
G. Eigen (Bergen)

2nd physics of the

On behalf of M. Bona, G. Eigen, R. Itoh and E. Kou

B factories workshop KEK, May 18, 2010

Chapter Outline

- Section: Introduction and goals $2 p$
- Section: Methodology
- Subsection: CKMfitter 2p
- Subsection: UTfit 2p
- Subsection: Scanning method $2 p$
- Section: Experimental Inputs
- Subsection: B-factories results: β, α (which decays to consider), $\gamma, 2 \beta+\gamma, \mathrm{V}_{\mathrm{ub}}$, $V_{c b}, \Delta m_{d}, A^{d}, B(B \rightarrow \tau v)$, radiative penguins (how to use them) $4 p$
- Subsection: Non-B-factories results (briefly on their threatment): $\varepsilon_{\mathrm{k}}, \Delta \mathrm{m}_{\mathrm{s}}, \mathrm{A}^{\mathrm{s}}{ }_{S L}$, TD $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi, \Delta \Gamma_{\mathrm{s}}$ (with order calculation). 2-3p
- Rather than having subsubsections we indicate in the table which are inputs for the SM fit and inputs for the BSM fits
- Section Theoretical Inputs
- Subsection Derivation of hadronic observables $2 p$
- Subsection Lattice QCD inputs $4 p$
- Benchmark models 5p
- Section Results from the global fits
- Section Global fits beyond the Standard Model 4p
- Subsection New-physics parameterizations 4p
- Subsection Operator analysis $2 p$

Section Conclusions 1-2p
total: 36-38 pages
G. Eigen, Vxb workshop, SLAC, October 312009

Motivation

- The CKM matrix is specified by 4 independent parameters, \rightarrow in the Wolfenstein approximation they are $\lambda, A, \bar{\rho}$, and $\bar{\eta}$

$$
\mathbf{V}_{\text {CKM }}=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4} & \lambda & \mathbf{A} \lambda^{3}(\rho-i \eta) \\
-\lambda+\mathbf{A}^{2} \lambda^{5}\left(\frac{1}{2}-\rho-i \eta\right) & 1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}-\frac{1}{2} \mathbf{A}^{2} \lambda^{4} & \mathbf{A} \lambda^{2} \\
\mathbf{A} \lambda^{3}(1-\bar{\rho}-i \eta) & -\mathbf{A} \lambda^{2}+\mathbf{A} \lambda^{4}\left(\frac{1}{2}-\rho-i \eta\right) & 1-\frac{1}{2} \mathbf{A}^{2} \lambda^{4}
\end{array}\right)+\mathbf{O}\left(\lambda^{6}\right)
$$

- Unitarity of the CKM matrix specifies relations among the parameters e.g.

$$
\boldsymbol{V}_{u d} \boldsymbol{V}_{u b}^{*}+\boldsymbol{V}_{c d} \boldsymbol{V}_{c b}^{*}+\boldsymbol{V}_{t d} \boldsymbol{V}_{t b}^{*}=\mathbf{0}
$$

- Combine measurements from the B and K systems to overconstrain the triangle
\rightarrow test if phase of CKM matrix is only source of $C P$ violation
G. Eigen, Vxb workshop, SLAC, Culuver vi <uOv ud ub

$$
\alpha, \phi_{2}=\arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right)
$$

$$
\beta, \phi_{1}=\arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right)
$$

$$
\gamma, \phi_{3}=\arg \left(-\frac{\boldsymbol{V}_{u d} \boldsymbol{V}_{u b}^{*}}{\boldsymbol{V}_{c d} \boldsymbol{V}_{c b}^{*}}\right)
$$

Motivation

- In the SM in the absence of errors all measurements of UT properties exactly meet in $\bar{\rho}$ and $\bar{\eta}$
- The extraction of $\bar{\rho}, \bar{\eta}$ depends on QCD parameters that have large theory uncertainties
- We use 3 different fit methods: CKMfitter, UTfit and Scanning method which differ in the
 treatment of QCD parameters
G. Eigen, Vxb workshop, SLAC, October 312009

CKMfitter Methodology

- CKMfitter (Rfit) is a frequentist-based approach to the global fit of CKM matrix
- Likelihood function: $\mathcal{L}\left[y_{\text {mod }}\right]=\mathcal{L}_{\text {exp }}\left[x_{\text {exp }}-x_{\text {th }}\left(y_{\text {mod }}\right)\right] \times \mathcal{L}_{\text {th }}\left[y_{\text {QcD }}\right]$
\rightarrow First term measures agreement between data, $x_{\text {exp }}$, and prediction, $x_{t h}$
\rightarrow Second term expresses our present knowledge on QCD parameters
$\rightarrow y_{\text {mod }}$ are a set of fundamental and free parameters of theory $\left(m_{t}\right.$, etc)
- Minimize
and determine

$$
\begin{aligned}
& \chi^{2}\left(y_{\bmod }\right) \equiv-2 \ln \left(\mathcal{L}\left[y_{\bmod }\right]\right) \\
& \Delta \chi^{2}\left(y_{\bmod }\right)=\chi^{2}\left(y_{\bmod }\right)-\chi_{\text {mini: } y_{\text {mod }}}^{2}
\end{aligned}
$$

where χ^{2} min:ymod is the absolute minimum value of χ^{2} function

- Separate uncertainties of QCD parameters into statistical (σ) and non-statistical (theory) uncertainties (δ)
\rightarrow statistical uncertainties are treated like experimental errors with a Gaussian likelihood

Rfit Methodology

- Treatment of theory uncertainties (δ):
\rightarrow If fitted parameter a lies within the predicted range $x_{0} \pm \delta x_{0}$ contribution to χ^{2} is zero
\rightarrow If fitted parameter a lies outside the predicted range $x_{0} \pm \delta x_{0}$ the likelihood $\mathcal{L}_{\text {th }}\left[\right.$ Y $\left._{\text {QCD }}\right]$ drops rapidly to zero, define:
$-2 \ln \mathcal{L}_{+n}\left[x_{0}, k, \zeta\right]= \begin{cases}0, & \forall x_{0} \in\left[\bar{x}_{0} \pm \zeta \delta x_{0}\right] \\ \left(\frac{x_{0}-\bar{x}_{0}}{\kappa \delta x_{0}}\right)^{2}-\left(\frac{\zeta}{\kappa}\right)^{2}, & \forall x_{0} \notin\left[\bar{x}_{0} \pm \zeta \delta x_{0}\right]\end{cases}$
- 3 different analysis goals
- Within SM achieve best estimate of ${y_{\text {th }}}$
- Within SM set CL that quantifies agreement between data and theory

- Within extended theory framework search for specific signs of new physics

UTfit Methodology

- UTfit is a Bayesian-based approach to the global fit of CKM matrix
- For M measurements c_{j} that depend on $\bar{\rho}$ and $\bar{\eta}$ plus other N parameters x_{i} the function $f\left(\bar{\rho}, \bar{\eta}, x_{1}, \ldots x_{N} \mid c_{1}, \ldots c_{M}\right)$ needs to be evaluated by integrating over x_{i} and c_{j}
- Using Bayes theorem one finds

$$
f\left(\bar{\rho}, \bar{\eta}, x_{1}, \ldots x_{N} \mid c_{1}, \ldots c_{M}\right) \propto \prod_{j=1, M} f_{j}\left(c_{j} \mid \bar{\rho}, \bar{\eta}, x_{1}, \ldots, x_{N}\right) \prod_{i=1, N} f_{i}\left(x_{i}\right) f_{0}(\bar{\rho}, \bar{\eta})
$$

where $f_{0}(\bar{\rho}, \bar{\eta})$ is the a-priory probability for $\bar{\rho}$ and $\bar{\eta}$

- The output pdf for $\bar{\rho}$ and $\bar{\eta}$ is obtained by integrating over c_{j} and x_{i}

UTfit Methodology

- Measurement inputs and all theory parameters are described by pdfs
- Errors are typically treated with a Gaussian model, only for B_{k}, ξ and $f_{B} \delta B_{B}$ a flat distribution representing the theory uncertainty is convolved with a Gaussian representing the statistical uncertainty
- So if available, experimental inputs are represented by likelihoods
- The method does not make any distinction between measurement and theory parameters
- The allowed regions are well defined in terms of probability \rightarrow allowed regions at 95% probability means that you expect the "true" value in this range with 95% probability
- By changing the integration variables any pdf can be extracted \rightarrow this yields an indirect determination of any interesting quantity

The Scanning Method

- The basis is the original approach by M.H. Schune \& S. Plaszczynski used for the BABAR physics book
- The fit method was extended to include over 250 single measurements
- The four QCD parameters B_{k}, f_{B}, B_{B}, ξ and $V_{u b}, V_{c b}$, have significant theory uncertainties, thus they are scanned in the following way
- We express each parameter in terms of $x_{0} \pm \sigma_{x} \pm \delta_{x}$, where σ is a statistical uncertainty and δ_{x} is the theory uncertainty
- We select a specific value $x^{\star} \in\left[x_{0}-\delta_{x}, x_{0}+\delta_{x}\right]$ as a model
- We consider all models inside the $\left[x_{0}-\delta_{x}, x_{0}+\delta_{x}\right]$ interval
- In each model the uncertainty σ_{q} is treated in a statistical way
- The uncertainties in the QCD parameters $\eta_{c c}, \eta_{c t}, \eta_{t+}$, and η_{B} and the quark masses $m_{c}\left(\bar{m}_{c}\right)$ and $m_{b}\left(\bar{m}_{b}\right)$ are treated like statistical uncertainties, since these uncertainties are relatively small
\rightarrow however, if necessary, we can scan over any of these parameters

The Scanning Method

- We perform maximum likelihood fits using a frequentist approach
- A model is considered consistent with data if $P\left(\chi^{2}\right)_{m i n}>5 \%$
- For consistent models we determine the best estimate and plot a $95 \% \mathrm{CL}(\bar{\rho}, \bar{\eta})$ contour \rightarrow we overlay contours of consistent models
\rightarrow however, though only one of the contours is the correct one, we do not know which and thus show a representative numebr of them
- For accepted fits we also study the correlations among the theoretical parameters extending their range far beyond the range specified by the theorists
- We can input α, ϕ_{2} and γ, ϕ_{3} via a likelihood function or directly using individual $B \rightarrow \pi \pi, \rho \pi, \rho \rho, a_{1} \pi, b_{1} \pi$ measurements and GLW, ADS and Dalitz plot measurements in $B \rightarrow D^{(*)} K^{(*)} \& \sin (2 \beta+\gamma)$, respectively
- We can further determine PP, PV VV amplitudes and strong phases using Gronau and Rosner parameterizations in powers of λ

Work is in progress to include $\cos 2 \beta, \beta_{s}, A^{q}{ }_{S L}, \Delta \Gamma_{s}$ and τ_{s} add contours of $\sin 2 \alpha, \gamma$ and $\sin (2 \beta+\gamma)$ and improve on display

Differences among the 3 Methods

- Fit methodologies differ: 2 frequentist approaches vs 1 Bayesian approach
- Theory uncertainties are treated differently in the global fits
- Presently, measurement input values differ plus some assumptions differ
- For $V_{u b}$ and $V_{c b}$ there is an issue how to combine inclusive and exclusive results

- Inclusive/exclusive averages \leftrightarrow individual results
- Resulting errors
- QCD parameters inputs differ, eg $f_{B s}, B_{B s}, f_{B s} / f_{B d}, B_{B S} / B_{B d} \leftrightarrow$ $f_{B d}, B_{B d}, \xi \leftrightarrow f_{B d} \vee B_{B d}, \xi$
\rightarrow We need to standardize measurement inputs, QCD parameters (at least numerical values should agree) and assumptions
G. Eigen, Vxb workshop, SLAC, October 312009

Input Measurements from B Factories

- $V_{u b}$ and $V_{c b}$ measured in exclusive and inclusive semileptonic B decays
- Δm_{d} from $B_{d} B_{d}$ oscillations
- CP asymmetries $\mathrm{a}_{\text {cp }}\left(\psi \mathrm{K}_{\mathrm{s}}\right)$ from $B \rightarrow c c K_{s}$ decays
\rightarrow angle β
- α from $B \rightarrow \pi \pi, B \rightarrow \rho \rho, \& B \rightarrow \rho \pi C P$ measurements, add $B \rightarrow a_{1} \pi, B \rightarrow b_{1} \pi$

- GLW, ADS and GGSZ analyses in $B \rightarrow D^{(*)} K^{(*)}$

Input Measurements from B Factories

- $\sin (2 \beta+\gamma)$ measurement from $\left.B \rightarrow D^{*}\right) \pi(\rho)$
- cos 2β from $B \rightarrow J / \psi K^{*}$ and $B \rightarrow D^{0} \pi^{0}$
- $\mathrm{B} \rightarrow \tau v$ branching fraction

G. Eigen, Vxb workshop, SLAC, October 312009

Other Input Measurements

- $\left|\varepsilon_{k}\right|$ from $C P$ violation in K decays
- $\Delta m_{d} / \Delta m_{s}$ from $B_{d} \bar{B}_{d}$ and $B_{s} \bar{B}_{s}$ oscillations
- $\beta_{s}-\Delta \Gamma_{s}$ from B_{s} measurements at the Tevatron
- CKM elements $V_{u d}, V_{u s}$, $V_{c d}, V_{c s}, V_{t b}$

HFAG

Measurement Inputs

Observable	CKMfitter	UTfit	Scanning M
$\left\|V_{u s}\right\|$	0.2246 ± 0.0012	0.2259 ± 0.0009	0.2258 ± 0.0021
$\left\|V_{u b}\right\|\left[10^{-3}\right]$	$3.79 \pm 0.09 \pm 0.41$ *	$4.11^{+0.27}{ }_{-0.28}$ (inc)	
		3.38 ± 0.36 (exc)	$3.84 \pm 0.16 \pm 0.29$ (ex
$\left\|\mathrm{V}_{\mathrm{cb}}\right\|\left[10^{-3}\right]$	$40.59 \pm 0.37 \pm 0.58$ *	41.54 ± 0.73 (inc)	
		38.6 ± 1.1 (exc)	40.9 $\pm 1.0 \pm 1.6$ (exc)
$B(B \rightarrow \tau v)\left[10^{-4}\right]$	1.73 ± 0.35	1.51 ± 0.33	1.79 ± 0.72
$\Delta m_{\text {Bd }}\left[\mathrm{ps}^{-1}\right]$	0.507 ± 0.005	0.507 ± 0.005	0.508 ± 0.005
$\Delta m_{B s}\left[p s^{-1}\right]$	17.77 ± 0.12	17.77 ± 0.12	17.77 ± 0.12
$\left\|\varepsilon_{k}\right\|\left[10^{-3}\right]$	2.229 ± 0.010	2.229 ± 0.010	2.232 ± 0.007
$\sin 2 \beta$	0.671 ± 0.023	0.671 ± 0.023	0.68 ± 0.025
$\alpha[\pi \pi, \rho \pi, \rho \rho]$	1-CL (α)	$-2 \Delta \ln (\mathcal{L})$	B, S, C for $\pi \pi$ \& $\rho \rho$
$\gamma[G G S Z, G L W, A D S]$	$1-C L(\gamma)$	$-2 \Delta \ln (\mathcal{L})$	GGSZ, GLW, ADS
$\cos 2 \beta$	J/ $/ \mathrm{K}^{*}$	$\mathrm{J} / \mathrm{K}^{*}, \mathrm{D}^{\circ} \pi^{0}$	To be done
(1) $2 \beta+\gamma$	$D^{(*)} \pi(\rho)$	$-2 \Delta \ln (\mathcal{L})$	$D^{(*} \pi(\rho)$

Lattice QCD Inputs

- Parameter	CKMfitter			UTfit		Scanning
	Mean	$\sigma_{\text {stat }}$	$\delta_{\text {theo }}$	Mean	σ	Mean $\sigma_{\text {stat }} \delta_{\text {theo }}$
$f_{B s}\left[f_{B d}\right]$	228	± 3	± 17	245	± 25	[216 $\pm 10 \pm 20]$
$f_{B s} / f_{B d}$	1.199	± 0.008	± 0.023	1.21	± 0.04	
$\mathrm{B}_{\mathrm{Bs}}\left[\mathrm{B}_{\mathrm{Bd}}\right]$	1.23	± 0.03	± 0.05	1.22	± 0.12	[1.29 $\pm .05 \pm .08]$
$\mathrm{B}_{\mathrm{Bs}} / \mathrm{B}_{\mathrm{Bd}}[\xi]$	1.05	± 0.02	± 0.05	1.00	± 0.03	[1.2 $\pm .028 \pm .05]$
$\mathrm{B}_{\mathrm{K}}[2 \mathrm{GeV}]$	0.525	± 0.0036	± 0.052			
B_{K}	0.721	± 0.005	± 0.040	0.75	± 0.07	$0.79 \pm 0.04 \pm 0.09$
$m_{c}\left(\bar{m}_{c}\right)[\mathrm{GeV}]$	1.286	± 0.013	± 0.040	1.3	± 0.1	1.27 ± 0.11
$m_{+}\left(m_{+}\right)[\mathrm{GeV}]$	165.02	± 1.16	± 0.11	161.2	± 1.7	163.3 ± 2.1
$\eta_{c c}$	Calcu	ted from	$m_{c}\left(m_{c}\right) \& \alpha_{s}$	1.38	± 0.53	1.46 ± 0.22
$\eta_{c t}$	0.47 ± 0			0.47	± 0.04	0.47 ± 0.04
$\eta_{\text {t† }}$	0.5765	± 0.0065		0.574	± 0.004	0.5765 ± 0.0065
$\eta_{B}(\overline{M S})$	$0.551 \pm$	0.007		0.55	± 0.01	0.551 ± 0.007
\sim^{*}	0.1176	0.0020		0.119	± 0.03	0.118

Global Fit Results

- Inputs: $\left|V_{\text {us }}\right|,\left|V_{\text {us }}\right|$
- $\quad \mathcal{B}(B \rightarrow \tau v)$
- $\left|\varepsilon_{k}\right|$
- $\Delta m_{B d}, \Delta m_{B s}$
$\sin 2 \beta, 1-C L(\alpha), 1-C L(\gamma)$

Note scales are not the same!
G. Eigen, Vxb workshop, SLAC, October 312009

Tension from $\mathcal{B}(B \rightarrow \tau v)$

- $\mathcal{B}(B \rightarrow \tau v)$ is proportional to $\left|V_{\mathrm{ub}}\right|^{2}$ and $f^{2}{ }_{\text {Bd }}$
- from global fit $\mathcal{B}(B \rightarrow \tau v)=\left(0.79_{-0.010}^{+0.016}\right) \times 10^{-4}$
- WA:
$\mathcal{B}(B \rightarrow \tau v)=(1.73 \pm 0.35) \times 10^{-4}$
- 2.4 0 discrepancy
- If $\mathcal{B}(B \rightarrow \tau v)$ or $\sin 2 \beta$ are removed $\chi_{\text {min }}^{2}$ in global fit drops by 2.4 $\left|\mathrm{V}_{\mathrm{ub}}\right|,\left|\mathrm{V}_{\mathrm{cb}}\right|$ remain unaffected
G. Eigen, Vxb workshop, SLAC, October 312009

Constraints in the $m_{H^{-}}-\tan \beta$ Plane

- From BABAR/Belle average we extract

$$
r_{H}=1.67 \pm 0.34_{\text {exp }} \pm 0.36_{f_{g}, v_{\mathrm{wb}}}
$$

- We can use the $95 \% \mathrm{CL}$ to present exclusions at $95 \% \mathrm{CL}$ in the $\mathrm{m}_{L_{-}-\tan \beta}$ plane

$r_{H}=\left(1-\frac{m_{B}^{2}}{m_{H^{+}}^{2}\left(1+\varepsilon_{0} \cdot \tan \beta\right)} \tan ^{2} \beta\right)^{2}$

95\% C.L. exclusions

Model-Independent Analysis of UT

- Assume that new physics only affects short-distance part of $\Delta B=2$
- We use model-independent parameterization for B_{d} and B_{s}
where $H^{f u l l}=H^{S M}+H^{N P}$
- Several observables are modified by the magnitude or phase of $\Delta_{q}{ }^{\text {NP }}$
- In B_{d} system we compare $R_{u} \& \gamma$ with $\sin 2 \beta, \sin 2 \alpha$ and Δm_{d} that may be modified by NP parameters $\left(\Delta_{d}, \phi_{d}\right)$

parameter	prediction in the presence of NP
Δm_{q}	$\left\|\Delta_{q_{-}}^{\text {NP }}\right\| \times \Delta m_{q}^{\text {SM }}$
2β	$2 \beta^{\text {SM }}+\Phi_{d}^{\text {NP }}$
$2 \beta_{s}$	$2 \beta_{s}^{\text {SM }}-\Phi_{s}^{\mathrm{NP}}$
2α	$2\left(\pi-\beta^{\text {SM }}-\gamma\right)-\Phi_{d}^{\text {NP }}$
$\Phi_{12, q}=\operatorname{Arg}\left[-\frac{M_{12, q}}{\Gamma_{22 \Omega}}\right]$	$\Phi_{12, q}^{\mathrm{SM}}+\Phi_{q}^{\mathrm{NP}}$
$A_{S L}^{q}$	
$\Delta \Gamma_{q}$	$2\left\|\Gamma_{12, q}\right\| \times \cos \left(\Phi_{12, q}^{\mathrm{SM}}+\Phi_{q}^{\mathrm{NP}}\right)$

- In B_{s} system we compare $R_{u} \& \gamma$ with $\Delta m_{s}, \beta_{s}$, and $\Delta \Gamma_{s}$ that may be modified by NP parameters ($\Delta_{\mathrm{d}}, \phi_{\mathrm{d}}$)

Model-Independent Analysis of UT for $\left|\Delta_{\mathrm{d}}\right|-\phi_{\mathrm{d}}$

- Inputs: $\Delta m_{d}, \Delta m_{s}, \sin 2 \beta, \alpha, \Delta \Gamma_{d}, A_{S L}{ }^{B d}, A_{S L}{ }^{B s}, w / o \mathcal{B}(B \rightarrow \tau v)$

- Dominant constraints come from β and Δm_{d}
- Semileptonic asymmetries $A_{S L}$ exclude symmetric solution with $\eta<0$
- $\Delta_{\mathrm{d}}=1(S M)$ is disfavored by 2.1σ (discrepancy $\mathcal{B}(B \rightarrow \tau v)$ and $\sin 2 \beta$) $\rightarrow \phi_{d}{ }^{N P}=\left(-12^{+9}{ }_{-6}\right)^{0}$ @ $95 \% \mathrm{CL}(\rightarrow$ discrepancy is $0.6 \sigma \mathrm{w} / \mathrm{o} \mathcal{B}(B \rightarrow \tau v))$
G. Eigen, Vxb workshop, SLAC, October 312009

Model-Independent Analysis of UT for $\left|\Delta_{s}\right|-\phi_{s}$

- Inputs: $\phi_{s}, \Delta m_{d}, \Delta m_{s}, A_{S L}{ }^{B d}, A_{S L}{ }^{B s}, \Delta \Gamma_{s}, \tau_{s}, \mathcal{B}(B \rightarrow \tau v)$

- Dominant constraints come from direct measurements of $\phi_{s}, \Delta \Gamma_{s}$ in $B \rightarrow J / \psi \phi$ and Δm_{s} from the Tevatron
- ϕ_{s} is 2.2σ away from the SM prediction
$\Delta_{s}=1$ is disfavored at 1.9σ level independent of $\mathcal{B}(B \rightarrow \tau v)$
G. Eigen, Vxb workshop, SLAC, October 312009

Final Remarks

- Among the 3 global CKM fitting methods we need to standardize
- All measurement inputs
- What QCD parameters to use, their central values, their statistical errors and their theory errors
- The notation for quantities in the text, on plots and in equations
- We need to specify which input parameters are used in the fits and standardize on the assumptions
\rightarrow This is important for comparing results
- We will present results in form of plots with values listed in tables \rightarrow we accompany the results with a few remarks
\rightarrow in particular in cases of discrepancies we need to discuss them
- Most of the writing probably has to be done by the co-conveners

More Recent Publications

- CKMfitter publications
- J. Charles et al., Eur. Phys. J. C41, 1-135, 2005.
- UTfit publications:
- M. Bona et al., JHEP 0610:081, 2006.
- M. Bona et al., Phys.Rev.D76:014015, 2007.
- M. Bona et al., Phys.Rev.Lett.97:151803, 2006.
- M Bona et al., Phys.Lett.B687:61-69, 2010.
- Scanning method
- G. Eigen et al., Eur.Phys.J.C33:S644-S646,2004.
- G.P. Dubois-Felsmann et al., hep-ph/0308262.

