Water-based Liquid Scintillator

Minfang Yeh

Neutrino and Nuclear Chemistry, Brookhaven National Laboratory

a passion for discovery

AAP-2014, Paris, Dec. 15-16, 2014

Liquid Scintillator Physics

<u>Ονββ</u> (e.g. SNO+, KamLAND-Zen) <u>Reactor v</u> (e.g. Daya Bay, PROSPECT, JUNO)

Other Applications (e.g. Nonproliferation, source -v, DM) between detectors
Liquid Scintillator

Common features

(Metal-loaded & Water-based)

unique requirement for individual detector Ion-beam therapy <u>&</u> TOF-PET scan

<u>Solar & Geo v</u> (e.g. LENS, Borexino, KamLAND) Accelerator Physics (e.g. NOvA, T2K, SNS, MLF)

Brookhaven Science Associates 12/16/2014

Isotope-doped Liquid Scintillator for Neutrino Physics and Other Applications

BNL-Liquid Scintillator Development Facility

- A unique development facility (since 2002) for Radiochemical, Cherenkov, and Scintillator (water-based and metal-doped) detectors for particle physics experiments.
- (LENS), Daya Bay, SNO+, PROSPECT, LZ, WATCHMAN, ASDC(?)

Brookhaven Science Associates 12/16/2014

Water-based Liquid Scintillator

- Tunable scintillation light from ~pure water to ~organic (LAB, PC, DIN, PXE, PCH, EJ309):
 - Water-like WbLS: A cost-effective scintillation water with Cherenkov and Scintillation detection
 - **Oil-like** WbLS: A novel technology for loading various isotopes, particularly for hydrophilic elements, in scintillator

Oil-like WbLS (Isotope Loading)

- Conventional method has been successfully applied to reactor \bar{v}_e detection (e.g. Gd-LS)
 - mixing ligands are mostly quencher
 - difficult for hydrophilic isotopes
- WbLS provides a new method of doping hydrophilic metallic isotopes in scintillator

- Lithium-doped scintillator detector
 - Solar neutrino (⁷Li, 92.5% abundance)
- Reactor antineutrino (⁶Li, 7.6% abundance)

Tellurium-doped scintillator detector

- Double-beta decay isotope (¹³⁰Te, 34% abundance)
- Future ton-scale $0\nu\beta\beta$

Lead-doped scintillator calorimeter

- Solar neutrino
- Total-absorption radiation detector

Brookhaven Science Associates 12/16/2014

Solar Neutrino Targets

¹¹⁵In + $\nu_e \rightarrow {}^{115}$ Sn + e⁻ + ($\tau = 4.76 \ \mu s$) 2 γ (LENS)

- High nature abundance at 95.7%
- Low Q value at 114-keV, sensitive to >95% pp continuum
- Triple coincidence allows tagging of v_e event
- 6-8% loading with conventional organometallic technology

$^{208}Pb + v_e \rightarrow ^{208}Bi^* + e^- \& ^{208}Pb + v_x \rightarrow ^{208}Pb^* + v_x (HALO)$

- Abundance at 52.4%
- Bursts of neutrons via CC and NC
- Neutron detection by IBD reaction using scintillator (²⁰⁸Pb is a double magic nuclei)
- Targeting 10% ^{nat}Pb using WbLS (aligned with medical applications)

$^{7}\text{Li} + v_{e} \rightarrow ^{7}\text{Be} + e^{-1}$

- group state ($E_{thresh} = 0.861 \text{ MeV}$) and first excited state ($E_{thresh} = 1.339 \text{ MeV}$)
- High abundance at 92.5%
- Conventional organometallic loading is not stable (e.g. Bugey-3)
- 1~3% loading using WbLS (aligned with short-baseline reactor experiments)

Few others: ¹¹B, ³⁵Cl, ³¹P,..., etc.

Brookhaven Science Associates 12/16/2014

⁶Li-WbLS (PROSPECT)

- A Li-doped LS that has been stable over 1.5 years (light-yield and optical better than commercial product) for PROSPECT
 - Gd-LS also performed well (but 8-MeV γ 's)
 - Background investigations (20-L) at the selected reactor site
 - Plan to start full-scale 2-ton ND in 2015
- 2D-PSD to distinguish IBD events from
 - Cosmogenic fast neutrons
 - Reactor-related gammas
- Continue R&D for higher loading at ~0.15%

Water-Like WbLS

- A new liquid medium utilizing nonlinear light-yield as a function of scintillator % and superior optical property of water for physics below Cerenkov (e.g. nucleon decay) or low-energy neutrino detection
- Cherenkov transition
 - λ overlaps with scintillator energy-transfers will be absorbed and re-emitted to give <u>isotropic</u> light.
 - λ emits at >400nm will propagate through the detector (<u>directionality</u>).
- PID using timing cut and energy reconstruction to separate the directional Cherenkov (fast) and isotropic scintillation (slow, controllable)
- Cost-effective and environmentally friendly for a large scintillation Cherenkov detector

WbLS for Proton Decay

- Proton decay remains to be one of the top challenges
- A simulated event with 90 scintillation photons/MeV in a SK detector for $p \to k^+ \overline{v}$
- An order of magnitude improvement over the current SK sensitivity (2.3×10³³ yrs)
- $K^+ \rightarrow \mu^+ + v_{\mu}$ (63.47%)

<u>WbLS S% vs. A.L. for $p \rightarrow k^+ \overline{v}$ </u>

Water-likeWbLS Physics (now)

• 3-D medical Imaging and TOF-PET (10% Gd- or Pb-WbLS)

LABORATORY

13

Advanced Scintillation Detector Concept (ASDC)- WbLS future

- 50-100 kton WbLS target
- High coverage with ultra-fast, high efficiency photon sensors
- Deep underground (e.g. 4800 mwe Homestake mine, SD)
- Complementary program to proposed LAr detector at LBNF (P5, Scenario-C) with comprehensive low-energy program
 - Long-baseline physics (mass hierarchy, CP violation)
 - Neutrinoless double beta decay
 - Solar neutrinos (solar metallicity, luminosity)
 - Supernova burst neutrinos & DSNB
 - Geo-neutrinos
 - Nucleon decay
 - Source-based sterile searches

- Concept paper arXiv:1409.5864: 50 authors (potential PIs), 23 institutions
- Large international community with interest and experience; <u>New</u> <u>participation welcome</u>

Brookhaven Science Associates 12/16/2014

Concepts to be demonstrated

- Stability of Cocktail
- Scintillation light below Cherenkov
- Cherenkov/scintillation separation
 - WbLS cocktail tuning
 - Slow timing
- Cherenkov light yield
 - Cherenkov light below 400nm being transferred
- Attenuation length
 - Bench-top scale demonstrated; need long arm measurement
- Reconstruction & particle ID
 - Background rejection
- Isotope loading
 - $0\nu\beta\beta$, solar, n tagging

Brookhaven Science Associates 12/16/2014

Sci. light below Che. thresh.

Low-intensity Proton-beam 3 runs

3 low Intensity Proton Beams

210 MeV	dE/dx ~ K+ from PDK
475 MeV	Cerenkov threshold
2 GeV	MIP

4 Material Samples

Water	pure water
WbLS 1	0.4% LS
WbLS 2	0.99% LS
LS	pure LS

2 Detectors

Brookhaven Science Associates 12/16/2014

Attenuation length: Optical Model

- Extinction coefficient (scattering + absorption)
 - 2-m system to verify the extinction length
 - UV spectrometer (10-1 to mitigate Fresnel reflection) to measure molar extinction coefficient of each component of WbLS

$$\mathbf{A} = (\varepsilon_1 \mathbf{c}_1 + \varepsilon_2 \mathbf{c}_2 + \varepsilon_3 \mathbf{c}_3 + \dots) \times \lambda$$

- Absorption is predictable
- Scattering is complicated
 - Rayleigh, Mie, ..., etc
- Optical model successfully predicts the attenuation length of LAB + PPO + bis-MSB (verified by 2m system)

Scattering needs improvement Work-in-Progress

$\frac{WbLS \text{ at } \sim 100 \text{ photons/MeV}}{\text{Emission by } \lambda_{\text{ext.}} = 260 \text{nm}}$

Radiation Hardness

No observable light-yield loss of 5%WbLS up to 1000Gy using NSRL proton beam and CERF Gamma sources

Circulation of WbLS

Figure 5 Time-course analysis of consortium growth at different linear alkylbenzene sulfonate concentrations (in mg $|^{-1}$): (\blacklozenge) 10; (\blacktriangle) 20; (\blacksquare), 50; and (\blacklozenge) 100. Values are means \pm standard deviations for three replicates.

• extensive studies by environmental researches in academia and industry

- Biodegradable?
 - Surfactant degradation only occurs at <50mg/L.
 - Surfactant at 100mg/L or higher completely inhibits bacteria growth
- 1% WbLS is 10⁵ mg/L
- Stable in acrylic, PP, some polycarbonate, etc.
- Oil-like WbLS doesn't require circulation (e.g. Daya Bay, SNO+, PROSPECT)
 - Water-like WbLS might not need circulation with careful selection of vessel and materials-in-contact
 - Passing 0.1 micron filter
 - Radon daughters?
- Ongoing test with bacteria testing kit

Brookhaven Science Associates 12/16/2014

Material Compatibility

- serving to several experiments (SNO, SNO+, Daya Bay, PROSPECT, LBNEwater, T2K)
- High s/V ratio (or elevated temp) to speed up the test
- Impact of material to liquid (UV, XRF, 2-m attenuation system)
- Impact of liquid to material (AFM and FTIR-microscope)

Concepts (to be) demonstrated

	Stability of Cocktail	\checkmark
	Scintillation light below Cherenkov	\checkmark
	Cherenkov/scintillation separation	?
	• WbLS cocktail tuning $$	
	• Slow timing $$	
\longrightarrow	Cherenkov light yield	?
	Cherenkov light below 400nm being transferred	
\longrightarrow	Attenuation length	?
	Bench-top scale demonstrated; need long arm measurement	
	Reconstruction & particle ID	?
	Background rejection	
•	Isotope loading	\checkmark
	• $0\nu\beta\beta$, solar, n tagging	
Demo	onstrators are under construction	~
haven Science A	ssociates NATIONAL LAB	EVEN ORATORY
2/16/2014	M. Yeh AAP2014	23

Brook

Conclusions

- Principals of WbLS detection and isotope loading have been proven; applied to several ongoing and/or newly proposed experiments already.
- The developments of a large WbLS detector with fast timing and Cherenkov and Scintillation separation (ASDC) for multi-physics searches are ongoing.

