Determination of the tr production cross section in the full hadronic channel at CDF

Phys. Rev. D 76, 072009 (2007)

Outline:

Introduction Dataset and trigger Analysis tools Method Results

Gabriele Compostella INFN Padova compostella@tn.infn.it

October 2008

25

23

INFN

Accelerator and Detector Overview

Peak Luminosity + Peak Lum 20x Average

Date

Top quark production at $\sqrt{s} = 1.96$ TeV

...but only one over 10¹⁰ inelastic collisions produces top quark pairs!

Top decay modes

b-jets identification

a B Hadron travels some mm before decaying:

- secondary vertex displaced from primary one
- tracks have high impact parameter

SECondary VerTeX tagging: search a displaced secondary vertex among high impact parameter tracks using an iterative fit.

Efficiency is tuned on data:
→ is around 50% for ttbar central b-jets
→ mistag rate kept under 2% for tight SecVtX

Datasets and Method

Optimized multi jet trigger:

TOP_MULTI_JET dataset, integrated luminosity: **1.02 fb**⁻¹

- **L1**: at least 1 cal. tower with $E_{T} \ge 10$ GeV
- **L2**: at least 4 cal. clusters with $E_T \ge 15$ GeV, $\sum E_T \ge 175$ GeV
- **L3**: at least 4 jets (Cone Radius = 0.4), $E_T \ge 10$ GeV

MC : Pythia v6.2 ttbar $M_{top} = 175 \text{ GeV/}c^2$

Background: mainly QCD multiparton production

MC modeling: suffers from poorly known cross sections, need huge QCD samples.

Allows separation of heavy flavour from light flavour

Data driven background: tag rate parametrization evaluated in a control sample

No such complications, but also no distinction between real heavy flavour and fakes

- Method 1: positive tagging rate matrix approach to predict the absolute amount of background
- Optimized Kinematical Selection
- Require ≥ 1 SECVTX positive tag
- Get the cross section:

$$\sigma_{ttbar} = \frac{N_{obs}^{tag} - N_{exp}^{tag}}{\varepsilon_{kin} \cdot \varepsilon_{tag}^{ave} \cdot L}$$

Kinematical Selection

 $\Sigma E_{T}^{250} = E_{T}^{1} - E_{T}^{200} (GeV)^{33}$

 $\Sigma E_{T}^{250} = E_{T}^{1} - E_{T}^{300}$ (GeV)

Neural Networks

Training Process → Trial and Error

Compare expected values of the mapping against those actually given by a specific configuration of the network and calculate an **error function** that depends on the weights and is evaluated over all the given examples.

This defines an hypersurface (**error surface**), the net learns searching for an optimal **minimum on the error surface**. We will use the **BFGS** algorithm.

Neural Network Selection

Build a Neural Network with 11 input variables, 2 hidden layers, and single output

Neural Network Input Variables

Selection Effect

Background Estimate Method

We will require SecVtx tags in the selected sample, need to estimate the background after selection

Basic Idea: b-jet identification rates are different on ttbar and background processes, this allows to distinguish between the two components.

Method:

Derive b-tag rates directly from TOP_MULTI_JET data
Use 4 (E_T > 15 GeV, |η| < 2.0) jet events
Take the vars by which the tag-rate mainly depends to build a tag matrix

Signal contamination needs to be as low as possible in the sample used to parametrize the tagging rates in order to avoid biases in the background estimate!

Bkg Estimation:

Use the Tagging rate dependencies observed in 4-jet data events to predict the number of tagged jets at higher jet multiplicities and on kinematically selected data samples.

Warning:

Variables used for the tagging rate parametrization need to be able to track possible sample composition changes introduced by a given selection cut.

Method assumes that the tag rate does not depend on jet multiplicity, need to verify it!

Matrix Checks

• Check matrix predictions by weighting events before b-tag with the tag rate.

- Very good agreement overall neural network spectrum and for different jet multiplicities.
- The discrepancy between data and the expected background is evaluated and treated as a systematic uncertainty of 2.5% on the background normalization.

Note that events with multiple tags have multiple entries in the plots

Kin Sel +≥1 Tag Sample

Tags We can now look at matrix predictions in Data (1.02 fb⁻¹) the data sample after network selection 700 Background and compare it with SecVtX tagged data Background + signal (8.3 pb) 600 MC normalized **Observed b-tags vs Jets** 500 to the measured $6 \le Njets \le 8$ x-sec value of 8.3pb 400 NNout ≥ 0.94 300 The data is consistent with 200 **MC+BKG** expectations in all jet bins 7 6

Note:

matrix-based background prediction is corrected with an iterative procedure to account for the ttbar presence in the pre-tag sample:

$$N_{exp} = N_{exp} \frac{N_{evts} - N_{tt}}{N_{evts}} = N_{exp} \frac{N_{evts} - (N_{obs} - N_{exp}) / n_{ave}^{tag}}{N_{evts}}$$

The procedure stops when $|N_{exp}' - N_{exp}| < 1\%$

Source	Relative uncertainty (%)	
Energy Scale	16.3	
PDFs	1.4	
ISR/FSR	2.9	
Monte Carlo Modeling	1.1	
Multiple interactions	2.5	
Average number of tag	s 7.4	
Estimated background	2.5	
Integrated luminosity	6.0	

Measurement Systematics dominated mainly by Jet Energy Scale!

Cross section result

Backup

b-jets identification

a B Hadron travels some mm before decaying:
→ secondary vertex displaced from primary one
→ tracks have high impact parameter

SECondary VerTeX tagging: search a displaced secondary vertex among high impact parameter tracks using an iterative fit.

Efficiency is tuned on data: → is around 50% for ttbar central b-jets → mistag rate kept under 2% for tight Se

→ mistag rate kept under 2% for tight SecVtX

