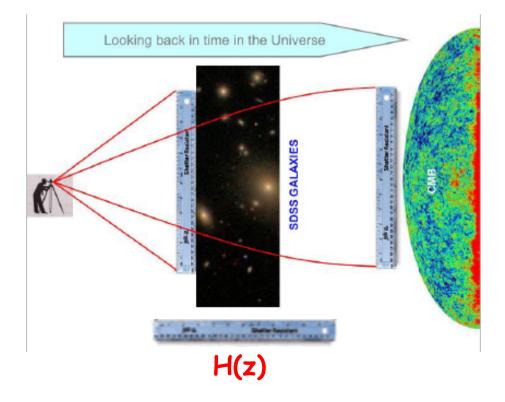
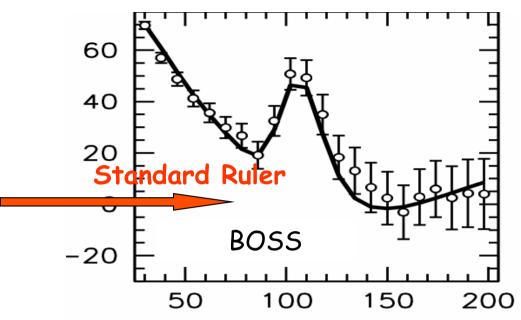

Spectroscopic Surveys and LLST

Christophe Yèche (CEA-Saclay, Irfu/SPP)


Colloque LSST France, June 10-11, 2014


Overview of Spectroscopic Surveys

Baryonic Acoustic Oscillations

First observation:

 ➢ In 2005: First observations of baryonic oscillations by 2 teams (2dFGRS and SDSS)
 ➢ 2012-2014: 7σ with BOSS

s (h⁻¹ Mpc) A 3D measurements:

 \succ Position of acoustic peak \Rightarrow Size of the sound horizon r_s

> Transverse direction:

 $\Delta \theta = r_s/(1+z)/D_A(z)$

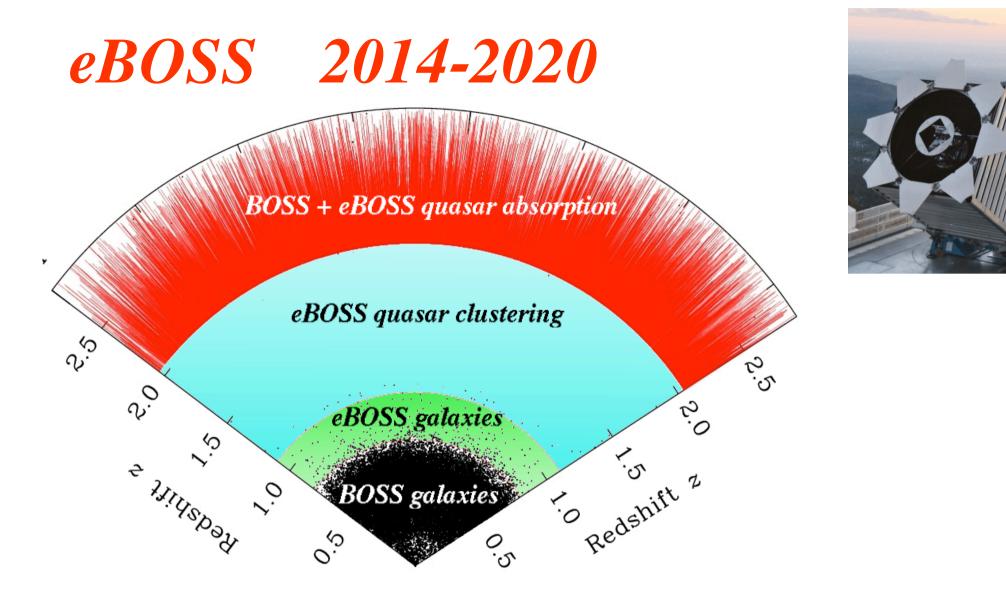
- \Rightarrow Sensitive to angular distance $D_A(z)$
- > Radial direction (along the line of sight): $\Delta z = r_s \cdot H(z)/c$
- \Rightarrow Sensitive to Hubble parameter H(z).

BOSS 2009-2014

SDSS Survey

2.5m Sloan telescope with a wide FoV ~ 7 deg²
 x,y positions: 5 filter camera
 z position: Spectrograph

~1000 simultaneous spectra



BOSS tracers

1.3 millions of Luminous Red
 Galaxies (light emitted 6 billions years ago, z~0.6)

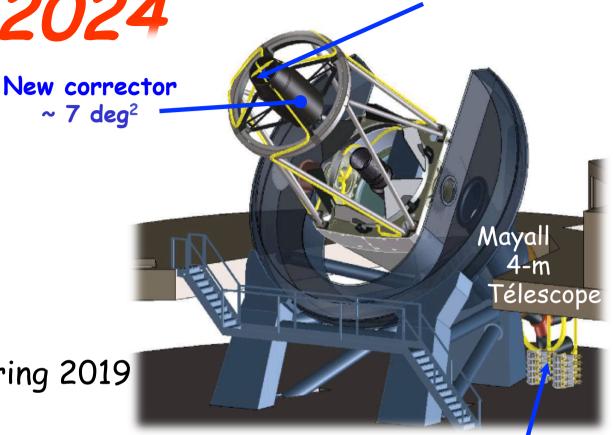
> 170 000 quasars (light emitted 11 billions years ago, $z \sim 2.4$) Probe IGM with Ly- α forest

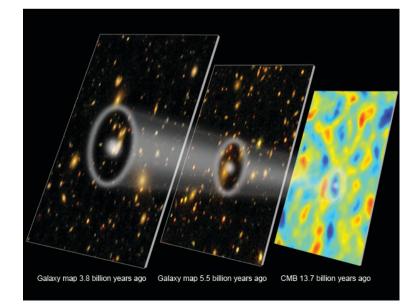
0.6<z<1.2 > LRG at z~0.7 > Emission line galaxies (stars forming)

0.9<z<2.2 QSOs

> Tracers of cosmic

structures

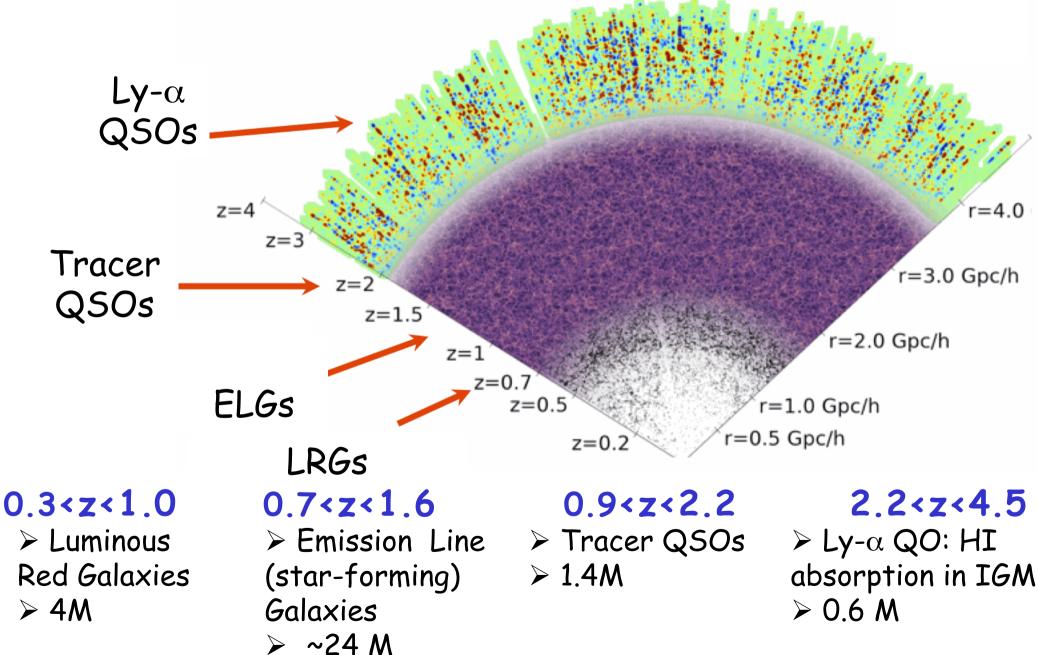

> Unexplored Universe

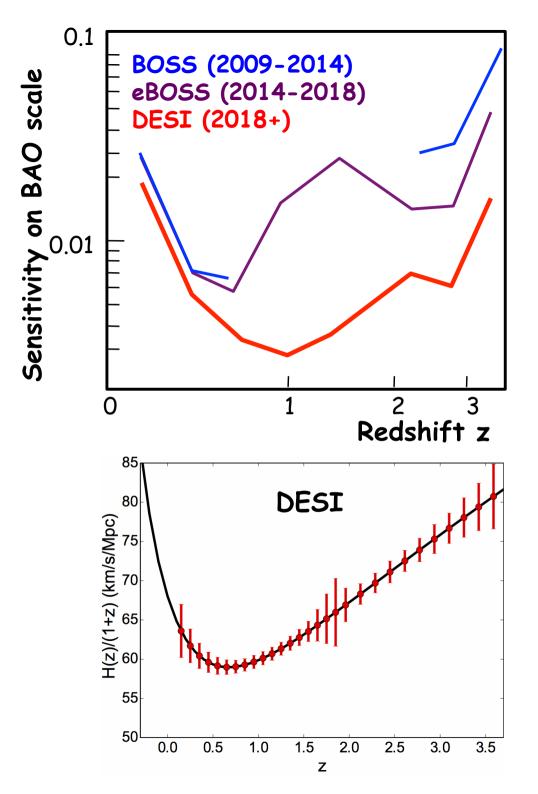

Ly- α QSOs, 2.2<z<5 > Improvement of selection > ~17 deg⁻² \Rightarrow ~27 deg⁻²

DESI 2019-2024

Instrument

- > 4m. telescope at Kitt Peak
- > Wide FoV (~ 7 deg²)
- Positioner with 5000 fibers
- > 10 spectrographs x 3 bands (blue, visible, red-NIR) →360-1020 nm
- Survey starts (science) ~Spring 2019


Scientific Project


10 spectrographs

5000 fiber positioner

- > International Collaboration steered par Berkeley (DOE)
- >14000 deg² survey for 0.3<z<4.5
- > ~30M galaxies and quasars
- > Baryonic Acoustic Oscillations (BAO)

Tracers of matter

Science with eBOSS and DESI

Improvements with eBOSS

- Continuous measurement of BAO for 0.3<z<4.0.</p>
- ➤ Exploration of unknown area: Dark matter → Dark energy

Improvements with DESI > **BAO:** 1 order of magnitude

> Important role of French groups for the two projects

Science with DESI

f(R) dlna **k=0** 1 0.9 Redshift Space distortion (RSD) → After BAO, future probe for cosmology → Measure the effect of gravitation at cosmological 0.8 ۸CDM DGP 0.7 0.6 gravitation at cosmological 0.5 distances 0.4 0.5 Redshift z 5 DESI galaxy and Ly-α forest BAO alaxy broadband k < 0.2 h/Mpc Lv-α forest broadband **Cosmological parameters** þ \succ In combination with Planck, 0.13 × 9 0.014 improvements of all the þ 0.063 5.2× parameters = 0.023 2 > Neutrino masses: accuracy 0.084 b 0.28 ь þ Ш 10.3 ь ~20-25 meV on $\Sigma m_{\rm o}$ × 0.09 3.8 Ш

1.5

BAO

BOSS

+

error improvement over Planck

rms

N_V.I

ь

as

П В

 ω_k

Wp

w'

 Σm_V

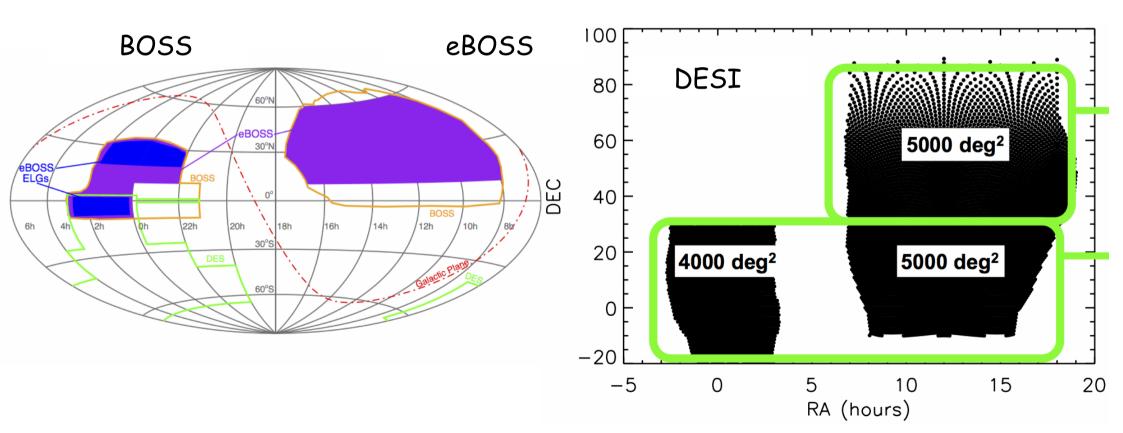
н

ns

6

GAIA follow-up

- For GAIA: Chemo-dynamical structure, radial velocities
 Two projects: 4-MOST and WEAVE
- > Dark time available for cosmology: programs in prep.



	4MOST	WEAVE		
Telescope	VISTA	WHT		
Hemisphere	South	North		
FoV	2°.5	2°		
Fibres	2400	1000		
Modes	LR : 5 000 HR : 20 000 - IFU			
Status	Phase A/B	Phase B/C		

- BOSS 10 000 deg² footprint
- eBOSS 7500 deg² footprint
- DESI 14 000 deg² footprint
- > WEAVE and 4-MOST not defined yet

DESI Target selection

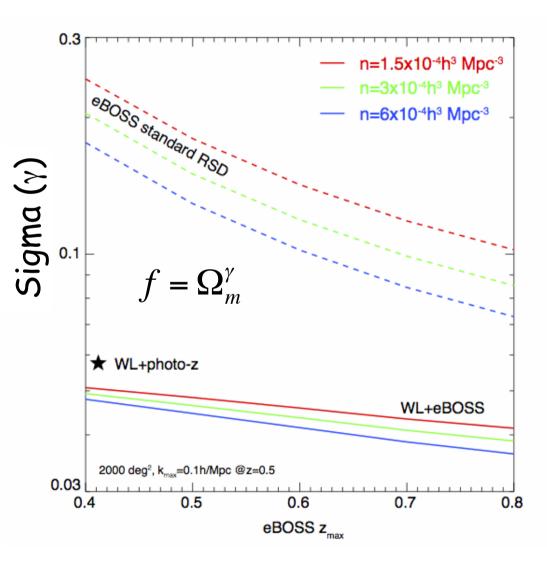
	Galaxy type	Redshift	Bands	Targets	Exposures	Good z 's	Extended
		range	used	$per deg^2$	$per deg^2$	$\mathrm{per} \mathrm{deg}^2$	sample
-	LRG	0.4 - 1.0	r,z,W1	350	700	300	4.2 M
	ELG	0.6 - 1.6	$_{g,r,z}$	2300	2300	1700	23.8 M
	QSO (tracers)	0.9 - 2.2	g,r,z,W1,W2	175	175	100	1.4 M
	QSO (Ly- α)	> 2.2	g,r,z,W1,W2	75	235	40	0.6 M
	Total				3410	2140	30.0 M
-							

Color Selection - Current strategy

- > Ground photometry with grz bands
- > WISE (NIR) satellite (bands W1 and W2)
- Very conservative selection (good completeness but medium efficiency, i band instead of z band possible).
- > For Ly- α QSO variability with LSST and (u band with LSST?)
- > Mag. limits, g=24.0 and r=23.6 (5 σ), ~5 X deeper than SDSS \rightarrow covered with the first year of LSST

Photo-z Calibration

- 2.5M LRGs and 15M ELGs in LSST footprint with DESI
- Provide samples for the training of the methods (Likelihood, Neural Network)
- Provide unique sample of template of the galaxy's spectral energy distribution (SED).
- > It will allows LSST to improve the core resolution and reduce the catastrophic redshift outliers.
- > We can propose ancillary program in DESI to get unbiased selection of galaxies in order to refine the SED library.


Improvement of WL

Example of the gain with
 DES in eBOSS proposal
 Measurement of growth

factor

> Improvement of tomographic Weak Lensing

 Gain by using the same galaxies causing the lensing? (long discussion in DESI about this point)

BAO with photo-z

 BAO will be possible is the core is better than 1% and the fraction of catastrophic photo-z is only a few %.
 Control of the photo-metric selection...

> Cross-correlation of LSST galaxies with eBOSS or DESI tracers, in particular in shot noise limited region (nP<1)

- > with QSO tracers
- > with ELGs
- \succ with Ly- α forest

Conclusions

Four spectroscopic surveys

- eBOSS (North telescope -small overlap)
- > DESI (overlap in equatorial region)
- > WEAVE (North telescope GAIA follow-up)
- > 4-MOST (South telescope GAIA follow-up)

Synergies

- > Target selection for DESI
- > Improvement of photo-z for LSST
- > Improvement of SED library
- > Improvement of WL and photo-z BAO
- \succ Cross-correlation between photo-z galaxy samples and DESI galaxy samples (better than a simple gain on photo-z)