Measurement of $\sigma_{t\bar{t}}$ in the lepton + jets channel at DO **Marc-André Pleier** University of Bonn universität**bon Fermilab** Alexander von Humboldt Stiftung/Foundation Introduction Measurement Techniques Systematic Uncertainties Result

3rd Top Workshop @ Grenoble : from the TeVatron to ATLAS, 24.10.2008

The Tevatron (a) Fermilab

- pp̄ collisions at $\sqrt{s} = 1.96$ TeV
- 36 bunches (396 ns spacing)
- 1 km ring radius
- World record lumi: $3.2 \cdot 10^{32}$ /cm²s
- >5 fb⁻¹ delivered per experiment
- expect +2 fb⁻¹ per year of running

2/15

The DZero Detector

- Excellent calorimetry $\frac{\sigma_E}{E} = \frac{15\%}{\sqrt{E}} \oplus 0.3\% \text{ (elm)}, \frac{\sigma_E}{E} = \frac{45\%}{\sqrt{E}} \oplus 4\% \text{ (had)}$
- Large muon acceptance

Marc-André Pleier

• Central tracking inside 2 T solenoid

–Silicon vertex detector (=>b-jet ID)–Scintillating fiber tracker

Top Quark Production & Decay

• Main **production** of Top Quarks – via strong interaction in *pairs*:

<u>Theoretical expectation:</u> $\sigma_{t\bar{t}} = (6.6^{+0.7}_{-0.8}) \, \text{pb}$

Cacciari et al., JHEP0809,127, m_t=175 GeV

• SM Top decay $\approx 100\%$ Wb \Rightarrow Final states determined by W decay mode $\overrightarrow{tt} \text{ decay modes} \Rightarrow 2 \text{ h_iets}$

 \Rightarrow 2 b-jets \Rightarrow Up to two observed leptons/neutrinos

 \Rightarrow Up to two charged leptons/neutrinos \Rightarrow Up to four additional jeta

 \Rightarrow Up to four additional jets

Need to reconstruct/identify:

- Electrons, muons, taus
- Missing transverse energy,
- Jets/b-jets

l+jets decay signature & preselection

•Lepton + jets triggered dataset with good data quality •Primary vertex: ≥ 3 tracks, $|z| \leq 60$ cm, Δz (primary vertex, l) < 1 cm

•Orthogonality w.r.t. other analyses: Veto isolated μ/e , second same flavour lepton

Main backgrounds

Electroweak W production: $\gg W \rightarrow \ell + \nu_{\ell}$ \gg additional \geq 3 jets from gluon radiation \rightarrow use Monte Carlo simulation

Multijet production with fake lepton, MET:
➢ Electrons faked by (electromagnetic) jets
➢ Muon-fakes: real muons, fakely isolated
(eg. from semileptonic b-decays, with non-reconstructed b-jet)
➢ misreconstructed MET

 \rightarrow use data to model properly

University of Bonn

Marc-André Pleier

Determination of QCD background

320 events with \geq 4 Jets

Derive QCD background *based on data*: solve linear system of equations for N^{W+tt}, N^{QCD} ("Matrix Method")

Tight preselection

loose preselection + tighter lepton quality

 $N_1 = N^{W+t\bar{t}} + N^{QCD}$

$$N_t = \varepsilon_{sig} N^{W+t\bar{t}} + \varepsilon_{QCD} N^{QCD}$$

 N_l , N_t = events remaining in final data sample, need loose/tight efficiencies ε_{sig} , ε_{QCD} (derived from data)

Sample composition after preselection

TABLE I. Event counts in the inclusive lepton + jets sample.

	e + 3 jets	$e^+ \ge 4$ jets	μ + 3 jets	$\mu + \ge 4$ jets
N _{data}	1300	320	1120	306
N _{loose}	2592	618	1389	388
ϵ_{s} (%)	84.8 ± 0.3	84.0 ± 1.8	87.3 ± 0.5	84.5 ± 2.2
$\boldsymbol{\epsilon}_{b}~(\%)$	19.5 ± 1.7	19.5 ± 1.7	27.2 ± 5.4	27.2 ± 5.4
$N_{t\bar{t}}$	182 ± 20	156 ± 17	137 ± 15	129 ± 14
$N_{W jets}$	718 ± 42	69 ± 20	802 ± 26	131 ± 16
Nother	132 ± 15	35 ± 4	139 ± 15	36 ± 4
$N_{\rm jj}$	268 ± 34	60 ± 10	42 ± 14	10 ± 6

• N_{other} : single top, Z+jets, diboson production – from MC with NLO cross section •top signal: ~20% of the sample, normalisation from b-tagging measurement

Topological Analysis Approach

- •Apply preselection without b-jet identification \rightarrow high background levels! •For events with 3 jets additional cut: sum jet $p_T s > 120 \text{ GeV}$
- •Verify background model in signal-depleted samples
- •Use multivariate discriminant (event kinematics based) to extract signal
- •Consider 4 channels: lepton flavour e, μ and jet multiplicity =3, \geq 4
- •Signal contribution: simultaneous fit of linear combination of templates

$t\bar{t} \rightarrow \mu + jets$ candidate event

$t\bar{t} \rightarrow \mu + jets$ candidate event

Lifetime b-tagging at DØ

(dca = distance of closest approach)

- Separate *b*-jets from light-quark and gluon jets ⇒ reject most multijet & W+jets background processes
- $\tau_B \approx 1.5 \text{ ps} \Rightarrow \beta \gamma c \tau > mm$
- Neural network based on impact parameter and reconstructed vertex information
- "Tagging" efficiencies:
 - -b-jet $\approx 50\%$ -c-jet $\approx 10\%$
 - light-jet $\approx 0.5\%$

See talk by Sebastien Greder!

b-tagging Analysis Approach

- Require b-tagged jets in the event to further suppress background
- Analyse eight channels separately: e/μ , $1/\ge 2$ tags, $3/\ge 4$ jets
- Perform maximum likelihood fit to observed number of events in the different channels

Systematic uncertainties

TABLE III. Breakdown of systematic uncertainties.				
Source	<i>b</i> -tag	Likelihood	Combined	
Selection efficiency	0.26 pb	0.25 pb	0.25 pb	
Jet energy calibration	0.30 pb	0.11 pb	0.20 pb	
b tagging	0.48 pb	-	0.24 pb	
MC model	0.29 pb	0.11 pb	0.19 pb	
N_{ii}	0.06 pb	0.10 pb	0.07 pb	
Likelihood fit	-	0.15 pb	0.08 pb	

TABLE III. Breakdown of systematic uncertainties.

Selection efficiency includes acceptance and efficiency for leptons and jets
Jet energy calibration includes jet energy scale and resolution

- •b tagging includes efficiencies for b, c, q, g jets
- •MC model includes ALPGEN vs. PYTHIA signal sample differences, scale variations for W+jets samples, PDF uncertainties
- •N_{ii}: uncertainty on QCD constraints

•Likelihood fit: uncertainty from statistical fluctuations in template shapes

Combined Result

Use Best Linear Unbiased Estimate method to combine results:

 $\sigma_{t\bar{t}} = 7.42 \pm 0.53 \text{ (stat)} \pm 0.46 \text{ (syst)} \pm 0.45 \text{ (lumi) pb}$

(m_t=175 GeV, PRL **100**, 192004, 2008)

Can obtain top quark mass measurement from observed mass dependence of result and theoretical prediction:

backup slides

Top Quark Production (a) Tevatron: The precision era

Top Discovery: Tevatron "Run I" ('92-'96): ~125pb⁻¹, $\sqrt{s} = 1.8$ TeV.

Topological Analysis Approach

TABLE IV. Variables used for the likelihood discriminant. $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ and *i* indexes the list of N_j jets with $p_T > 15$ GeV, ordered in decreasing p_T .

Variable	Channel	
$\sum_{i=3}^{N_j} p_T(i)$	All	
$\sum_{i=1}^{N_j} p_T(i) / \sum_{i=1}^{N_j} p_z(i)$	$e + 3$ jets, $e + \ge 4$ jets	
$\sum_{i=1}^{N_j} p_T(i) + p_T(e) + \not p_T$	$e + 3$ jets, $e + \ge 4$ jets	
ΔR between lepton and jet 1	All	
ΔR between jets 1 and 2	$e^+ \ge 4$ jets, $\mu^+ \ge 4$ jets	
$\Delta \phi$ between lepton and p_T	μ + 3 jets, μ + \geq 4 jets	
$\Delta \phi$ between jet 1 and p_T	$e + 3$ jets, $\mu + 3$ jets	
Sphericity	All but μ + 3 jets	
Aplanarity	All but μ + 3 jets	

Topological Analysis Approach

TABLE V. Sample composition from the likelihood fit. $N_{t\bar{t}}$ is based on the cross section measured by the likelihood analysis.

	3 jets	\geq 4 jets
N _{data}	1760	626
N _{tī}	245 ± 20	233 ± 19
$N_{Wiets} + N_{other}$	1294 ± 48	321 ± 30
N _{jj}	227 ± 28	70 ± 12

b-tagging Analysis Approach

TABLE II. Numbers of events in the *b*-tagged analysis. $N_{t\bar{t}}$ is based on the cross section measured by the *b*-tag analysis.

	3 jets, 1 tag	3 jets, ≥ 2 tags	\geq 4 jets, 1 tag	\geq 4 jets, \geq 2 tags
$N_{t\bar{t}}$	147 ± 12	57 ± 6	130 ± 10	66 ± 7
N _{Wiets}	105 ± 5	10 ± 1	16 ± 2	2 ± 1
$N_{\rm other}$	27 ± 2	5 ± 1	8 ± 1	2 ± 1
N _{ii}	27 ± 6	3 ± 2	6 ± 3	0 ± 2
Total	306 ± 14	74 ± 6	159 ± 11	69 ± 7
N _{data}	294	76	179	58