New Physics in B_s Mixing & Decay

Ulrich Haisch University of Oxford

Recontres de Moriond EW 2012, La Thuile, Aosta Valley, Italy, 3–10 March 2012

Standard Model & Beyond

■ $B_s-\bar{B}_s$ oscillations encoded in elements M_{12} & Γ_{12} of hermitian mass & decay rate matrices (CPT \Rightarrow M_{11} = M_{22} , Γ_{11} = Γ_{22}). In Standard Model (SM) leading effects due to electroweak box diagrams:

Standard Model & Beyond

Generic, sufficiently heavy new physics (NP) in M_{12} (Γ_{12}) can be described via effective $\Delta B = 2$ ($\Delta B = 1$) interactions:

Parameters & Observables

Model-independent parametrization of NP effects in B_s system:

$$M_{12} = (M_{12})_{SM} + (M_{12})_{NP} = (M_{12})_{SM} R_M e^{i\phi_M},$$

 $\Gamma_{12} = (\Gamma_{12})_{SM} + (\Gamma_{12})_{NP} = (\Gamma_{12})_{SM} R_{\Gamma} e^{i\phi_{\Gamma}}$

Expressed through R_{M,Γ}, $\phi_{M,\Gamma}$ & $(\phi_s)_{SM} = arg(-(M_{12})_{SM}/(\Gamma_{12})_{SM})$, mass ΔM & width difference $\Delta \Gamma$, flavor-specific (e.g. semileptonic) CP asymmetry a_{fs}^s & CP-violating (CPV) phase $\phi_{\psi\phi}$ take form

$$\Delta M = (\Delta M)_{\rm SM} R_M, \quad \Delta \Gamma \approx (\Delta \Gamma)_{\rm SM} R_{\Gamma} \cos(\phi_M - \phi_{\Gamma}),$$

$$a_{fs}^s \approx (a_{fs}^s)_{\text{SM}} \frac{R_{\Gamma}}{R_M} \frac{\sin(\phi_M - \phi_{\Gamma})}{(\phi_s)_{\text{SM}}}, \quad \phi_{\psi\phi} = (\phi_{\psi\phi})_{\text{SM}} + \phi_M$$

$$\phi_{\psi\phi} = (\phi_{\psi\phi})_{\rm SM} + \phi_M$$

Parameters & Observables

Besides $\phi_{\psi\phi}$ (from mixed-induced, time-dependent CP asymmetry in $B_s \to \psi\phi$) & a_{fs}^s (from tree-level $B_s \to \mu^+ D_s^- X$ decay), there is a 3^{rd} relevant CPV quantity in B sector, i.e., like-sign dimuon charge asymmetry A_{SL}^b :

$$(A_{SL}^b) = \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

$$= C_d [a_{fs}^d] + (1 - C_d) [a_{fs}^s],$$

 $N_b^{\pm\pm} = \# \text{ of events with } \mu^{\pm}\mu^{\pm},$ $C_d \approx [0.5, 0.6] \propto \text{ production } B_d/B_s$

SM Predictions vs. Data

	SM predictions [Lenz & Nierste, 1106.6308]	data before 2011
$\Delta M [ps^{-1}]$	17.3 ± 2.6	17.70 ± 0.08 [CDF]
$\Delta\Gamma$ [ps ⁻¹]	0.087 ± 0.021	$0.154^{+0.054}_{-0.070}$ (0.9 σ) [CDF & DØ]
φ _{ψφ} [°]	-2.1 ± 0.1	-44^{+17}_{-21} (2.3 σ) [CDF & DØ]
A _{SL} [10-4]	-2.1 ± 0.4	$-85 \pm 28 (3.0\sigma)$ [DØ]
afs [10-5]†	1.9 ± 0.3	$-1200 \pm 700 \ (1.7\sigma)$

[†]calculated from measured A_{SL}^b & $a_{fs}^s = (-4.7 \pm 4.6) \times 10^{-3}$ from BaBar & Belle [HFAG, 1010.1589]

Implications of Before 2011 Data

Assuming NP in M₁₂ only, SM & models without a new phase (e.g. mSUGRA) are disfavored by more than 3σ

[see e.g. UTfit, 0803.0659; Lenz, Nierste & CKMfitter, 1008.1593; ...]

Implications of Before 2011 Data

Assuming NP in M₁₂ only, SM & models without a new phase (e.g. mSUGRA) are disfavored by more than 3σ

[see e.g. UTfit, 0803.0659; Lenz, Nierste & CKMfitter, 1008.1593; ...]

But χ^2 of data not great. In fact, for NP in M₁₂ only & $a_{fs}^d = (a_{fs}^d)_{SM}$, Ab measurement implies:

$$S_{\psi\phi} = \sin \phi_{\psi\phi} = -2.5 \pm 1.3$$

[see e.g. Dobrescu, Fox & Martin, 1005.4238; Ligeti et al., 1006.0432; ...]

If NP in M₁₂, Which Kind?

In all NP models without direct
 CPV in decay (like SUSY, little
 Higgs (LH), Randall-Sundrum
 (RS) scenarios, ...), observables
 afs & Sψφ strongly correlated:

$$\frac{a_{fs}^s}{(a_{fs}^s)_{\rm SM}} \approx -240 \, \frac{S_{\psi\phi}}{R_M} \,,$$

$$R_M = 1.05 \pm 0.16$$

[see e.g. Ligeti, Papucci & Perez, hep-ph/0604112; Blanke et al., 0805.4393, 0809.1073; Altmannshofer et al., 0909.1333; Casagrande et al., 0912.1625; ...]

If NP in M₁₂, Which Kind?

Even a clear signal of NP in B_s mixing will not allow to pinpoint nature of beyond-SM dynamics. One needs to study correlations with other channels such as B_s → μ⁺μ⁻

Unfortunately, given great performance of LHC, one starts walking on thin ice ...

[see e.g. talk by Langenegger for CMS, http://indico.cern.ch/conferenceDisplay.py?confId=178806]

SM Predictions vs. Data

	SM predictions [Lenz & Nierste, 1106.6308]	data before 2011	data after 2011
$\Delta M [ps^{-1}]$	17.3 ± 2.6	17.70 ± 0.08 [CDF]	17.73 ± 0.05 [CDF & LHCb]
$\Delta\Gamma$ [ps ⁻¹]	0.087 ± 0.021	$0.154^{+0.054}_{-0.070}$ (0.9 σ) [CDF & DØ]	$0.123 \pm 0.030 \text{ (1.0o)}$ [LHCb]
φ _{ψφ} [°]	-2.1 ± 0.1	-44^{+17}_{-21} (2.3 σ) [CDF & DØ]	1.7 ± 10.0 [LHСb]
A _{SL} [10-4]	-2.1 ± 0.4	$-85 \pm 28 (3.0\sigma)$ [DØ]	$-79 \pm 20 \ (3.9\sigma)$ [DØ]
afs [10-5]†	1.9 ± 0.3	$-1200 \pm 700 \ (1.7\sigma)$	$-1300 \pm 800 \ (1.5\sigma)$

[†]calculated from measured A_{SL}^b & $a_{fs}^s = (-4.7 \pm 4.6) \times 10^{-3}$ from BaBar & Belle [HFAG, 1010.1589]

Implications of After 2011 Data

For $(M_{12})_{NP} \neq 0$, $(\Gamma_{12})_{NP} = 0$, fit to new data only slightly better than SM hypothesis ($\chi^2/\text{dofs} = 3.3/2 \text{ vs. } \chi^2/\text{dofs} = 3.4/2$)

[Bobeth & UH, 1109.1826; also Lenz, Nierste & CKMfitter, 1203.0238]

Implications of After 2011 Data

For $(M_{12})_{NP} \neq 0$, $(\Gamma_{12})_{NP} = 0$, fit to new data only slightly better than SM hypothesis ($\chi^2/\text{dofs} = 3.3/2 \text{ vs. } \chi^2/\text{dofs} = 3.4/2$)

[Bobeth & UH, 1109.1826; also Lenz, Nierste & CKMfitter, 1203.0238]

In fact, scenario with NP in Γ_{12} only, allows for a significantly better fit ($\chi^2/\text{dofs} = 0.2/2$) than M_{12} -only assumption

[Bobeth & UH, 1109.1826]

Implications of After 2011 Data

For $(M_{12})_{NP} \neq 0$, $(\Gamma_{12})_{NP} = 0$, fit to new data only slightly better than SM hypothesis ($\chi^2/\text{dofs} = 3.3/2 \text{ vs. } \chi^2/\text{dofs} = 3.4/2$)

[Bobeth & UH, 1109.1826; also Lenz, Nierste & CKMfitter, 1203.0238]

In fact, scenario with NP in Γ_{12} only, allows for a significantly better fit ($\chi^2/\text{dofs} = 0.2/2$) than M_{12} -only assumption

[Bobeth & UH, 1109.1826]

Given latter result, worthwhile to ask: how big can NP in Γ_{12} be?

NP in Γ_{12} : ($\bar{s}b$)($\bar{\tau}\tau$) Operators

While any operator ($\bar{s}b$)f with f leading to a flavor-neutral final state of 2 or more fields & mass less than m_b can alter Γ_{12} , possible f's in practice limited, because $B_s \to f$ & $B_d \to X_s f$ channels with f involving light states strongly constrained. One exception are B decays to tau pairs

```
[see e.g. Dighe, Kundu & Nandi, 0705.4547, 1005.1629; Bauer & Dunn, 1006.1629; Alok, Baek & London, 1010.1333; Kim, Seo & Shin, 1010.5123; Bobeth & UH, 1109.1826; ...]
```

NP in Γ_{12} : ($\bar{s}b$)($\bar{\tau}\tau$) Operators

- While any operator ($\bar{s}b$)f with f leading to a flavor-neutral final state of 2 or more fields & mass less than m_b can alter Γ_{12} , possible f's in practice limited, because $B_s \to f$ & $B_d \to X_s f$ channels with f involving light states strongly constrained. One exception are B decays to tau pairs
- Can study size of NP in Γ_{12} using an effective theory containing a complete set of $(\bar{s}b)(\tau\bar{\tau})$ operators (A, B = L, R):

$$\mathcal{L}_{\text{eff}}^{\text{NP}} = \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i C_i Q_i , \qquad Q_{S,AB} = (\bar{s} P_A b)(\bar{\tau} P_B \tau) ,$$

$$Q_{V,AB} = (\bar{s} \gamma_\mu P_A b)(\bar{\tau} \gamma^\mu P_B \tau) ,$$

$$Q_{V,AB} = (\bar{s} \sigma_{\mu\nu} P_A b)(\bar{\tau} \sigma^{\mu\nu} P_A \tau) ,$$

$$Q_{T,A} = (\bar{s} \sigma_{\mu\nu} P_A b)(\bar{\tau} \sigma^{\mu\nu} P_A \tau) ,$$

NP in Γ_{12} : ($\bar{s}b$)($\bar{\tau}\tau$) Operators

Assuming single operator dominance, calculation of

$$(\Gamma_{12})_{\mathrm{NP}} \propto C_i C_j \mathrm{Im} \left[\begin{array}{c} b & Q_i & \tau & Q_j \\ s & \tau & \end{array} \right]$$

translates into

$$(R_{\Gamma})_{S,AB} < 1 + (0.4 \pm 0.1) |C_{S,AB}|^2$$
,
 $(R_{\Gamma})_{V,AB} < 1 + (0.4 \pm 0.1) |C_{V,AB}|^2$,
 $(R_{\Gamma})_{T,A} < 1 + (0.9 \pm 0.2) |C_{T,A}|^2$

which implies that Ci's have to be around 1 (i.e. size of leading SM current-current coefficient) or larger to describe data well

Bounds on (s̄b)(τ̄τ) Operators

Direct constraints arise from

$$Br(B^+ → K^+ \tau^-) < 3.3 \cdot 10^{-3} (90\% CL)$$
[Flood for BaBar, PoS ICHEP2010, 234 (2010)]

Br(B_s →
$$\tau^+\tau^-$$
), Br(B → X_s $\tau^+\tau^-$) ≤ 5% [see e.g. Grossman, Ligeti & Nardi, hep-ph/9607473; Dighe, Kundu & Nandi, 1005.4051]

Bounds on purely leptonic & inclusive semileptonic Br's derived from ratio of $B_{d,s}$ lifetimes † & LEP searches of B decays with missing energy. Similar limits follow from charm counting

[LHCb-CONF-2011-049]

[†]bound improved to around 3.5% by LHCb measurement of $\Delta\Gamma$

Bounds on (s̄b)(τ̄τ) Operators

■ Indirect constraints due to operator mixing & matrix elements: †

Bounds on C_i 's derived by taking into account measurements of $B \to X_s \gamma$ (Br), $B \to K^* \gamma$ (Br, S, A_I), $B \to X_s l^+ l^-$ (Br), $B \to K^* l^+ l^-$ (Br, A_{FB}, F_L) & upper limit on B_s $\to \gamma \gamma$ (Br)

 $^{\dagger}Q_{S,AB}$ does not mix into $b \rightarrow s\gamma$, $l^{+}l^{-}$ but has non-zero $b \rightarrow s\gamma\gamma$ elements

Upper Bounds on Wilson Coefficients

	limit on C _i (m _b)	limit on Λ_{NP} for $C_i^{\Lambda} = 1$	process
S, AB	< 0.8	1.3 TeV	$B^+ \rightarrow K^+ \tau^+ \tau^-$
V, AB	< 0.8	1.0 TeV	$B^+ \rightarrow K^+ \tau^+ \tau^-$
T, L	< 0.06	3.2 TeV	$b \rightarrow s\gamma, l^+l^-$
T, R	< 0.09	2.7 TeV	$b \rightarrow s\gamma, l^+l^-$

Assuming single operator dominance & complex C_i , one obtains quite loose bounds on scalar & vector operators, whereas tensor contributions are severely constrained, mostly due to $B \rightarrow X_s \gamma$

After 2011 Data: $(\Gamma_{12})_{NP}$ Due to $b \rightarrow s\tau^+\tau^-$

Upper limit on C_i translate into:

$$(R_{\Gamma})_{S,AB} < 1.4$$
,
 $(R_{\Gamma})_{V,AB} < 1.3$,
 $(R_{\Gamma})_{T,L} < 1.004$,
 $(R_{\Gamma})_{T,R} < 1.008$

Largest correction due to scalar operator can change $|\Gamma_{12}|_{SM}$ by up to 40%. Easing tension in B-meson sector is hence possible ($\chi^2/dofs > 2.2/2$), but not a full resolution of issue

Lepto-Quark Contributions to Γ_{12}

■ For SU(2) singlet scalar lepto-quarks (LQs) relevant coupling

$$\mathcal{L}_{LQ} \ni (\lambda_{R\tilde{S}_0})_{ij} (\bar{d}_j^c P_R e_i) \tilde{S}_0 + \text{h.c.}$$

leads to $\Delta B = 1 \& \Delta B = 2$ interactions

$$\mathcal{L}_{\text{eff}} \ni -\frac{(\lambda_{R\tilde{S}_{0}})_{32}(\lambda_{R\tilde{S}_{0}})_{33}}{2M_{\tilde{S}_{0}}^{2}} Q_{V,RR}$$

which give a real ratio (btw. $r_{SM} \approx -200$)

$$r_{\rm LQ} = \frac{(M_{12})_{\rm LQ}}{(\Gamma_{12})_{\rm LQ}} = 2084 \left(\frac{M_{\tilde{S}_0}^2}{250 \,{\rm GeV}}\right)$$

Predictions for SU(2) Singlet Scalar LQs

Even a light LQ fails to describe data & parameter space shrinks further for heavier LQs. Visible cosine-, sine-like correlations & $\Delta\Gamma < (\Delta\Gamma)_{SM}$ model-independent feature

New Physics in B_s Mixing & Decay

Ulrich Haisch University of Oxford

Recontres de Moriond EW 2012, La Thuile, Aosta Valley, Italy, 3–10 March 2012

Best-Fit Solutions to Data

	before 2011	after 2011
R_{M}	1.05 ± 0.16	1.05 ± 0.16
фм [°]	-46 ± 19	1.5 ± 10.0
R_{Γ}	3.3 ± 1.5	3.4 ± 1.7
фг [°]	7 ± 30	58 ± 23

Even before measurements of B_s -mixing observables by LHCb, a perfect 4-parameter fit (χ^2 =0) to data required large corrections in Γ_{12} . New data set favors both enhanced magnitude R_{Γ} & phase ϕ_{Γ}

Details on Bounds on Wilson Coefficients

$C_{i}(m_{b})$	$B^+ \rightarrow K^+ \tau^+ \tau^-$	$B_s \rightarrow \tau^+ \tau^-$	$B \rightarrow X_s \tau^+ \tau^-$	$b \rightarrow s\gamma, l^+l^-$	$B_s \rightarrow \gamma \gamma$
S, AB	< 0.8	≤ 0.7	≤ 9.6		< 3.4, 2.3
V, AB	< 0.8	≤ 1.4	≤ 4.8	< 1.1, 1.0	< 5.9
T, A	< 0.4		< 1.4	< 0.06, 0.09	
7				< 0.29	< 2.2
7'				< 0.19	< 1.9
9				< 2.0	
9'				< 1.0	

Z' Contributions to Γ_{12}

For left-handed Z' boson relevant couplings

$$\mathcal{L}_{Z'} \ni \frac{g}{\cos \theta_W} \left[\left(\kappa_{sb}^L \, \bar{s} \gamma^{\mu} P_L b + \text{h.c.} \right) + \kappa_{\tau\tau}^L \, \bar{\tau} \gamma^{\mu} P_L \tau \right] Z'_{\mu}$$

give rise to $\Delta B = 1 \& \Delta B = 2$ interactions

$$\mathcal{L}_{\text{eff}} \ni -\frac{8G_F}{\sqrt{2}} \frac{M_Z^2}{M_{Z'}^2} \kappa_{sb}^L \kappa_{\tau\tau}^L Q_{V,LL}$$

which again produce a real ratio

$$r_{Z'} = \frac{(M_{12})_{Z'}}{(\Gamma_{12})_{Z'}} = 6.0 \cdot 10^5 \left(\frac{M_{Z'}}{250 \,\text{GeV}} \frac{1}{\kappa_{\tau\tau}^L}\right)^2$$

Predictions for Left-handed Z'

Left-handed Z' provides an even worse description of data than LQs. Model-independent correlations & $\Delta\Gamma < (\Delta\Gamma)_{SM}$ also present in case of new neutral vector boson

Further Comments on NP in $\Gamma_{12}^{s,d}$

- Bounds on $(\bar{s}b)(\bar{\tau}\mu)$ are stronger by roughly a factor of 7 than those on $(\bar{s}b)(\bar{\tau}\tau)$ operators, since $Br(B^+ \to K\tau^{\pm}\mu^{\mp}) < 7.7 \cdot 10^{-5}$ compared to $Br(B^+ \to K^+\tau^+\tau^-) < 3.3 \cdot 10^{-3}$. Hence, contributions from $(\bar{s}b)(\bar{\tau}\mu)$ operators cannot improve fit to B_s data notable
- An contribution from $(\bar{d}b)(\bar{\tau}\tau)$ operators to Γ_{12}^d large enough to explain data excluded by bound $Br(B \to \tau^+\tau^-) < 4.1 \cdot 10^{-3}$. Case of $\tau^{\pm}\mu^{\mp}$ final state even less favorable
- My naive guess is that (db)(cc) operators are heavily constrained (should be numerically smaller than QCD/electroweak penguins in SM) by exclusive B decays & thus also cannot resolve tension in B-mixing sector. A dedicated analysis is however missing