

 8°

ANew T2Ke oscillation results

Federico Sánchez IFAE (Barcelona)

1

< →

Ø.

Neutrino oscillations

Œ

Similar to quarks, flavour and Lorentz eigenstates of massive neutrinos are not identical.

The two eigenbases are related through the Pontecorvo-Maki-Nakagawa-Sakata matrix (UPNMS).

$$
U_{PNMS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}
$$

3

< +

$$
\begin{pmatrix} \nu_e & \nu_\mu & \nu_\tau \end{pmatrix} = U_{PNMS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}
$$

- With 3ν , there are 3 angles and 1 imaginary phase:
- The phase allows for CP violation similar to the quark sector.
- There are also 2 values of Δm^2 : traditionally Δm^2 12 & Δm²23.

n

< →

- δ _{CP} accessible through:
	- comparison of appearance with reactor disappearance.

What is missing

- comparison of $V_{\mu} \rightarrow V_{e}$ and $\overline{V}_{\mu} \rightarrow \overline{V}_{e}$
- The θ_{23} octant:
	- The θ_{23} is close to 45 $^{\circ}$
- The absolute neutrino mass.
- The mass hierarchy: is $m_3 > m_1$?

T

 $\nu_{\mu} \rightarrow \nu_{\mu}$

 $\begin{picture}(130,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($

 $\nu_{\mu} \rightarrow \nu_{e}$

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

 \blacksquare

History

- 1999 Ko Nishikawa and Yoji Totsuka formulate $v_{\mu} \rightarrow v_{e}$ experiment at J-PARC.
- 1999-2004 K2K finds the first evidence of neutrino oscillation in a Long Base Line experiment.
- 2000-2004 Letter of Intent; Detailed design; Formation of international collaboration.
- 2004 Five year construction plan for T2K approved by Japanese government.
- February 2008, finished ND280 pit construction.
- May 2008, installation ND280 magnet.
- April 2009 Commissioning of beamline.
- January 2010 First neutrino events for neutrino oscillation studies.
- March 2011 Great East Japan earthquake.
- June 2011 T2K announces 2.5 σ "indication" of $v_{\mu} \rightarrow v_{e}$
- March 2012 T2K resumes data taking after earthquake recovery.

T2K collaboration

~500 member, 59 institutions, 11 countries.

R

← →

 $\frac{1}{2}$

Beam ND280 Super-Kamiokande

m

m

J-PARC

EXCELENCIA SEVERO
OCHOA

Joint Project between KEK and JAEA

i El

ν beam

Œ

Beam stability

Muon monitor downstream the beam dump monitors beam direction. Stability requirements < 1mrad

1 mrad change of ν beam direction results in 2-3% change of the neutrino energy scale (~16MeV)

Data sets

- Total delivered beam: 6.63×10^{20} protons on target.
	- 8.3% of the expected T2K PoT (7.8x10²¹PoT)
	- v_{μ} \rightarrow v_{e} and v_{μ} \rightarrow v_{μ} analyses uses 96.3% of acquired Run 1-4 PoT.

SEVERO
OCHOA

T

Flux prediction

í I

< →

NA61: Shine

NA61/Shine measures for T2K the production of pions and kaons as function of the momentum and angle for protons interacting with carbon.

NA61/Shine measures a thin target for absolute production and thick target that is a copy of T2K target and provides also the reinteractions.

m

Flux prediction

- Simulation is carried out by Fluka2008 3d.
- The pion and kaon production is weighted to the results from NA61-Shine.
	- "A priori" flux error: \sim 15% below $@$ 1 GeV.
- Strong correlation between near and far detector.

T

σν^N

When E_v>100MeV the v-Nucleus cross-section dominates.

SEVERO
OCHOA

í I

Off-axis concept

T2K runs 2.5º off-axis

30 GeV protons

• off-axis optimises the flux at the maximum of the oscillation.

2.5º

í I

← →

off-axis reduces the high energy contamination (NCT^0 and non-CCQE backgrounds.)

í I

 $\frac{1}{2}$

Beam ND280 Super-Kamiokande

m

ND280

• ND280 is the near detector facility with two main detectors located 280m from the proton interaction point:

 $\left\langle \cdot \right\rangle$

- On-axis INGRID.
- Off-axis ND280m.
- Three main purposes:
	- ^ν beam stability.
	- v cross-sections.
	- v beam flux constraint.

On-axis (INGRID)

INGRID counts ν CC events in a cross of 13 identical detectors:

total rate monitors beam intensity stability with respect to proton on target counting.

The relative event counts between modules monitor the beam direction stability.

E

On-axis: beam stability < →

Beam alignment and flux measured with neutrinos

- Neutrino rate stable within 0.7%.
- Beam direction variation << 1 mrad.

T

Off-axis: ND280

- Off-axis ND280 is a detector complex with tracking calorimeters, time projection chambers and Electromagnetic calorimeters in the UA1/Nomad 0.2T magnet.
	- ^ν interaction target polystyrene (CH) and water.
	- Particle ID by dE/dx and calorimetry.
	- Charge sign by curvature.
- Specific $π⁰$ detector (P0D) made of water, CH and brass optimised for NC π ⁰ measurement.

Magnet was granted by CERN

◆ →

R

Off-axis: νμ analysis < →

- The ND280 constrains flux and cross-section.
- Sample of CC events is selected. Muon as highest momentum negative track in the event in the target fiducial volume compatible with muon Pid in TPC.
- The sample is divided in 3 categories: $0\pi^{+}$, $1\pi^{+}$ and others (mainly Deep Inelastic Scattering) based on the detection of pions in the event.
	- Pions are detected as tracks in TPC, FGD or Michel electron signature near vertex.

R

Off-axis: νμ analysis ← →

Off-axis ND280 analysis real events

H

í I

- Select highest momentum negative track starting in FGD to be compatible with electron according to TPC and ECAL PID.
- Subdivide the sample according to the presence of pions in the event.
- Use the v_e flux prediction after the v_{μ} flux and cross-section fit.
- Use $\gamma \rightarrow e^+e^-$ to constrain main background from $\pi^0 \rightarrow \gamma \gamma$

Nmeas e N_{e}^{pred} $= 1.01 \pm 0.06(stat) \pm 0.06(flux \oplus x/sec) \pm 0.05(det \oplus FSI)$ N_γ^{meas}

 $\frac{1}{N^{pred}_{\gamma}}$

arXiv:1403.2552

 $= 0.64 \pm 0.10$

$$
\mathbf{Z} \mathbf{R} \boxed{\mathbf{m}_{230}}
$$

E

Off-axis: Ve analysis

ν_e events at the ND280 P0D detector calculated with 8.6x10¹⁹ PoT.

 $Data - Back_{MC}$ *SignMC* $= 0.91 \pm 0.13(stat) \pm 0.18(det) \pm 0.13(flux)$

In good agreement with the tracker V_e measurement

SEVERO

 \blacksquare

ND280 other analysis < →

EXCELENCIA SEVERO
OCHOA

i B

H

Cross-sections

- The T2K signal is the CCQE events. The 2 body kinematics allow to estimate the neutrino energy. $\nu_\mu n \to \mu^- p$
- Other channels can be seen as backgrounds to the CCQE signal.
	- We need to identify the channel by using the hadronic component of the interactions.
- At T2K energies there are many channel thresholds ($CCLT^+$, $CCLT^0$, CC Deep Inelatic Scattering, …)
- Cross-section models are not precise.
- Final state interactions inside the nucleus alter the hadronic component.

 $\left\langle \begin{array}{c} \mathbf{-1} \\ \mathbf{-1} \end{array} \right\rangle$

$$
E_{reco} = \frac{m_p^2 - (m_n - E_b)^2 - m_\mu^2 + 2(m_n - E_b)E_\mu}{2(m_n - E_b - E_\mu + p_\mu \cos \theta_\mu)}
$$

E_b is the binding energy

R

Cross-sections: unknowns <

SEVERO

F

Flux prediction -S

Beam ND280 Super-Kamiokande

H

Flux constraint

Neutrino Flux Model:

- Data-driven: NA61/SHINE, beam monitor measurements
- Uncertainties: modeled by variation of normalisation parameters (*b*) in bins of neutrino energy and flavour

Neutrino Cross Section Model (NEUT):

- Data-driven: External neutrino, electron, pion scattering data
- ! Uncertainties: modeled by variations of model parameters (M_A, p_F, E_b) and ad-hoc parameters

Constraint from ND280 Data

- Data Samples enhanced in CC interactions with 0, 1 or others (mainly multiple pions)
- Fit to data constrains flux, *b*, and cross section, $x=(M_A, p_F, E_b, ad-hoc, \ldots)$, parameters
- ! Constrained SK flux parameters and subset of cross section parameters are used to predict SK event rates

R

◆ →

Data from T2K Runs 1-4: 5.9x10²⁰ protons on target

Data are binned in two dimensions: muon momentum (p) and angle ($cos\theta$) preserving information on neutrino energy and interaction q^2

í T

Constrained flux

T2K SK ν_μ Flux
Cross-section parameters

T2K SK νe Flux

- T2K v_{μ} and v_{e} flux predictions are constrained by the fit.
- The cross-section parameters are also constrained.
- Plots show central values and error bands for normalisation parameters.

m

Covariance matrix

T2K SK flux parameters are constrained through their prior correlations with the ND280 V_{μ} flux parameters

Subset of cross section parameters are correlated at near and far detectors: $M_A^{\;QE},$ M_A^{RES} , low energy CCQE normalisation, low energy CC1 π normalisation.

I B

< →

H

Super-Kamiokande

- 50 kTon water Cherenkov detector. (22.5 KTon fiducial).
- $~11$ 000 20" PMT inner detector.
- ~2000 8" PMT outer detector to veto external background.

R

SK: particle ID

The expected angular distribution of Cherenkov photons along the primary particle direction is different in electrons and muons:

• The electron is not sharp due to Multiple Scattering & showering.

T

Super-Kamiokande & π⁰ + 1

- The misidentification of π^0 and electrons happens when one photon is not identified:
	- The two electron-like rings overlap.

 Π^0

γ γ

- One of the two e-like rings is faint and it is lost in the Cherenkov light of the other photon.
- Or with 2 γ, the invariant mass of the photons has poor resolution.

Super-Kamiokande & π⁰⁴

- New algorithm can also use the best-fit likelihood ratio to distinguish e from $π⁰$
	- Even if 2^{nd} photon is identified, it may be on the tail of the π ⁰ mass resolution.
	- In this case, the 2-ring likelihood will still be preferred and the event is identified as π^0
- 2D cut removes $70%$ more $π⁰$ background than previous method for the same signal efficiency.

Likelihood Ratio vs π^0 Mass

F

νμ selection

T

νe selection

Distance from π^0 cut line

T

Reconstructed v Energy (GeV)

Reconstructed v Energy (GeV)

í I

MR

ν oscillation analysis

 $O₁$

à.

Beam ND280 Super-Kamiokande

í I

T₂

 \bullet

νμ disappearance

Flux x σ_{νN}

Expected number of events in absence of oscillations: 446.0 ± 22.5 (syst).

• Observed number of events: 120

 6.57×10^{20} PoT

Energy reconstruction assuming CCQE

i B

The θ_{23} octant

• In the limit: Δm^2 $_{12}$ << Δm^2 ₂₃ the disappearance probability is given by:

 $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4 \cos^2 \theta_{13} \sin^2 \theta_{23} [1 - \cos^2 \theta_{13} \sin^2 \theta_{23}] \sin^2 (1.27 \Delta m_{32}^2 L/E_{\nu})$

- If $\theta_{13} = 0$
	- $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 4 \sin^2 \theta_{23} [1 \sin^2 \theta_{23}] \sin^2 (1.27 \Delta m_{32}^2 L/E_{\nu})$ $1 - 2\sin^2 2\theta_{23} \sin^2(1.27\Delta m_{32}^2L/E_\nu)$
- If θ_{13} != 0 and θ_{23} ~45°, the v_{μ} disappearance is sensitive to the octant $(i.e. P_{Vµ} \rightarrow _{Vµ}(θ_{23} >45°) $\neq P_{Vµ} \rightarrow _{Vµ}(θ_{23} >45°)$$
- The right parameter is sin² θ_{23} and not the traditionally used sin²(2 θ_{23})
- Uncertainty in θ_{13} needs to be propagated.

F

νμ disappearance

 $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4 \cos^2 \theta_{13} \sin^2 \theta_{23} [1 - \cos^2 \theta_{13} \sin^2 \theta_{23}] \sin^2 (1.27 \Delta m_{32}^2 L/E_{\nu})$

T2K already dominates the measurement of mixing angle.

i B

νμ disappearance

 $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4 \cos^2 \theta_{13} \sin^2 \theta_{23} [1 - \cos^2 \theta_{13} \sin^2 \theta_{23}] \sin^2 (1.27 \Delta m_{32}^2 L/E_{\nu})$

T2K already dominates the measurement of mixing angle.

i B

T₂

 Ω

νe appearance

 $7.6 \times 10^{-5} \text{ eV}^2$ Δm^2_{12} Δm_{32}^2 $2.4 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{23}$ 1.0 $\sin^2 2\theta_{12}$ 0.8495 δ_{CP} 0 degree

Analysis method

- We scan over sin²2 θ_{13} space to find the best fit value of $\sin^2 2\theta_{13}$, where the likelihood (\mathscr{L}) becomes maximum.
- Likelihood is calculated by comparing the number of observed events (N_{obs}) and the electron momentum & angle ($p-\theta$) distribution with MC.
- We fix the oscillation parameters other than $\sin^2 2\theta_{13}$.

1 B

i B

νe appearance

í I

νe appearance

Assuming $\delta_{\text{CP}}=0$, normal hierarchy, $|\Delta \text{m}^2_{32}|$ =2.4×10⁻³ eV², sin²2 θ_{23} =1

í I

← →

Joint analysis

Likelihood ratio fit *to both* v_{μ} *+* v_{e} *event)samples)*

Accounting for correlations in the parameter space $(\theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{32}^2)$

Including constraint from reactor experiments *Daya Bay*, *RENO*, *Double Chooz*

 $sin^22\theta_{13} = 0.095 \pm 0.010$ (PDG 2013)

I B

← →

Joint analysis (Bayes)

Assuming flat priors for $sin^2\theta_{23}$, $|\Delta m^2_{32}|$; P(NH) = P(IH) 0.5

← →

Markov Chain Monte Carlo (MCMC) with both T2K-SK $v_{\mu} + v_{e}$ *and ND280 samples*

Can easily marginalize over e.g. mass hierarchy (MH)

And compare the probabilities for each MH and θ_{23} octant combination

R

a.

H

Upgrade plan

- Planned J-PARC Main Ring (MR) power improvements 220 kW operation in CY2014. Integrated 6.7x1020 PoT to date.
	- Linac upgrade to be completed within a year. Expect range of steady MR operation for neutrino between 200-400 kW
	- Planned MR upgrade (depends on funding). Up to 750 kW
	- Possible staged upgrade scenario:
		- 1. Double current protons on target.
		- 2. Next-to-next doubling.
		- 3. If MR upgrade, reach full planned statistics (78x10²⁰ PoT).

B

← →

Future δ_{CP} sensitivity <= 1

7.8x1021 PoT + 2012 systematics

i Bi

Future δ_{CP} sensitivity < +

T2K + Nova + reactor

i B

Concluding remarks als

- T2K has shown the first evidence (7.4 σ significance) of the appearance of v_{e} in a v_{μ} beam with only 8.3% of the total T2K statistics.
- Also measurement of $v_{\mu} \rightarrow v_{\mu}$ which favours maximal mixing. Oscillations at "atmospheric" baseline are now precision measurements
- This success is the result of a combined effort of JPARC accelerator increasing the PoT statistics (x2 in one year!) and T2K analysis improvements reducing the systematic errors.
- T2K will continue to run and benefit from planned J-PARC Main Ring (MR) power improvements 220 kW operation in CY2014.
- T2K horn system designed to easily switch from neutrino to anti-neutrino beams.
	- Proposed a pilot run with antineutrinos in May 2014.

Support slides

F.Sánchez (IFAE) LPNHE Seminar 5th May 2014

66

-PARC accident

11:55 on May 23

- An abnormal proton beam was injected to the gold target.
- The target heated up to a extraordinarily high temperature.
- Radioactive material was released from the target.
- The radioactive material was leaked into the HD hall: xWorkers were exposed to radiation.
- The radioactive material was released to the outside of the radiation controlled area and to the environment outside of the HD hall.

i B

← →

θ13: other results < +

Strong confirmation of oscillation-interpretation of observed $\bar{\nu}_e$ deficit

Reactor experiments measure θ_{13} with no degeneracies.

m

νe analysis

F.Sánchez (IFAE) LPNHE Seminar 5th May 2014

69

m

p-value is calculated as followings:

- 1. Generate 1e15 toy experiments with $sin^22\theta_{13}=0.0$.
- 2. Fit each toy experiment to extract $-2\Delta ln L$ (= $\Delta \chi^2$).
- 3. p-value is the fraction of toy experiments above $\Delta \chi^2$ _{data}

For the actual calculation, we use time saving method.

- We only fit the data if N_{obs} > 24.

- We do not throw systematic parameters for 1e15 times.

i B

Sensitivity checks

We fit the toy MC experiments (true $\sin^2 2\theta_{13}=0.1$) to check the sensitivity. The averaged ln L curves ↓ are generated by averaging 4000 toy experiments.

E

Sensitivity checks

Significance becomes much Signmearice becomes much effect of using fit Qun is

not significantly large but important.

Significance is not much diferent for toy MC, because the N_{exp} become smaller with new BANFF while the errors are improved.

i B

Fake data fit results

m

ikelihood curves for Run1-4 data⁺ | +

(summary table will be shown

F.Sánchez (IFAE) LPNHE Seminar 5th May 2014 at er.)

SEVERO
OCHOA

74

 \blacksquare

Best fit distributions (Run1-4, normal

Fit summary table

H

< 0

ystematic errors for Nexp^{orts}

(unit: %)

 $\begin{array}{ll} \texttt{EXCELENCIA} \\ \texttt{SEVERO} \\ \texttt{OCHOA} \end{array}$

m

ystematic errors for Nexp⁴¹⁵

 $\begin{array}{l|l} \texttt{EXCELENCIA} \\ \texttt{SEVERO} \\ \texttt{OCHOA} \end{array}$

í I

Systematic errors for Nexp +1+

EXCELENCIA
SEVERO
OCHOA

Œ

New reconstruction validation + | +

Validation with stopping muons

SEVERO
OCHOA

i Bi

 \circ

 \circ

Ò.

۵

T2

 0.1

 $@$

 \bullet

1. p interaction inside the carbon target with FLUKA2008.3d 2. Tracking through horn fields and decay volume using GEANT3 with GCALOR Calculate neutrino producing decays Estimate the flux at the near/far detector

i B

 $\overline{\mathcal{D}}$

 \circ

ND280

 $O₁$

 $@$

Ò.

۵

n

Detector systematics +1+

F.Sánchez (IFAE) LPNHE Seminar 5th May 2014

< +

m

Post-fit ν_μ ND280 < →

- Use beam and cross section parameters obtained from the constrained fit to the ND280 v_{μ} (p_{μ} , cos θ_{μ}) spectra to re-weight the MC.
- Improved agreement between the MC distributions, after post-fit re-weight, and the data.

EXCELENCIA SEVERO
OCHOA

CC-1-pion post-fit

 $\left\langle \begin{array}{c} \mathbf{1} \end{array} \right\rangle$

EXCELENCIA SEVERO
OCHOA

CC-Other post-fit

EXCELENCIA SEVERO
OCHOA

 \bullet

$$
\Delta x^2 = 2 \sum_{N_i^{pred}(\vec{b}, \vec{x}, \vec{d}) - N_i^{data} + N_i^{data} \ln[N_i^{data}/N_i^{pred}(\vec{b}, \vec{x}, \vec{d})]
$$

$$
+\sum_{i}^{E_{\nu} \text{ bins } E_{\nu} \text{ bins}} \sum_{j} (1-b_{i})(V_{b}^{-1})_{i,j}(1-b_{j})+\sum_{i}^{x \text{ sec parts xsec pars}} (X_{i}^{\text{norm}}-X_{i})(V_{x}^{-1})_{i,j}(X_{j}^{\text{norm}}-X_{j})
$$

$$
+\sum_{i}^{p,\cos\theta\;\mathrm{bins}}\sum_{j}^{p,\cos\theta\;\mathrm{bins}}(d_i^{nom}-d_i)(V_d^{-1})_{i,j}(d_j^{nom}-d_j)
$$

b = flux nuisance parameters *x* = cross section nuisance parameters *d* = detector/reconstruction model nuisance parameters V_{b} , V_{x} , V_{d} = covariance matrices (pre-fit uncertainties)

$$
N_i^{pred}(\vec{b}, \vec{x}, \vec{d}) = d_i \sum_{j=1}^{MC\text{ Events}} b_j x_j^{norm} w_j^{x}(\vec{x})
$$

Pre-calculated weight function for cross section parameters with nonlinear response

Results from Fit to ND280 Data & | \rightarrow

Test the data and constrained MC agreement with toy experiments:

Generated variations of models within prior uncertainties

Fit toy data in same manner as data

Record Δx^2 at minimum for each toy fit

 $\Delta\chi^2_{\rm min}$ =580.7 for data has p-value of 0.57

Data and Constrained Model (CC0π) 1

SEVERO
OCHOA

Data and Constrained Model (CC0π)

í T

F.Sánchez (IFAE) LPNHE Seminar 5th May 2014

SEVERO
OCHOA

New SK π0 analysis

EXCELENCIA SEVERO
OCHOA

E

π0 Fit Performance

- Previous T2K νe appearance cut: $m_{\pi0}$ < 105 MeV/c²
- The π^0 mass tail is much smaller for fiTQun
	- Significant spike at zero mass in standard fitting algorithm (POLFit)
- Lower plot: π^0 rejection efficiency vs lower photon energy
	- fiTQun is more sensitive to lower energy photons

 $\left\langle \begin{array}{c} \mathbf{-1} \end{array} \right\rangle$

SK systematics and control

sample

SK detector error estimation

- To evaluated SK detector systematic uncertainties, employ several control samples:
	- Atmospheric Ve samples (errors on Ve's), "Hybrid-π0" samples (errors on π 0's), Cosmic-ray muon samples, ...
- The errors evaluated with the control samples are combined with Toy MC method

Monday, July 15, 13

R

 $\overline{3}$

Basic distributions

103

í I

 $\overline{13}$

 $\left\langle \begin{array}{c} \perp \\ \perp \end{array} \right\rangle$

Control Samples

- Ve candidate sample ("core" sample) + rejected samples (three "tail" samples)
	- Selections: ring counting, PID , and $\pi0$ rejection
	- (cf. Ve candidates: I-ring & e-like & none π 0-like)

i B

 $\left\langle \begin{array}{c} \mathbf{L} \end{array} \right\rangle$

• Evaluate errors on 'Ve selection efficiencies' by fit the MC predictions to data by introducing the efficiency parameters ϵ , that describes event migration between 'core' and 'tail' samples

Monday, July 15, 13

R

 $\overline{7}$

Number of events in $p-\theta$ bins and control samples.

Monday, July 15, 13

T

8

SK error w/ atm-y fit

- Errors on number of ve candidates (n_{SK}) in 19 p- θ bins for 've CC single-electron' events and I bin for 'Ve CC other' events
	- Correlated error (red point): difference from the 'best fit'
	- Uncorrelated error (blue bar): fit error (stat. error)

Monday, July 15, 13

107

9

 $\left\langle \begin{array}{c} \mathbf{1} \\ \mathbf{1} \end{array} \right\rangle$

"Hybrid-TTO" samples

- "Hybrid- π 0" samples
	- Electron track from atm-V data is combined with γ from MC following π 0 decay kinematics

- Control samples:
	- Primary: electron from atm-V is used for the higher energy " γ ", and the lower energy γ from MC
	- Secondary: electron of atm-Ve (and decay-e from cosmicray μ) is the lower energy " γ ", and higher energy γ from **MC**

Monday, July 15, 13

R

 \mathbf{H}

iTOun π⁰ Fitter

- Assumes two electron hypothesis rings produced at a common vertex
- **12 parameters** (single track fit had 7)
	- Vertex (X, Y, Z, T)
	- Directions $(\theta_1, \phi_1, \theta_2, \phi_2)$
	- Momenta (p₁, p₂)
	- Conversion lengths (c1, c2)
- **Seeding the fit**

Use result of single-track electron fit

← →

- Scan over various directions with a 50 MeV/c electron and evaluate the likelihood Vertemction **Conversions V**
	- Choose the direction that yields the best likelihood Π^0 \ddot{x}
- First, fit while floating only p1 and p2
- **Do full 12 parameter fit**

Error matrices in p-0

• Error matrices for inputs to oscillation analyses in $p-\theta$ bins

Square-root of diagonal elements of covariance matrix

Correlation matrix

110

m

 $|9$

Error matrices in rec E_v

• Error matrices for inputs to oscillation analyses in Ev bins

Square-root of diagonal elements of covariance matrix

Monday, July 15, 13

 111

n

Cross-sections: FSI

Nucleus Final State Interactions (FSI)

- Interactions of final state hadrons in nucleus can cause migration from signal to background type events.
- Constrain with external pion-nucleus scattering data in a cascade model.
- Uncertainties assigned to span the pion-nucleus scattering data.

F

e0.7 ab1.6 cx0.4 1e0.7 ab1.6 cx1.6

ab0.6 cx0.6