b-tagging commissionning in

S. Greder

Institut Pluridisciplinaire Hubert Curien, Strasbourg

on behalf of DØ collaboration

Outline

- Introduction
- The DØ detector
- Algorithms
- Performance measurement
 - Efficiency
 - Fake tag rate
- From Tevatron to LHC
- Conclusion

Introduction

The DØ detector

Introduction (bis)

Taggability

Tagging algorithm's performance evaluated on real data & parametrized as: F (p_{τ} , $|\eta|$). But:

- Interaction region, $\sigma_{r} \approx 25$ cm, + detector acceptance affect track reco. efficiency dependence on η differently for different values of the interaction point's z coordinate.
- Electronics noise -> fake jets. Track matching improves discrimination on top of calo. jet-id.
- Fraction of fake jets is ~small, but depends on **final** state. Decoupling this effect from the tagging algorithms proper allows the extraction of a tagging performance which can be assumed to be **universal**, i.e., applicable to general final states.

mass: 1114.9±0.1 MeV

1.08

2.6 ± 0.1 MeV

Λ

1.1

1.12

width:

1.06

Taggable jets are thus defined as follow:

- >=1 tracks, with >= 1 hit in SMT
- **2-step clustering:** along beam axis + 0.5 cone jets (within each z-cluster) and finally require: $\Delta R(calo-jet, track-jet) < 0.5$.
- **Parametrized as:** $F(p_{T}, \eta, z')$, with $z' \equiv |z| \cdot sign(\eta \cdot z)$

Track selection

- Reco. quality
- V⁰ removal

Algorithms (I)

Jet axis

Z -> uds

Z -> 00

 $= p \bullet \sin \theta^{3/2}$

I.P **F**

Primary vertex

Track

Impact Parameter (IP) based tagger

- IP and its significance S_{IP} are signed w.r.t jet direction
- IP error calibrated in data and simulation for *multiple*effects and PV resolution dependence

Discrete (CSIP)

counts tracks with: $|S_{IP}| > \text{cut} (2 > 3 || 3 > 2)$

Continuous (JLIP)

p.d.f from negative IP resolution function, *R***(s)**

Algorithms (II)

Secondary vertex, SVT

- Starts from track-based jets (*simple cone algo*.)
- Kalman-filter based vertex finder
- Track pruning w.r.t χ^2 contribution to vertex
- Tag is defined if: ΔR(vertex, jet) < 0.5 and if decay length significance, S_{Lxy} > cut

- 40% of top/anti-top pairs contain a lepton
- Look for a soft (> 4GeV/c) muon/electron in require $\Delta R(<0.5)$
- More details later

All in one: Neural Network tagger

Hubert CURIEN STRASBOURG

SLT NN

Improved tagging in dedicated topologies

SLTNN with muons

- SLT variables (p_T^{rel} , χ^2 , $\Delta R(jet)$, ...) can be combined with lifetime variables in a dedicated NN to improve identification performance for semi-leptonic b decays
- Up to 10% relative increase of signal efficiency @ same fake rate level

SLT with electrons

- Reconstruction of $(low-p_{T})$ electrons in jets is more challenging
- b->eX ~25% identification efficiency for 1% fake rate

Performance: efficiency

Measured in data

- Using <u>b-enriched</u> data samples:
 - Di-jet sample & require ΔR(<0.5) matched soft (>4GeV/c) muon in jet
- "SystemD" (bother B. Clement for details;)!)
 - 2 ~uncorrelated taggers: NN / SLT
 - 2 data samples w/ different flavour content:
 - Muon-jet / Muon-jet+away tag
 - Apply 2 taggers separately / simultaneously on 2 samples
 - 8 equations / 8 unknowns among which $\varepsilon_{h}(NN)$
 - Simulation only used to *corrections factors*

$p_{\rm T}^{\rm rel}$ (single/double tag)

- Fit p_{T}^{rel} with templates from simulation
- Used only as x-checks

Scale factors

Efficiency

1.2

1.1

0.9 0.8 0.7 0.6 0.5

Tag Rate Functions (TRF)

• Parametrized as a function of p_{T} , η :

$$\varepsilon(p_T, \eta) = \frac{1}{\varepsilon_{\text{all}}} \cdot f(p_T) \cdot g(|\eta|)$$

SystemD allows to estimate b-tagging efficiency for semi-leptonic b decays

Inclusive efficiency requires a Scale Factor correction:

Method validated in simulation:

Systematic uncertainties

SF_b, SystemD

- ۲
- SystemD
 (*)

 Choice of p_T^{rel} cut
 Tagger correlations (factorization, PV)
- Fit uncertainty ۲

TRF b/c

- Parametrization ۲
- MC sample dependance ۲
- Residuals from closure plot predicted ۲ and observed tags

Total uncertainties added in quadrature

Performance: Fake tag rate

Goal

• Estimate $\mathbf{\varepsilon}_{light}$ where light = u, d, s and gluon

Measured in data

Various samples: jet / EM triggered multijet data ("QCD")

Estimated from negative tags

- corrected for:
 - HF contamination $F_{\rm hf} = \varepsilon_{\rm QCD, light}^{-} / \varepsilon_{\rm QCD, all}^{-}$
 - neg./pos. asymmetry $F_{\rm lf} = \varepsilon_{\rm QCD, light}^+ / \varepsilon_{\rm QCD, light}^-$
- Parametrized as $F(p_{T}, \eta)$

Systematics:

- Sample dependance: jet vs. EM QCD
- Relative heavy flavour fractions
- Parametrizations
- Total: ~3 8.5%

Sébastien Greder

 $\varepsilon_{\text{light}} = \varepsilon_{\text{data}}^{-} \cdot F_{\text{hf}} \cdot F_{\text{lf}}$

From Tevatron to LHC

RunIIa -> RunIIb -> LHC

- Increase of instantaneous luminosity
- ~ 4 "PV" @ $3x10^{32}$

Performance sensitive to

- Number of multiple interaction
- Tracker occupancy
- Hits merge
- Track selection vs. luminosity ?
- **>**

Conclusion

B-tagging is a necessary tool for many forefront analyses

- Very good performance despite of *complex* and *busy* hadronic environment
- Advanced multi-variate tools are an asset to keep high signal efficiency/low fake rates
 - And <u>simplify</u> procedures: reduce complexity to 1 variable

Increasing luminosity must be carefully handled

Very good control of systematic errors is compulsory

 they enter in top-3 errors for top mass, single-top and low-mass Higgs searches, ...)

Smart techniques + very good understanding of the detector require a lot of effort but worth it:

