubic steel chambers with 25cm thickness to cover 4π
- · filled with liquid scintillator
- · Lead shield
 - 10cm thickness
 - to block external gammas

Prototype detector

- Dark box
 - 1.3x0.5x0.5m³ rectangular stainless steel vessel
 - filled with ~280L of non-scintillating mineral oil
 - covered with mu-metal to shield against magnetic field
- Target
 - 50L of 0.5% Gd loaded LS (LAB-based)
 - 5mm thick teflon sheet are installed inside target vessel
- · PMT
 - 6x8" PMTs (Hamamastu R5912)

DAQ system

- Main electronics for Target PMT signal
 - Fast digitization: 500MHz Flash ADC
 - 4 ch input, 12 bit dynamic range
 - $V_{pp} = 2.5V$
- Muon Veto Electronics
 - Slow digitization: 64MHz Flash ADC
 - Charge sensing with FPGA

Energy calibration and linearity

- Gamma sources of ¹³⁷Cs and ⁶⁰Co are used for energy calibration
- Gamma sources are set into the center of target through the chimney
- Crystal ball function is used in charge spectrum fit to handle the low energy tail by escaping gamma
- Total light yield is 680 p.e./ MeV

Signal and background: neutrino-like event selection

Inverse beta decay:

 $\overline{\nu_e} + p \rightarrow e^+ + n$

Backgrounds:

- Selection cuts for neutrino-like event
 - time difference: $3.0\mu s < \Delta T < 30\mu s$
 - * prompt energy: $2.0 MeV < E_{s1} < 10 MeV$
 - delayed energy: $3.0 \text{MeV} < E_{s2} < 10 \text{MeV}$
 - multiplicity: $\Delta T_p = 30 \ \mu s$, $\Delta T_d = 100 \ \mu s$

Measurement of backgrounds above ground

nlaco	overburden	target	neutrino-like	rejected	
μασε	overburden	material	w/o PSD	w/ PSD	PSD
Sejong lab	~1.5 m.w.e	LAB-based GdLS	670	304	55%
KT1 lab	_	LAB-based GdLS	4400	2720	38%
	_	UG-F GdLS	3920	2075	48%

Pulse Shape Discrimination(PSD): LAB-based GdLS

Pulse Shape Discrimination(PSD): UG-F GdLS

Detector simulation

- Geant4.9.6.02 based simulation was performed
- Comparison of Data to tuned MC with gamma sources
 - Detector simulation is tuned by data
 - Simulation is in good agreement with data

Background simulation - work in progress -

- We have been simulating the comic muons and neutrons separately according to the distributions expected at the sea level
 - Cosmic muon and muon-induced neutron simulation: using modified Gaisser-parameterization
 - Cosmic neutron simulation: using CRY(Cosmic-ray Shower Library) software developed at LLNL
 - Hadronic models of muon and neutron are used in the simulation
- In simulation, we are considering thick concrete overburden in the area of 10mx10m over the detector to compare with Data

Main detector

- Homogeneous target
 - ~500L of GdLS
 - φ85cmxH100cm cylindrical tank
 - ~68 PMTs
- Passive shields
 - Lead shield to block external gammas
 - PE shield to block neutron
- Muon detector
 - · Plastic scintillator with 4π coverage
 - Veto cosmic muons
- We're optimizing main detector design with dimensions of 2.5x2.5x3m³, ~30ton

Tendon gallery of HANBIT reactor and detector deployment

Schedule and plan

Time	Plan
~ 2015.04	completion of main detector construction
2015.04 ~ 2015.05	test on main detector
2015.06	deployment of main detector in the tendon gallery
2015.08 ~	it will start taking data

Summary

- Prototype detector constructed and measured backgrounds above ground
 - We measured background events for different overburden over the detector at two places
 - It is found that cosmic neutron backgrounds can be reduced ~10 times when we have about 1.5 m.w.e overburden
 - We tested the capability of PSD with different target material filled in prototype detector and it showed good separation power of PSD in prompt signal, 55% rejected with ~1.5 m.w.e overburden
- We will construct main detector with optimized design and will deploy it in the tendon gallery of HANBIT reactor
 - Background measurements with prototype detector show that overburden over the detector is crucial to the ratio of signal to background
 - Tendon gallery of HANBIT reactor is the best place to reduce cosmic neutron backgrounds

Backup

Feasibility test with ~500L homogeneous detector

Using χ^2 as described in hep-ex/1307.2859 (K.M. Heeger *et al.*)

$$\chi^{2} = \sum_{i,j} \frac{\left[M_{ij} - (\alpha + \alpha_{e}^{i} + \alpha_{r}^{j})T_{ij} - (1 + \alpha_{b})B_{ij}\right]^{2}}{T_{ij} + B_{ij} + (\sigma_{b2b}B_{ij})^{2}} + \frac{\alpha^{2}}{\sigma^{2}} + \sum_{j} \left(\frac{\alpha_{r}^{j}}{\sigma_{r}}\right)^{2} + \sum_{i} \left(\frac{\alpha_{e}^{i}}{\sigma_{e}}\right)^{2} + \frac{\alpha_{b}^{2}}{\sigma_{b}^{2}}$$

minimize χ^2 with respect to the nuisance parameters $\{\alpha, \alpha_r^j, \alpha_e^i, \alpha_b\}$

- Detector response:
 - energy resolution: 10%/√E
 - position resolution: 15cm
 - detection efficiency: 60%
- Signal to background

Feasibility test with ~500L homogeneous detector

• KT1 Lab.: little overburden

• Seeding Lab.: ~1.5 m.w.e overburden

계획예방정비

※ 기간을 Click 하시면 주요작업이 조회 됩니다.

2015 검색

			2015																	
+=			10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
한빛	1	1호기						03	/13~0 63.6 22ネ	0 5/15										
	:	2호기)6~1 <mark>74.4</mark> 21차	/19																(
		3호기	1()/17· 9 1	-01/ 16.7 \$차	22					검험	출기 치	Rea	ctor d data	off		F	eactor data	on	
	[^]	4호기									-		7/23	~10/ 9 <mark>5.6</mark> 15차	2 6	-				
	(5호기											08/	10~(<mark>6.6</mark> 0차	9/25					
		6호기															12/0 29 10	3~01 6 차	/01	
			M					•								•				н

원자로 모니터링

