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- The hot and energetic Universe: What is it all about?
- lllustrative breakthrough observations to be performed
- The Athena mission

- The X-ray Integral Field Unit - A revolutionary instrument




The Hot Universe

- How does ordinary matter assemble
into the large scale structure that we
see today?

v 85% of the baryons in the local Universe
are trapped in the hot gas of clusters




The Hot Universe revealed in X-rays

- To understand the matter assembly in
the Universe, one must determine the
physical evolution of clusters and groups
from their formation epoch at z~2 to
today

- These structures grow over cosmic time
by accretion of gas from the
intergalactic medium, ending up as the
massive clusters that we see today

- Hot gas in these structures emits
predominantly in X-rays and dominates
the baryonic content of the local
Universe

(Oppenheimer, B. D.)




The Hot Universe

- While the growth of structure is set by
the large scale dark matter distribution,
processes of astrophysical origin have
also a major effect

- To understand them, it is necessary to
measure velocities, thermodynamics,
chemical composition of the gas, to
quantify the role of non gravitational
heating (AGN feedback, SN driven
winds, ..)

v Spatially resolved high-resolution X-ray
spectroscopy enables to map the baryonic
structures out to z™1




The Hot Universe

- One of the critical processes shaping the
baryonic evolution is energy input, also
know as feedback from supermassive
black holes

v Processes originating at the event horizon
affecting structures on scales 10 orders of
magnitude larger !

- X-ray observations are again key as they
probe the mechanisms launching jets and
winds from the black hole




The Energetic Universe

- How do black hole grow and shape the
Universe?

v Building a super massive black hole
releases 10-100 times the binding energy
of a galaxy

v 15% of the energy output in the Universe
is from accretion onto black holes

DISK AND TORUS
AROUND SMALLER
BLACK HOLES

< 100 MILLION SUN




The Energetic Universe

- All massive galaxies, not just those in clusters and
groups, host a supermassive black hole (SMBH) at
their centre, the mass of which is tightly
correlated with the galaxy bulge properties (e.g.
via the MBH-go relation).

v A self-regulating mechanism connecting the
accretion-powered growth of the SMBH to the star-
formation powered growth of the galaxy at much
larger scales must exist.

v This process must be probed between z=1-4 when
most black holes and stars we see today were put in
place

- Determining this feedback mechanism is key to
understand the growth and co-evolution of black
holes and their host galaxies.
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The Energetic Universe

- X-rays provide the clearest and most
robust way of performing a census of
black hole growth in the Universe,
accounting for obscured objects

- On smaller scales, X-rays produced by
gravitational energy released near the
event horizon of black holes diagnose the
accretion flow in the strong gravity regime

v Give insights on jets, winds, and their link to
accretion

v And provide unique information on BH spins
and its evolution as it grows




lllustrative breakthrough observations
The Hot Universe




Key questions for the Hot Universe

- A complete understanding of the Hot Universe - the baryonic gas that traces the
most massive structures and drives the formation of galaxies within them - can only
be achieved via X-ray observations.

- Key questions are:
vy~ How do baryons in groups and clusters accrete and dynamically evolve in the dark matter haloes?
v~ What drives the chemical and thermodynamic evolution of the Universe’s largest structures?

v" What is the interplay of galaxy, supermassive black hole, and intergalactic gas evolution in groups
and clusters?

v~ Where are the missing baryons at low redshift and what is their physical state?




Cluster astrophysics: baryonic evolution

Key issue: Understand how baryons accrete and evolve in the largest dark matter potential wells of
groups and clusters.

Key measurement: Measure the gas bulk motions and turbulence through high spectral resolution
spatially resolved spectroscopy.
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Cluster astrophysics: energy deposition in the ICM

Key issue: Determine how and when the energy contained in the hot intracluster medium was

generated.

Key measurement: Map the structure of the hot gas trapped in galaxy clusters at various redshifts
out to the virial radius, resolving gas density and temperature.
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Captions: Left) X-ray images of a
cluster at two redshifts. Middle)
Surface brightness profile, to recover
the gas density profile. Right) Entropy
profiles derived the gas density
profile and electron temperature.
Entropy profile derived from
numerical simulations with only
gravitational heating processes are
shown with a doted line.
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Cluster astrophysics: jet energy dissipation

Key issue: Understand how jets from AGN dissipate their mechanical energy in the intracluster
medium, and how this affects the hot gas distribution. Determine whether jets from powerful radio-
loud AGN are the dominant non-gravitational process dffecting the evolution of hot gas.

Key measurement. Measure hot gas bulk motions and energy stored in turbulence directly
associated with the expanding radio lobes in the innermost parts of nearby clusters. Map
temperatures in radio-loud AGN out to intermediate redshifts and map shock structures.
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The missing baryons

Key issue: As a probe of structure formation and metal enrichment theory, find the missing baryons
at low redshifts (z<1), determine their physical state and composition, and identify wether they
trace filaments of the Cosmic web, as predicted.

Key measurement: Detect highly ionized species (C, N, O, Ne, and Fe) in high resolution X-ray spectra
to measure their chemical composition, density, size, temperature, ionization and turbulence.
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X=7ray-point sources -

lllustrative breakthrough observations

The Energetic Universe




Key questions for the Energetic Universe

- Pushing the frontiers of black hole evolution at the redshifts when the first galaxies
were forming (z>6), performing a complete census of black hole growth, understanding
how quasars work and influence their surroundings is best done in X-rays.

- Key questions are:

v~ How do early supermassive black holes form, evolve and affect the distant Universe?
v~ What is the role of (obscured) black hole growth in the evolution of galaxies?
v~ How do accretion-powered outflows affect larger scales via feedback?

v~ How do accretion and ejection processes operate in the near environment of black holes?




Black hole seeds

Key issue: Determine the nature of the seeds of high redshift (z>6) SMBH (pop-Ill seeds versus
primordial gas clouds) and which processes dominated their early growth.

Key measurement: Detect low luminosity accreting SMBH, out to the highest redshifts through their
X-ray emission in large area X-ray surveys. The most obscured objects will be unveiled by targeted
high-res X-ray spectroscopy revealing strong reflected iron lines and follow-up observations.
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Athena+ predicted 1 Captions: Expected number counts of z=6-8
AGN from the survey (circles). Note that at
E present no purely X-ray selected objects
: have yet been found in this redshift range.
The shaded regions show predictions based
on theoretical models that differ by black
hole formation mechanism and growth rate
(Volonteri & Begelman, 2010).
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Tracing the first generation of stars

Key issue: Trace the first generation of stars to understand cosmic re-ionization, the formation of the

first seed black holes, and the dissemination of the first metals.

Key measurement: Measure metal abundance patterns for a variety of ions (e.g., S, Si, Fe) in high-z

gamma-ray burst X-ray afterglows as a way to distinguish between progenitors.
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Black hole growth probed by spins

Key issue: Infer whether accretion or mergers drive the growth of SMIBH across cosmic time.

Key measurement: Measure black hole spins through reverberation, time-resolved X-ray
spectroscopy and average spectral methods to perform a survey of SMBH spins out to z~1-2 and

compare with predictions from merger and accretion models.
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Captions: The theoretical expectations for
each SMBH growth scenario (dotted
histograms) is shown (Berti & Volonteri 2008)
and compared to simulated Athena+
measurements (solid histograms), accounting
realistically for all observational errors and
spectral complexities.
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Blowout phase - feedback in action

Key issue: Determine what is the nature of AGN feedback and whether it is key in galaxy evolution.

Key measurement: Determine for a large sample of AGN, the incidence, the nature and the
energetics of AGN outflows out to z=4 to test co-evolution scenarios postulating AGN winds for

regulating star formation.
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The Athena mission

The Hot and Energetic Universe




Athena: A large X-ray mirror and two instruments

Wilingale et al, 2013
arXiv1308.6785

L2 orbit Ariane V

Mass < 5100 kg \ (N
Power 2500 W ' \ N

5 year mission

-

Silicon Pore Optics:

2m2at 1 keV

5 arcsec HEW

Focal length: 12 m
Sensitivity: 3 1017 erg cm2s!

X-ray Integral Field Unit:
AE:2.5eV

Field of View: 5 arcmin )
Operating temp: 50 mk AE: 125 eV

Wide Field Imager:

Field of View: 40 arcmin
High countrate capability

Barret et al., 2013 arXiv:1308.6784
TOO Response 4 hours (goal 2 hours) for 50% of time  Rau et al. 2013 arXiv1307.1709




Comparison with previous X-ray missions

- Huge improvement in effective area and survey capabilities, providing
Athena unprecedented capabilities as an observatory
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A multi-purpose observatory: An example

Key issue: Understanding the physics of core collapse and type la supernova remnants, quantifying
the level of asymmetry in the explosion mechanism, the production of heavy elements, and their
impact on the galactic environment.

Key measurement: First detailed 3D mapping of the hot ejected material in the line of sight
(velocity, temperature, ionization state and composition) to determine to the full geometry and
properties of the different layers of shocked ejecta.
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Perseus cluster - X-IFU 100 ks

The X-ray Integral Field Unit
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A very exciting challenge to be taken up by France (CNES, IRAP, CEA, IAS, LAM, ...)




The X-ray Integral Field Unit (X-IFU)

Parameter Value Comment .

5 arcmin 3480 Transition
(diameter) Edge Sensors

Spectral 55 e\ (250 x 250 ym TES
resolution ' cooled at 50 mK)
Energy range 0.3-12 keV Bi/Au absorbers

Digital pulse
selection

Field of view

Time resolution 10 ps

6 kg

180 kg/300 W
320 kg
514 kg/1.2 kW

| Barret, D., den Herder, J., Piro L. et al ! The Hot and Energetic Universe: The X-ray Integral Field Unit for Athena+ | 2013arXiv:1308.6784




The X-IFU organisation

Role
Pl

Co-Pls

X-IFU Science team Chair

XIFU Science Team

X-IFU Head of Nation Committee

IRAP project manager
Instrument scientist

End-to-end performance

Electronics responsible

Ground segment responsible

Project management & Prime

System team

Name(s)
D. Barret (FR, IRAP)

J.W. den Herder ([SRON, NL])
L. Piro (INAF, IT)

X. Barcons (CSIC, ES)

G. Branduardi-Baymont (GB] , M. Dadina (IT), A. Decourchelle (FR, CEA), P. Jonker (NL), Y. Nazé
(BE), F. Nicastro (IT), S. Paltani (CH), E. Pointcouteau (FR, IRAP), D. Porquet (FR, Strasbourg), G.
Pratt (FR, CEA), J. Schaye [NL), S. Sciortino (IT), P. Uttley (NL), J. Wilms (DE]

D. Barret (Chair, FR), J.W. den Herder (NL), L. Piro (IT), M. Mas-Hesse (ES), M. Page (UK], S.
Paltani (CH]), G. Rauw (BE), J. Wilms (DE)

L. Ravera

F. Pajot

Ph. Peille

E. Pointecouteau

N. Webb

CNES

CNES + X-IFU consortium partners




Cooling chain with ADR as a baseline

| 50K

15K

15 K Pulse tube
50 mK Hybrid cooler

VAN
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50 mK 100 mK 1K 10K 100 K 300 K

Radiator

Barret, D., den Herder, J., Piro L. et al ! The Hot and Energetic Universe: The X-ray Integral Field Unit for Athena+ | 2013arXiv:1308.6784




The X-IFU European consortium

- The European consortium for the X-IFU has been set-up and is being
ready to answer the AO call for instrument consortia

X-IFU WBS (V1.0.13)

ATHENA Mission Management

Cesa g National Funding

ATHENA ATHENA Agencies

Project Manager Project Scientist |

[ A —N 0 J==]
ATHENA EEREEREN e e e e s T e e e o ) = L)

Payload Manager Payload System X-IFU HoN
(Head of Nations)

@ BPIL: D. Barret

___N____,_______A_____A____,_____,__________________,_______A______________i X-IFU Science Team
== Co-PI: JW. den Herder r
@ B cCo-PI: L. Piro X-IFU Science
Team Chair
(X. Barcons)
)| X-IFU instrument
XY The Hot
} 1 Instrument | | Universe
X-IFU System Team .:!| Manager
X-IFU X-IFU YT X-IFU X-IFU
System Manager| |Instrument Scientist RAIV PA/QA Project Control The Energetic
Universe
Barret, D., den Herder, J., Piro L. et al The Hot and Energetic Universe: The X-ray Integral Field Unit for Athena+ 2013arXiv:1308.6784




Conclusions

- The Hot and Energetic Universe science theme was selected by ESA for its L2 mission.

v Very strong support from the broad astronomical community, behind the X-ray community

- This science theme could be implemented by an observatory like Athena

v Athena provides the necessary angular resolution, spectral resolution, throughput, detection
sensitivity, and survey grasp needed to revolutionize our understanding of the Hot and Energetic
Universe

- Athena will open up a vast discovery space leading to completely new areas of
scientific investigation

v The implementation of Athena for launch in 2028 will establish European leadership in high
energy astrophysics for the foreseeable future.

- France played a key role in the theme selection and is now ideally placed to have a
leadership in the main element of payload of the next large astronomy mission

v | hope you will join us in building the great instrument that is the X-ray Integral Field Unit
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Primordial stellar populations
High redshift galaxy group via GRB afterglow follow up
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Cluster astrophysics: chemical enrichment

Key issue: Determine when the largest baryon reservoirs in galaxy clusters were chemically enriched
and by which processes. Constrain the cluster IMF and the SN 1a explosion mechanisms.

Key measurement: Measure abundances of heavy elements from O to Fe in clusters at different
redshifts. Invert the abundances using yields of various SN types and AGB stars to constrain the IMF

and SN1a explosion mechanism. Determine where metals are produced in nearby objects in nearby
clusters.
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Captions: Left) Abundance ratios
predicted from different
contributions of SN types and
AGB stars. Right) X-ray spectrum
of a typical 3 keV cluster at z=0.02
showing the products of two
different types of SN, 1a and CC.
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Pushing the frontiers

The Epoch of Re-ionization

Chandra/XMM surveys =

Redshift (z)




Obscured accretion

Key issue: Find the physical conditions (fueling mode, outburst triggering mechanism) under which
SMBH grew at the epoch when most of the accretion and star formation in the Universe occurred
(z~1-4)

Key measurement: Perform through wide field imaging a complete census of AGN out to z*3,
including those that reside inside a Compton-thick environment. Search for strong iron line
dominated spectral as the signposts of heavily obscured AGN.
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