

Recherche de contre-parties optiques aux ondes gravitationnelles

Éric Chassande-Mottin

CNRS, AstroParticule et Cosmologie, Paris France

1-slide primer on Virgo

- Gravitational waves GW
 - Propagating space-time distorsion predicted by General Relativity
 - Goal: measure GW directly (in situ)

Kilometric Michelson interferometer

- Measure relative difference in optical path length to 10⁻²¹, or 10⁻¹⁸ m over km
- Sensitive about few 100 Hz

• Target distant astrophysical sources

 Typically: binaries of stellar mass compact objects (neutron star or black hole)

 $h\sim 10^{-21}\,{\rm for}~{\rm NS}$ binaries at 15 Mpc

$$h(t) = \frac{\delta L(t)}{L} \propto \delta \Phi(t)$$

GW detectors in the world

Since 2007, partnership and data exchange agreement > 1,000 researchers involved

Science from 1st generation 2005-11

Reached design sensitivity!

"horizon" = detection range of coalescing binaries of neutron stars (BNS)

LIGO ~ 40 Mpc and Virgo ~ 20 Mpc

3 joint LIGO – Virgo science runs ~2 yrs total

40 papers published and more to come

Transient sources (BNS, BBH and bursts; in connection with astrophysical triggers, e.g., GRB or neutrinos)

Continuous sources (pulsars)

Stochastic background

Toward 2nd generation detectors

- Advanced Virgo
 - ✓ x 10 more sensitive \rightarrow x 1000 more sources
 - Same infrastructure new instrumentation

x 10 more laser power

x 65 more light power stored in the caviti

Larger beam size & mirrors \rightarrow lower thermal noise

GW signal recycling

Being installed

Current plan : 1st science data in 2016

Science with 2nd generation 2015-2022+

	Estimated	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20 \mathrm{deg}^2$
2015	3 months	40 - 60	-	40 - 80	-	0.0004 - 3	-	—
2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017 - 18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

ArXiv:1304.0670

EM counterparts to GW

Multimessenger observations

• GW → EM: EM follow-up

- Transient sources will be searched on-line with few mins latency
- Source direction reconstruction by triangulation with accuracy
 100 sq degrees (~min)
 30 sq degrees (~days)
- Alerts sent through a "private" network to partner astronomical observatories
- Confirm the astrophysical nature of the detected GW event
- Open call issued in Dec 2014
 60 groups expressed interest
 ~150 instruments (12 space-based)

EM → GW: Astrophysically triggered GW searches

- e.g., GRBs, from radio or optical transient surveys
- Search for GW transient coincident in time and direction with the trigger
- Allows potentially deeper search (i.e., with lower detection threshold)

The potential of LSST

- 2021+, 2nd phase (with KAGRA, LIGO India)
 - BNS horizon distance to ~200 Mpc, few tenth events/year
 - Angular resolution $\sim 1 \text{ sq deg typ.}$ (< 10 sq deg)

LSST transient survey

- SHB afterglow: 4 Gpc (70/yr); kilonova: 450 Mpc (150/yr) [optimistic!]
- GW triggered search find +10 % more sources than GW-only search
 +3 kilonova/yr = +40 % in the number of multimessenger observations!

• EM follow-up with LSST

- Ideal instrument: large FOV and depth!
- Breaking survey cadence?

Predictions from Kelley et al, Phys. Rev. D 87, 123004 (2013)

Conclusions

Virgo has fullfilled its mission

Reach target sensitivity, major science objectives published

- With Advanced Virgo, the next decade will probably see the 1st direct detection of GW
- Clear synergy with time-domain astronomy Multimessenger observations have a lot of potential

Many challenges and a lot of excitement ahead!