Supernova distances with LSST and Euclid

Supernovae : present and near future

More than 700 events
ACDM is a fair description of data

Contours with systematics : Planck+SN : w = -1.018 + - 0.057

From now to 2020: DES • 2000-4000 events • z<~ 1

Betoule et al (2014)

Photometric quality for distances

Photometric quality of distances (2)

- Measurement precision requirements
 - 3 bands
 - 2 bands at < 0.04, 1 band at < 0.06
 - -> colour to 0.03 mag
- Spectral coverage
 - Similar at all redshifts (minimal dependence to the SN model)

– λ_{mean} > 3800 nm for the bluest band

Photometric quality of distances (3)

- You can often read that LSST will <u>discover</u> 10⁵-10⁶ SNe
- Discovering is not measuring a distance.....
- Now, collecting more poorly measured distances is useless for cosmology.
- With the current observing plan in the LSST wide survey, there are essentially no usable SNe light curves <u>for distances</u>.
- But the cadence in the wide survey does not have to be even over 10 years, within the same total allocation.

Standard Euclid visits?

Assume one visit a day and per pointing:

- 10 deg^2 (full time).
- z<1 (in fact z<0.4 ou 0.8)
- 180 visits (= 6 months full time)
 - \rightarrow 500 SNe (z<1) \rightarrow not interesting

The SN project for 2020+

- A lot : O(10000) events. Well measured !
- $Z \max$: as large as possible (aim at z>1)

 \rightarrow IR imaging, faint objects

 \rightarrow Space.

- Photometric quality : at least as good as SNLS : resolution of 0.03 (integrated per band)
- Similar (restframe) bands at all z.

Redshift slices

Low z : (u) gri (z) bands \rightarrow z<0.35 Ground

Mid z : griz bands \rightarrow z<0.95 Ground

High z : i z y J H bands 0.75<z<1.5 Ground +Euclid.

Ground = LSST LSST can do the low z part, thanks to its fast read out. LSST already has the mid z part in its schedule (deep drilling fields)

LSST+Euclid : visible & IR photometry

Getting distances to high-z events

The wavelength coorage is widder than the redshift range
i at z=0.8 → 420 nm
H at z=1.5 → 660 nm

How much time on Euclid

Working hypothesis : 6 months (dedicated).

 \rightarrow 20 pointings = 10 deg²

 \rightarrow imaged 2 times 6 months (half of the observing time)

 \rightarrow 90 visits \rightarrow final depth m >~28

Euclid & LSST

Code name : DESIRE

Simulations and cosmological constraints

Astier, Guy, Pain, Balland (2010)

Uncertainty sources :

- Shot noise (sky plus object)
- Statistical uncertainty of the SN model
- Calibration systematic uncertainty (0.01)
 - Direct
 - Through the SN model training
- Colour smearing of SNe : amplitudes fluctuate by 0.025.
- Intrinsic scatter : 0.12 (beyond colour smearing).

 $\rightarrow 0.15$ at best.

- Systematic distance error (correlated at all z)
- Current state of the art : no wild extrapolation

Results

Summary :

z min z max area duration statistics 0.75 1.55 20 6 Hi-z 1740 Mid-z 0.15 0.95 50 18 8800 2000 8000 Low-z 0.05 0.35 6 **Redshift limited surveys!**

Cosmological constraints with R measured to 0.36 % (Planck) + flat universe

	sig(w_0)	sig(w_a)	FOM
3 surveys	0.022	0.25	203
low+mid	0.028	0.31	137
mid+high	0.031	0.40	82

• Euclid's contribution (hi-z) is important but it does not dominate.

Redshifts

Get the host redshifts with a (fiber-fed) MOS (Lidman et al 2012) e.g. 4Most, DESI A few pointing , integrations of 100 -1000 ks

Contamination

Clipping outliers in the Hubble diagram seems to work (e.g. P.A. et al 2011) Light curve shapes and colours are a bonus.

Varying hypotheses

Varying hypotheses

Number of high-z events

Project status

- This is the SN-cosmology project in Euclid.
- It depends on the observing time on Euclid being allocated. We are said that this should happen in 2015. I understand "not before 2015".
- The project was adopted by the LSST and Euclid SN working groups.
- The outcome without Euclid is already interesting. It is much more interesting with Euclid.

Conclusions

- In the present landscape, we can sketch a compelling Hubble diagram of SNe Ia using LSST&Euclid.
 - Euclid alone cannot do much for distances to SNe
 - Euclid is the key to reach z>1.
- The combined performance is good, using current systematics
- A paper is submitted.