the ALPGEN generator (v2.13)

Fulvio Piccinini

INFN, Sezione di Pavia

Top Workshop, October 24th, 2008

M.L. Mangano, M. Moretti, F.P., R. Pittau and A.D. Polosa JHEP 0307 (2003) 001

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Introduction to the code
 - available pocesses
 - single top
 - review of the MLM matching procedure
- Example of study of internal systematics for $t\bar{t}$ production
- Comparison with MC@NLO
- Summary

- ALPGEN is a matrix element event generator designed for simulation of final states with high jet multiplicity
- matrix elements calculated numerically by means of the ALPHA algorithm
- matching between matrix elements and parton showering implemented with the MLM procedure (see later)
- heavy particles (W, Z, top-quark and Higgs) are decayed according to the exact tree-level matrix elements so that spin correlations are always accounted for. In particular the decay $t \rightarrow bf\bar{f}'$ is implemented
- concerning top-quark couplings, a parameter allows to change the left and right couplings with respect to the SM values

available processes in v2.13

•
$$(W \rightarrow f\bar{f}') + N$$
 jets, $N \leq 6, f = l, q$
• $(Z/\gamma^* \rightarrow f\bar{f}) + N$ jets, $N \leq 6, f = l, \nu$
• $(W \rightarrow f\bar{f}')Q\bar{Q} + N$ jets, $(Q = b, t), N \leq 4, f = l, q$
• $(Z/\gamma^* \rightarrow f\bar{f})Q\bar{Q} + N$ jets, $(Q = c, b, t), N \leq 4, f = l, \nu$
• $(W \rightarrow f\bar{f}') + c + N$ jets, $N \leq 5, f = l, q$
• $n W + m Z + k H + l \gamma + N$ jets, $n + m + l \leq 8, N \leq 3$
• $Q\bar{Q} + N$ jets, $(Q = c, b, t), N \leq 6$
• $Q\bar{Q}Q'\bar{Q}' + N$ jets, $(Q, Q' = c, b, t), N \leq 4$
• N light jets, $N \leq 6$
• $M \gamma + N$ jets, $N \geq 1, N + M \leq 8, M \leq 6$
• $gg \rightarrow H + N$ jets $(m_t \rightarrow \infty)$
• single top
• $(W \rightarrow f\bar{f}') + M\gamma + N$ jets, $M \leq 2, N \leq 6, f = l, q$
• $(W \rightarrow f\bar{f}') + Q\bar{Q} + M\gamma + N$ jets, $M \leq 2, N \leq 6, f = l, q$

크

four different final states are implemented:

- $t(\bar{t})q$ (t-channel)
- $t(\bar{t})\bar{b}(b)$ (s-channel)
- $t(\bar{t})W$
- $t(\bar{t})\bar{b}(b)W$

For each channel the subprocesses considered include all configurations with up to two quark currents (including the top contribution)

3 + 4 = +

< 17 ▶

• Generate parton-level configurations for all final-state parton multiplicities up to *N*, with partons constrained by

$$p_T^{part} > p_T^{min}$$
, $|\eta_{part}| < \eta_{max}$, $\Delta R > R_{min}$,

- Perform the shower evolution on each *n*-parton sample, using HERWIG or PYTHIA shower MC codes.
- For each event, apply a cone jet algorithm to all partons resulting from the shower evolution, before hadronization. The resulting jets *clusters* are defined by a minimum E_T , E_T^{clus} , and by a jet cone size R_{clus} , parameters which are related but not necessarily identical to the partonic generation parameters p_T^{min} and R_{min}

- Associate each parton from the PL event to one and only one of the reconstructed clusters:
 - Starting from the highest- p_T parton, select the cluster with minimum distance ΔR from it; if $\Delta R < R_{match}$, where R_{match} is a fixed parameter called the matching radius, then we say that the parton is *matched*.
 - Remove the cluster from the list of clusters, go to the next parton and iterate until all hard partons have been processed. Thus a given cluster can only be matched to a single parton.

- If each parton is matched to a cluster, the event "matches", and is kept, else it is rejected.
- In the case of n < N, matched events with a number of clusters $N_{clus} > n$ are rejected. This leaves an exclusive sample with $N_{clus} = n$.
- If n = N, the largest parton multiplicity for which we generated PL events, accept matched events where $N_{clus} > N$, provided the non-matched clusters (namely those remaining in the cluster list after all clusters matching partons have been removed) are softer than each of the matched clusters.
- After matching, combine the exclusive event samples from each partonic multiplicity $n = 0, \ldots, N-1$ and the inclusive event sample with n = N into a single event sample, which will define the fully inclusive sample.

(日)

consistency of the matching algorithm for $t\bar{t}$ production

M.L. Mangano, M. Moretti, F.P. and M. Treccani, JHEP 0701 (2007) 013

- comparison with parton level results for inclusive quantities
- impact of higher-order parton processes
- generation and matching systematics

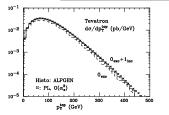
PL generation cuts

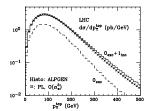
Collider	p_T^{min} (GeV)	η_{max}	R_{min}
Tevatron	20	4	0.7
LHC	30	5	0.7

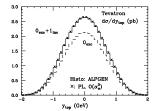
Default matching parameters

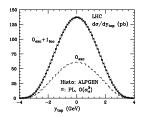
E_T^{clus} (GeV)	η_{max}^{clus}	R _{match}
$\max(p_T^{min} + 5 \text{GeV}, 1.2 \times p_T^{min})$	η_{max}	$1.5 \times R_{min}$

Analysis performed with cone jet algorithm

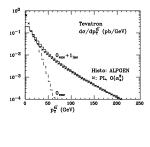

F. Piccinini (INFN)

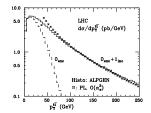

A B A A B A

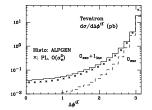

A D M A A A M M

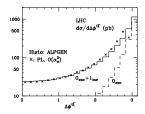

comparison with PL (inclusive) quantities

Collider	LO	NLO	0_{exc}	1_{inc}	$0_{exc} + 1_{inc}$
Tevatron	4.37	6.36	3.42	0.78	4.20
LHC	471	769	217	252	469

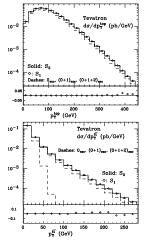


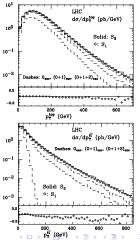






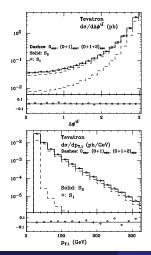
comparison with (more exclusive) PL quantities

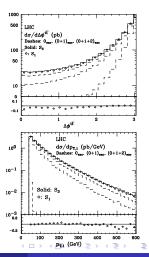




(4) (5) (4) (5)

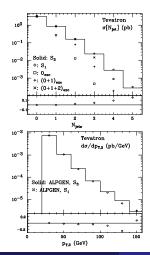
impact of h.o. parton processes

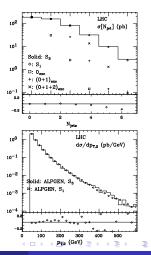

	Tevatron	LHC
0_{exc}	3.42	216.6
1_{exc}	0.66	149.9
2_{exc}	0.09	65.8
3_{inc}	0.010	29.9
Total	4.18	462.2



F. Piccinini (INFN)

ALPGEN

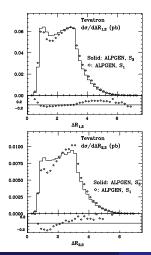


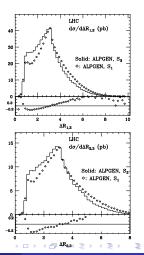


F. Piccinini (INFN)

ALPGEN

h.o. parton processes for more exclusive distr





F. Piccinini (INFN)

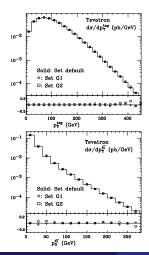
ALPGEN

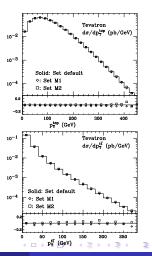
h.o. parton processes for more exclusive distr

F. Piccinini (INFN)

generation and matching systematics

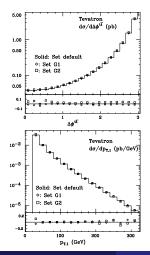
	Generatio	on parameters	Matching parameters	
Param set	p_T^{min}	R_{min}	min E_T^{clus}	R_{match}
Tevatron, default	20	0.7	25	1.5×0.7
Tevatron, Set G1	15	0.7	20	1.5×0.7
Tevatron, Set G2	30	0.7	36	1.5×0.7
Tevatron, Set M1	20	0.7	20	1.5×0.7
Tevatron, Set M2	20	0.7	25	1.5 imes 1.0
LHC, default	30	0.7	36	1.5×0.7
LHC, Set G1	25	0.7	30	1.5×0.7
LHC, Set G2	40	0.7	48	1.5×0.7
LHC, Set M1	30	0.7	30	1.5 imes 0.7
LHC, Set M2	30	0.7	36	1.5 imes 1.0

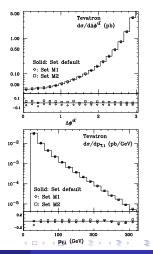

크


Tevatron	Default	Set G1	Set G2	Set M1	Set M2
0 _{exc}	3.42	3.15	3.79	3.14	3.33
1 _{exc}	0.66	0.82	0.42	0.78	0.74
2_{exc}	0.09	0.15	0.036	0.13	0.11
3 _{inc}	0.010	0.024	0.002	0.021	0.012
Total	4.18	4.14	4.25	4.08	4.19

LHC	Default	Set G1	Set G2	Set M1	Set M2
0 _{exc}	217	185	267	185	203
1 _{exc}	150	156	134	148	160
2 _{exc}	66	81	44	74	76
3 _{inc}	30	45	15	40	35
Total	462	467	460	447	475

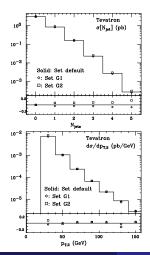
э.

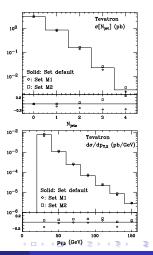

イロト イヨト イヨト イヨト



F. Piccinini (INFN)

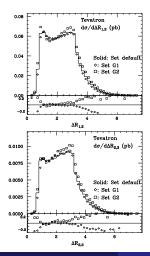
ALPGEN

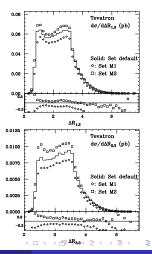




F. Piccinini (INFN)

ALPGEN

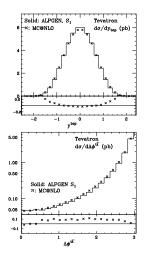

October 24th, 2008 19 / 24



F. Piccinini (INFN)

ALPGEN

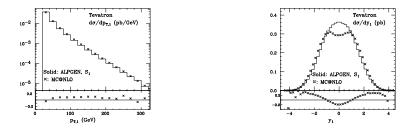

F. Piccinini (INFN)


ALPGEN

October 24th, 2008 21 / 24

comparison with MC@NLO

Up to a *K*-factor the comparison between ALPGEN and MC@NLO is very satisfactory (@LHC the agreement is on the same level)



< 17 ▶

ALPGEN

This comparison allowed to point out a problem in MC@NLO in the treatment of leading jet rapidity. POWHEG confirmed the ALPGEN prediction

Message: it is of utmost iportance to use all independent available tools (having in mind pros and cons) in order to have a sound estimate of theoretical uncertainties

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- ALPGEN is one of the available matrix element event generators
- it is working for several processes up to large jet multiplicities
- an example of the intrinsic theoretical uncertainties due to matching has been given for $t\bar{t}$ production
- an exhaustive estimate of theoretical uncertainties and comparisons among different generators has been performed for W+ jets in

J. Alwall et al., EPJC 53 (2008) 473

Looking forward to having LHC data available...

.