Tuning of ISR/FSR and underlying event in MC generators TeVatron-ATLAS top physics workshop

L. Mijović¹, B.P. Kerševan^{1,2}

¹FMF, University of Ljubljana

² Jožef Stefan Institute

24th October 2008

Talk overview

Goal: present current status of ISR/FSR and UE modeling and tuning at LHC (ATLAS) and TeVatron.

Note: focus on ISR/FSR at ATLAS, $t\bar{t}$ and UE and ISR/FSR (Pythia) parameters interplay - my work.

Topics to be covered:

- UE and ISR/FSR tuning at TeVatron:
 - CDF: work done by R. Field et. al: dijets and Drell-Yan,
 - CDF: ISR/FSR in $t\bar{t}$ events, DØ: ISR in dijet events,
 - other studies ?
- ISR/FSR tuning at ATLAS $(t\bar{t})$:
 - MC study, goals: modeling uncertainty ttbar observables (top mass), find relevant tunable ISR/FSR parameters, observables for tuning (data).
 - comments on $\mathsf{ISR}/\mathsf{FSR}$ effects on other top physics observables.

- UE tuning at ATLAS:

- work done by A. Moraes,

- ISR/FSR and UE tuning interplay:

- common Pythia parameters, TeVatron (data and Monte Carlo) and ATLAS

UE and ISR/FSR tuning at TeVatron

Main ideas of the studies to be presented :

- UE and ISR/FSR in high-pt jets events and Drell-Yan:
 - CDF, Run II study by R. Field et. al,
 - study activity in different $\eta \Phi$ regions wrt. highest-pt jet and Z boson.
 - Pythia (tuning), Herwig.
- ISR/FSR tuning using Dijet Azimuthal Decorrelations:
 - D0, Run II study by Begel, Wobisch and Zielinski,
 - study azimuthal angle difference of the 2 highest-pt jets in event,
 - Pythia (tuning), Herwig.
- ISR/FSR in $t\bar{t}$ at TeVatron:
 - CDF, Run II study
 - extrapolate Drell-Yan ISR to $t\bar{t}$: does not work for LHC and ATLAS.
 - Pythia.

Note: at TeVatron old (pre-6.3) Pythia is used.

UE and ISR/FSR in high-pt jets events and Drell-Yan

- R. Field., Run 2 Monte Carlo Tunes in M. G. Albrow et al. [TeV4LHC QCD Working Group], Tevatron-for-LHC report of the QCD working group, 2006.
- D. Kaar, R. Field, Using Drell-Yan to Probe the UE in Run 2 at CDF, CDF/PUB/CDF/PUBLIC/9351.

- TransMAX(MIN): transverse region with largest(smallest) N of charged particles 1, definition applies to QCD 2 \rightarrow 2 and Drell-Yan processes.

 $\label{eq:QCD 2 \rightarrow 2 process$$ TransMAX region: hardest ISR/FSR TransMIN: beam-beam UE component TransMAX - TransMIN: ISR/FSR probe$

Drell-Yan TransMAX region: hardest ISR/FSR Transverse region: clean UE probe Toward region pt Z: ISR sensitive

- Different scales of QCD high-pt jets and Drell-Yan; UE description universal?

¹or scalar *pt* sum, CDF/PUB/CDF/PUBLIC/9351

UE and ISR/FSR in high-pt jets events: Run 1 \rightarrow Run 2

UE and ISR/FSR in high-pt jets events: quantities and observables

R. Field, Fourth Hera-LHC Workshop, May 2008.

Observable	Particle Level	Detector Level
dNchg/dηdφ	Number of charged particles per unit η-φ (p _T > 0.5 GeV/c, η < 1)	Number of "good" charged tracks per unit η-φ (p _T > 0.5 GeV/c, η < 1)
dPTsum/dηdφ	Scalar p _T sum of charged particles per unit η-φ (p _T > 0.5 GeV/c, η < 1)	Scalar p_T sum of "good" charged tracks per $\label{eq:pt} \begin{array}{l} \text{unit } \eta{-\phi} \\ (p_T \geq 0.5 \ \text{GeV/c}, \eta \leq 1) \end{array}$
<p_7></p_7>	Average p_{T} of charged particles $(p_{T} \ge 0.5 \; GeV/c, \eta \le 1)$	Average p_T of "good" charged tracks $(p_T \ge 0.5~{\rm GeV/c}, \eta \le 1)$
PTmax	Maximum p _T charged particle (p _T > 0.5 GeV/c, η < 1) Require Nchg≥ 1	Maximum p _T "good" charged tracks (p _T > 0.5 GeV/c, η < 1) Require Nchg ≥ 1
dETsum/dŋdø	Scalar E _T sum of all particles per unit η-φ (all p _T , η ≤ 1)	Scalar E_T sum of all calorimeter towers per unit η - ϕ ($E_T > 0.1 \text{ GeV}, \eta \le 1$)
PT sum/ET sum	$\begin{array}{l} Scalar \; p_T \; sum \; of \; charged \; particles \\ (p_T > 0.5 \; GeV/c, \eta < 1) \\ divided \; by \; the \; scalar \; E_T \; sum \; of \\ all \; particles \; (all \; p_T, \eta < 1) \end{array}$	$\begin{array}{l} Scalar \; p_T \; sum \; of \; "good" \; charged \; tracks \\ (p_T > 0.5 \; GeV/c, \; \eta < 1) \\ divided \; by \; the \; scalar \; E_T \; sum \; of \\ calorimeter \; towers \; (E_T > 0.1 \; GeV, \; \eta < 1) \end{array}$

Also include the leading jet mass (new)!

UE and ISR/FSR in high-pt jets and Drell-Yan: recent results

- D. Kaar, R. Field, CDF/PUB/CDF/PUBLIC/9351, Jul. 2008.

- Note: UE universality (but needs to be checked for e.g. top).

ISR/FSR tuning using Dijet Azimuthal Decorrelations

- V. M. Abazov et al., [The DØ Collaboration], Phys. Rev. Lett. 94, 2005.

- Found: PARP(67) is the only relevant parameter,
- better description of the data obtained if: $PARP(67)=1 \rightarrow PARP(67)=4$.

ISR/FSR in $t\bar{t}$ at TeVatron

- A. Abulencia et al., [The CDF Collaboration], Phys. Rev. D73, 2006.
- Drell-Yan: $pt(II) \propto \ln(Q^2)$, $t\bar{t}$ mostly produced in $q\bar{q}$ processes (~ 85%),
- define more/less active ISR systematics samples and extrapolate.

- The very nice idea cannot be used for LHC and ATLAS:
- $t\bar{t}$ mostly produced in gg processes (\sim 90%),
- $pt(II) \propto \ln(Q^2)$ not true for the new Pythia.

Pythia Parton Showers from TeVatron to ATLAS

Paron shower = ordered:

M. Seymour:

Introduction to Event Generators, 2008 MCNet-CTEQ Summer School http://zorro.atomki.hu/~zoltan/CTEQ/cteq.html

 $q_1^2 > q_2^2 > q_3^2 > \dots$ $q_1^2 > q_2'^2 \dots$

Old Pythia (TeVatron): $q^2 = (-)m^2$:

arXiv:hep-ph/0610012

New Pythia (ATLAS):
$$q^2 = p_t^2$$
:

T. Sjostrand:

New pT-ordered Showers and Interleaved Multiple Interactions http://home.thep.lu.se/~torbjorn/

ISR/FSR tuning at ATLAS $(t\bar{t})$

- What we have: ISR/FSR uncertainty from MC (t mass, x-sect.,...)
- Determination Procedure:
 - 1.) check MC generator 1 vs MC generator 2 diff. (Herwig + MCNLO and Pythia + AcerMC, also checked: Herwig + MCNLO ~ Herwig + AcerMC).
 - 2.) vary MC generator 1 and MC generator 2 tunable $\mathsf{ISR}/\mathsf{FSR}$ parameters
 - (Pythia has plenty, Herwig not so many).
 - 3.) The biggest difference for an observable = MC uncertainty.
- If observable = top mass (semileptonic $t\bar{t}$, truth-matched):
 - biggest difference: Pythia tunable parameters variation.
- Summary of most relevant parameters + effects (D=ATLAS default):

Pythia parameter description		if \uparrow , t mass:	max. mass sample	min. mass sample
ISR regularization scheme	MSTP(70)			
	MSTP(70)=0, PARP(62)	₩	D-0.5D	D+0.5D
	MSTP(70)=1, PARP(81)	↓		
	MSTP(70)=2, PARP(82)	1)		
ISR Λ_{QCD}	PARP(61)		$^{2}\mathrm{D}$	$0.5\mathrm{D}$
ISR evolution factor	PARP(64)	ţ		
FSR Λ_{QCD} (extern. process)	PARJ(81)	₩	$0.5\mathrm{D}$	$^{2}\mathrm{D}$

ISR/FSR at ATLAS: semileptonic $t\bar{t}$ mass

Analysis details:

- AcerMC + Pythia (new showering), \sim 1M events, gen. level,
- semileptonic decay channel,
- !1 lepton (el., μ), pt > 20 GeV, $|\eta|$ <2.5,
- \geq 4(3) jets, pt > 20(40) GeV, $|\eta|$ <2.5,
- using cone 0.4 truth jets,
- use truth-matching for t reconstruction.

- Max. and Min. mass samples do their job - effect not small (gen. level).

ISR/FSR at ATLAS: semileptonic $t\bar{t}$ properties

ISR/FSR at ATLAS: semileptonic $t\bar{t}$ (truth) jets

ISR/FSR at ATLAS: CSC studies 1

Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics, CERN-OPEN-2008-020, Geneva, 2008, to appear.

- Min. and Max. mass samples at reco level:

	maximum mass	minimum mass	MC@NLO + Herwig
W mass (GeV)	81.29 ± 0.12	79.59 ± 0.15	80.44 ± 0.14
fitted energy scale	0.9779 ± 0.0024	0.9489 ± 0.0026	0.9636 ± 0.0025
W mass after calibration (GeV)	82.46 ± 0.12	82.38 ± 0.14	82.63 ± 0.14

(is-situ) calibration reduces $\mathsf{ISR}/\mathsf{FSR}$ effects.

- $t\overline{t}$ x-section

	Likeliho	od fit	Counting method (elec)		
Source	Electron	Muon	Default	W const.	
	(%)	(%)	(%)	(%)	
Statistical	10.5	8.0	2.7	3.5	
Lepton ID efficiency	1.0	1.0	1.0	1.0	
Lepton trigger efficiency	1.0	1.0	1.0	1.0	
50% more W+jets	1.0	0.6	14.7	9.5	
20% more W+jets	0.3	0.3	5.9	3.8	
Jet Energy Scale (5%)	2.3	0.9	13.3	9.7	
PDFs	2.5	2.2	2.3	2.5	
ISR/FSR	8.9	8.9	10.6	8.9	
Shape of fit function	14.0	10.4	-	-	

ISR/FSR: x-section: $\sim 10\%$ effect, also important for other *t* properties.

ISR/FSR at ATLAS: CSC studies Cont'd, Comments

Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics, CERN-OPEN-2008-020, Geneva, 2008, to appear.

- top charge

Source	Weighting (%)	b-decay (%)		
jet scale	0.7	0.3		
b-jet scale	1.9	6		
$\Delta m_{\rm t}$	1.3	7		
PDF	0.6	—		
ISR	2.8	15		
FSR	7.8	8		
MC modelling	18	16		
Pile-up	37	1.8		
S/B ratio	9	—		
total	42	25		

- Comments:

- Min. and Max. mass samples not optimized for an arbitrary $t\bar{t}/single t$ study \Rightarrow define additional (replacement) samples (for example):
 - min./max. jet multiplicity,
 - jet energy(cone04)/jet energy(cone07).
- ISR/FSR sensitive observables: t mass peak, shape, jet N, jet E distribution.
- But: ISR+FSR+UE dependant + first data: want more robust variables.

UE tuning at ATLAS

- A. Moraes, *Underlying Event Tunes for the LHC* in M. G. Albrow *et al.* [TeV4LHC QCD Working Group], *Tevatron-for-LHC report of the QCD working group*, 2006.

- since Pythia 6.3 new UE model available \Rightarrow modify CDF tunes accordingly
- other ATLAS vs CDF diffs (PDF...)

- Jimmy 4.1+Herwig 6.507, Pythia 6.2 and Pythia 6.323 can be tuned to describe the CDF data.

- at ATLAS Pythia tunes have recently been updated (Pythia 6.416).

UE at the LHC

- A. Moraes, *Underlying Event Tunes for the LHC* in M. G. Albrow *et al.* [TeV4LHC QCD Working Group], *Tevatron-for-LHC report of the QCD working group*, 2006.

- Note: MC describes UE at TeVatron \Rightarrow MC describes UE at LHC.

ISR/FSR and UE tuning interplay

- UE tuning Pythia parameters, most important for $\mathsf{ISR}/\mathsf{FSR}$
- compiled from: R. Field., *Run 2 MC Tunes*, latest ATLAS production jo, May MC meeting talk by A. Moraes and Pythia Manual 6.4.

Comment	Parameter	CDF A	CDF AW	CDF DW	ATLAS 6.323	ATLAS 6.418
PDF	CTEQ	5L	5L	5L	6L	6 L
ISR related	MSTP(68)				1(3)	
ISR related	MSTP(70)				2(1)	
MI main switch	MSTP(81)	1	1	1	1	21
MI impact parameter	MSTP(82)	4	4	4	4 (3)	
had. primordial kt distribution	MSTP(91)	1	1	1		
ISR pt cutoff	PARP(62)	1.0	1.25	1.25		
ISR lambda-related	PARP(64)	1.0	0.2	0.2		
ISR max. scale	PARP(67)	4.0	4.0	2.5		
final state collor reconections	PARP(78)					0.3(0.025)
pt regulariz., MI and ISR	PARP(82)	2.0	2.0	1.9		2.1(2.0)
hadron matter distribution	PARP(83)	0.5	0.5	0.5	0.5	0.8(0.5)
hadron matter distribution	PARP(84)	0.4	0.4	0.4	0.3(0.4)	0.7(0.4)
MI related	PARP(85)	0.9	0.9	1.0		
MI related	PARP(86)	0.95	0.95	1.0		
MI pt regulariz. E dependance	PARP(90)	0.25	0.25	0.25	0.24(0.25)	0.16(0.16)
had. primordial kt Gauss. width	PARP(91)	1.0	2.1	2.1		
had. primordial kt cutoff	PARP(93)	5.0	15.0	15.0		
resonance FSR	PARJ(81)					0.29

large effect on t-mass moderate effect on t-mass

Summary - 1

Covered topics:

- UE and ISR/FSR tuning at TeVatron:

- many results useful for ATLAS, especially work done by R. Field *et. al*: dijets and Drell-Yan; used for ATLAS UE tuning by A. Moraes.
- some results/methods can not be (directly) used for ATLAS;
- reasons: MC (Pythia version) or $physics(t\bar{t} gg production)$ diferences.

- ISR/FSR tuning at ATLAS

- top physics:
- studies of MC predictions of ISR/FSR systematics effects: top mass, x-section and more.
- systematics effects evaluation: different MCs, Pythia systematics samples,
- ongoing work/recent activities:
- strategy of evaluation with the (early) data,
- UE interplay.
- ATLAS SM group has been active in ISR/FSR systematics evaluation.
- ATLAS top group: single top program for ISR/FSR systematics.

Summary - 2

Covered topics Cont'd:

- UE tuning at ATLAS:

- work done by A. Moraes, linked to work done at TeVatron,
- new Pythia is tuned to reproduce TeVatron data/tunes.

- ISR/FSR and UE tuning interplay:

- TeVatron:
- ISR/FSR and UE tuning parameters overlap example: dijets and Drell-Yan: UE tuning successfully adjusted to high-pt physics results.
- ATLAS:
- UE and high-pt physics ISR/FSR tuning coupled, e.g. t and $t\bar{t}$ physics,
- some common Pythia parameters have been identified,
- (how) can we extract UE info from top events (preferably for early data)?
- Currently active research, more results to come in the next weeks/months.

Backup slides

Minimum Bias at ATLAS

Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics, CERN-OPEN-2008-020, Geneva, 2008, to appear.

Figure: Extrapolation uncertainty of the central charged particle density for non-sing diffractive inelastic $p\bar{p}$ collisions.

Multiple Interactions, Pythia > 6.3

"Evolution" equation, only Multiple Interactions:

Evolution equation, only Initial State Radiation:

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}} \exp\left(-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}'} \mathrm{d}p_{\perp}'\right)$$

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}} \exp\left(-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}'} \mathrm{d}p_{\perp}'\right)$$

Evolution equation, MI + ISR, with competition for PDF and phase space:

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}}\right) \exp\left(-\int_{p_{\perp}}^{p_{\perp}-1} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}'}\right) \mathrm{d}p_{\perp}'\right)$$

