

W/Z+jets MC and constraints from data

Samuel Calvet October 24th 2008

Talk inspired from the J-F Grivaz's one

@10-25 years of DØ France, Paris

W+jets MC and constraints from data

- Some definitions...
- Feedbacks from Z studies
 - Comparison data/MC
 - How do we improve our MC ?
- From Z to W
- Measurement of heavy flavor production (Z+b, W+b)

Some definitions... (boring but useful !)

- The MC based on Matrix Elements (ME) are LO/LL, so "k-factors" are needed
- Different ones for heavy flavor, for scaling data,... convention to avoid confusion, was adopted by D0 [J-F Grivaz]:
 - k-factor is purely theoretical, and denotes a (N)NLO/LO ratio of crosssections
 - k'-factor is also theoretical, and denotes a (N)NLO/LL ratio of crosssections. ALPGEN is ~LL
 - s-factor is empirical, and comes on top of k or k' to bring MC in agreement with data. (MC should be initially normalized to luminosity and all correction should be applied)
 - HF-factor is in principle theoretical, but in practice only theory inspired. It tells you by how much the heavy flavor production should be increased on top of k or k' and possibly s
 - s_{HF}-factor is empirical, and comes on top of k or k', s and HF to bring MC in agreement to data, after b-tagging

Data/MC comparison : $Z \rightarrow ee$, jet pT>15GeV, detector level

Data/MC comparison : $Z \rightarrow \mu \mu$, ≥ 1 jet, jet pT>20GeV, unfolded

Data/MC comparison : $Z \rightarrow \mu \mu$, ≥ 1 jet, jet pT>20GeV, unfolded

How do we improve our MC?

- Sherpa, Alpgen+... are "improved LO" (almost LL) MC
- It is not surprising they can not describe perfectly the data
- Fix : include NLO information into our LO MC
 - ResBos gives a ressummed differential cross-section of the Z boson in agreement to the data, in the low Z pT region

How do we improve our MC ? (here, alpgen+pythia)

- One can reweight alpgen events according to ResBos Z pT, in the low pT region
- Use the unfolded data to describe the pT above 30 GeV

How do we improve our MC ? (here, alpgen+pythia)

From Z to W simulation

- We know the Z pT simulation is not perfect, so there is no reason to assume the W pT simulation to be correct
- Unfortunately there is not W pT measurement with similar precision as for Zee on the market
 - ► Rely on theory for the W pT/Z pT ratio (NLO):
 - Melnikov-Petriello code
 - NLO ratio in agreement with NNLO ratio
 - use W pT from ResBos at low pT
 - use (unfolded data Z pT)
 x (NLO ratio) at high pT
 - At the moment, an additional scale factor is needed for W+2jets (~1.25)
 - Hopefully the W pT RW will fix it

DØ WORK IN PROGRESS

W+jets MC and constraints from data

ratio W/Z NLO

W→ev, ≥2 jets, jet 1 (2) pT> 30 (20) GeV

W+jets MC and constraints from data

k⁽⁾ and s-factors included

MC comparison : is there a matching effect ?

W+jets MC and constraints from data

What's about heavy flavors (HF) ?

Z+b-jets : $Z \rightarrow ee/\mu\mu$ +b

- Secondary vertex tagging
- Data corrected to hadron level
 - ► R=0.7 cone jets
- Measurement σ (Z+b-jets)=0.93 ±0.36 pb consistent with the theory 0.45±0.07 pb
- Surprisingly, pythia does a good job to predict the Z+b fraction
- Statistic limited

k^(')-factors included

W+jets MC and constraints from data

Jet n

W+c-jets : W $\rightarrow e/\mu\nu$ +c

- "Soft muon tagger" to select the c-jets Considering the 2 leptons:
- $N(W+c) = N^{OS-SS}_{tot} N^{OS-SS}_{bkg}$

 $\mathbf{k}^{(1)}$ and s-factors included

- **Result:**
 - $\sigma(W+1c) = 9.8 + / -2.8(stat)^{+1.4} (sys) + / -0.6(lum)pb$
 - In agreement with NLO prediction : 11^{+1.4} _ _ _ pb

W+jets MC and constraints from data

16

OS : opposite sign

SS: same sign

Conclusion

- Tevatron experiments get enough events to test precisely the prediction of V+jets signals backgrounds
 - It is an unavoidable step on the road to discoveries / (top quark) precision measurements
 - Manpower dedicated on the understanding/modeling of these backgrounds (for example, V+jets task force @ DØ)
 - The needed massages of the MC's are better and better understood
- Measurements and data/MC comparisons of V+HF are still limited by the statistic
 - but the first steps have been done !
- LHC will reap the benefits from all these works

Backup