Precision Reactor $\bar{\nu}_e$ Spectrum Predictions and Measurements

AAP 2014 December 16, 2014

Bryce Littlejohn Illinois Institute of Technology

Overview

- The reactor antineutrino spectrum is a valuable handle for:
 - Neutrino oscillation physics
 - Safeguards
 - Nuclear applications
- New precision spectrum measurements now available from θ₁₃ experiments: What are the implications?
- Talk outline
 - Introduction
 - Detailed look at recent results
 - Discussion and implications

Introduction

Reactor Antineutrino Production

• Reactor $\overline{v}e$: produced in decay of product beta branches

Predicting $S_i(E)$, Neutrinos Per Fission

- Two main methods:
- Ab Initio approach:
 - Calculate spectrum branch-by-branch using beta branch databases: endpoints, decay schemes
 - Problem: Some rare beta branches with little/ incomplete information; infer these additions
- Conversion approach
 - Measure beta spectra directly
 - Convert to \overline{V}_e using 'virtual beta branches'
 - **Problem:** 'Virtual' spectra not well-defined: what forbiddenness, charge, etc. should they have?
- Devised in 50's, each method has lost and gained favor over the years

Carter, *et al*, Phys. Rev. 113 (1959) King and Perkins, Phys. Rev. 113 (1958)

Predicting $S_i(E)$, Neutrinos Per Fission

• Early 80s: ILL \overline{v}_e data fits newest *ab initio* spectra well

i.e.: Davis, Vogel, *et al.*, **PRC** 24 (1979) ILL: Kwon, et al., **PRD** 24 (1981)

 I980s: New reactor beta spectra: measurements conversion now provides lower systematics

> Schreckenbach, et al., Phys Lett B160 (1985) Schreckenbach, et al., Phys Lett B218 (1989)

I 990s: Bugey measurements fit converted spectrum well

B.Achkar, et al., Phys Lett B374 (1996)

 I980s-2000s: Predicted, measured fluxes agree in Russian, EU, US exps.

Recent History: Problems Emerge

0.15

0.10

0.05

0.00

-0.05

φ-φITT)/φITT

- Start with ab initio approach
- Subtract this from ILL beta spectra
- Use conversion procedure on remaining beta spectrum: ~10%
- OR Huber: virtual branches only
- Change in flux/spectrum
 - Predicted and measured fluxes no longer agree.
 - Spectrum shifted to higher energy

Even More Recent History: More Problems

- Spectra from θ_{13} experiments disagree with predictions
 - So now, not only the flux, but also the spectra disagree with predictions.
- Let's go over these in a little more detail.

Recent Spectral Measurements

θ_{13} Experiments

- Large detectors: 10s-ton single-volume LS target
- Long baselines from conventional cores: 0.1 2.0 km
- 'Large' overburdens: 100+ MWE
- Qualities allow low-background, high-resolution measurements

Daya Bay

- Spend a little more time on Daya Bay, since it's my specialty
 - >2σ deviation from Huber/Mueller(U238) over entire spectrum
 - Zoom in on particular region from 4-6 MeV: >4 σ deviation from prediction
 - Hints at deviation in other regimes: perhaps not just a 'bump'
 - Also, don't forget the 5.3% flux deficit reported at Neutrino2014...

RENO and **Double** Chooz

- RENO: 3.5σ deviation from prediction in vicinity of 5MeV
- Double Chooz: $I.5\sigma$ deviation over full energy range
 - Coming: more stats of largely unoscillated neutrinos with new near detector
- Note that 'bump has negligible effect on θ_{13} rate+shape fits.

Skeptical Questions

- These results indicate that measured nuebar spectra do not match predictions based on beta spectrum conversion
- Before we go there:
 - 'Maybe it's just a background that hasn't been properly accounted for...'
 - 'Maybe this is just an absolute energy scale issue'
 - 'Is there any other strange behavior in the way this excess pops up in the data?'

Skeptical Question I

'Maybe it's just a background that hasn't been accounted for.'

Reconstructed Energy (MeV)

Skeptical Question 2

'Maybe this is just an absolute energy scale issue'

No bump or other strange behavior in B-12 spectrum WRT prediction

Experiments' electronics (and attendant non-linearities) differ greatly, but all see the same structure.

Skeptical Question 3

RENO Preliminary

RENO Preliminary

Events/MeV ≥ ₩30000 3500 Far detector Near detector 'Is there any other strange 3000 Data - Data a25000 MCosc MCosc behavior in the way this 2500 $sin^2 2\theta_{13} = 0.100$ $sin^2 2\theta_{11} = 0.100$ 20000 2000 $\Delta m_{f_1}^2 = 2.32 \times 10^{-3} \text{ eV}$ $\Delta m_{1.}^2 = 2.32 \times 10^{-3} \text{ eV}^2$ excess pops up in the data?' 15000 1500 10000 1000E 5000 500 MC) / MC 0.2 (Data - MC) / MC **RENO** Fa **RENO** Near 0.15 0.05 No time-dependent -0.05 -0.05 spectral changes observed Prompt Energy [MeV] Prompt Energy [MeV] 0.22 0.2 Detectors see the same general feature vents (Unity Normalization) 0.18 0.16 eks 17-24 0.14 AD4+AD5+AD6 eks 25-32 AD1+AD2+AD3 0.12 0.1 0.08 0.06 0.04 0.02 1.1 Ratio to Average 1.05E Daya Bay Daya Bay **Preliminary Preliminary** 0.95 0.85 10 12 6 Prompt energy (MeV) Prompt energy (MeV) Prompt Positron Energy (MeV) 10

Piling On

Events

300

250

200

150

100

50

- Not just one faulty experiment broad agreement.
- Different electronics and scintillator (to some degree)
- Overburdens, backgrounds vary widely between experiments
- Other notable results:
 - CHOOZ: A hint present, low CL
 - Bugey3: Seems like no feature is present?
 - Large non-scintillating volume in target? Binning?
 - Something else?

Discussion and Implications

Discussion

- Visible discrepancy between measured and predicted fluxes
- Root cause could be systematics in θ_{13} experiments, but good evidence exists to doubt this
- Could predictions be the root cause? How exactly?
- What else can we do to clarify the picture?
- How does this relate to non-proliferation? Applications?

Forbidden Decay Handling in Conversion

 Conversions make simple assumptions about forbidden-ness of involved beta branches

- Capable of shifting predicted flux downward by 5%
- Has not been shown what forbidden decay treatment would reproduce both reactor beta and nuebar spectra but it might be possible to do so

FIG. 3: Different treatments of the forbidden GT transitions contributing to the antineutrino spectrum summed over all actinides in the fission burn in mid-cycle [21] of a typical reactor. The left panel shows the ratio of these antineutrino spectra relative to that using the assumptions of Ref. [4]. The right panel shows the spectra weighted by the detection cross section, where the additional curve in black uses the assumptions of Ref. [4]. The spectra are strongly distorted by the forbidden operators, being lower below the peak and in some cases more than 20% larger above the peak than Ref. [4]. The corresponding change in the number of detectable antineutrinos relative to [4] is -0.75%, 5.8% and 1.85% for the $0^-, 1^-$, and 2^- forbidden operators, respectively.

Recent Ab Initio Predictions

- What if we just compare measured shape directly to *ab initio*?
 - Much better agreement in spectrum
 - Not so much on the overall flux...
 - Some spectral features also present in *ab initio* calculations from Mueller, *et al*.

New Data, New Constraints

- Q: How do we clarify this picture?
 - A: Make new measurements, get more handles!
- Upcoming short-baseline experiments have opportunity to measure absolute spectrum while searching for oscillations
 - High statistics: certainly on par with θ_{13} measurements
 - Better resolution = better discrimination power between models
 - HEU spectrum measurement = additional handle to test models
- Further clarity can be valuable to neutrino, nuclear, nonproliferation, and applications communities

Implications for Non-Proliferation

- What is spectral shape difference between U-235 and Pu-239?
 - Huber, Mueller predict spectral difference, but don't predict the right spectrum
 - Ab initio calculations also suggest a spectral difference, but not identically
- Without this knowledge, more uncertainty in modelling/ demonstrating Pu239 production monitoring with antineutrinos
 - Measuring this difference directly could resolve this uncertainty, provide fodder for model-fitting

23

Implications for Nuclear Applications

రి

- Why is there more decay heat than predicted 3-3000s after a reactor is turned off???
- Means we need higher cooling safety factors during reactor-off periods: this costs \$\$\$!!!
- 5 MeV nuebar 'bump' produced by many isotopes of great concern to this decay heat measurement
- High-res measurement may constrain individual isotopes
 - Direct check on concerning **ENSDF** nuclear data
 - TOTALLY different systematics!
 - Isotopes: Rb-92, Sr-97, Cs-142

Figure 3. Electromagnetic decay heat following thermal fission burst of ²³⁹Pu - data from JENDL, JEF-2.2, JEFF-3.1 and ENDF/B-VI are shown together with experimental data from Yayoi, Lowell and Oak Ridge National Laboratory

Implications for Oscillation Physics

- Pointed out yesterday: can we really use existing flux uncertainty estimates in our SBL sterile searches?
 - θ_{13} experiments appear to show these error bands are too small

Implications for Oscillation Physics

- Will fine structure affect measurement of mass hierarchy?
 - Magnitude of spectral features in flux comparable to that of mass hierarchy
 - However, hierarchy gives very distinct energy-dependent signature
- Knowledge of underlying structure will improve confidence in a hierarchy-related spectral distortion measurement

Summary

- State-of-the-art reactor spectrum predictions are not matched by recent direct nuebar spectrum measurements
- These are the same predictions used to:
 - Produce reactor flux estimates for the 'reactor antineutrino anomaly'
 - Benchmark neutrino oscillation results
 - Demonstrate Pu-239 production monitoring using antineutrinos
- New high-resolution measurements of HEU and LEU fuel will be essential to clarifying this picture

END

Historical Context

- A similar experimental setup in the past: Bugey-3
 - Segmented short-baseline LiLS detector
- PROSPECT Pros:
 - Smaller reactor core, closer to core: better for SBL oscillation search
 - Stable scintillator: Bugey's degraded after a few months in near detector!
 - Smaller target dead volume: ~2% versus >15% for Bugey
 - Aim for better light yield, PSD
- PROSPECT Con: No Overburden
 - 14+ mwe (Bugey-3), <10 mwe (PROSPECT)
 - Bugey had 25:1 S:B

Beta Decay Recap

30

E, [MeV]

Reactor Spectroscopy: Example

- TAGS: Total absorption gamma spectroscopy
- Measure total gamma energy, not individual gamma energies
- Allows ID of levels, BRs much easier

- If branching ratios are known better, decay released in those decays will be modelled better
- Better model = smaller safety factor = \$\$\$ saved.