

G. Eigen (Bergen)

2nd physics of the B factories workshop KEK, May 18, 2010 On behalf of M. Bona, G. Eigen, R. Itoh and E. Kou

Chapter Outline

- Section: Introduction and goals 2p
- Section: Methodology
 - Subsection: CKMfitter 2p
 - Subsection: UTfit 2p
 - Subsection: Scanning method 2p
- Section: Experimental Inputs
 - Subsection: B-factories results: β , α (which decays to consider), γ , $2\beta + \gamma$, V_{ub} , V_{cb} , Δm_d , A^d_{SL} , B(B $\rightarrow \tau v$), radiative penguins (how to use them) 4p
 - Subsection: Non-B-factories results (briefly on their threatment): ε_{k} , Δm_{s} , A^{s}_{SI} , TD $B_s \rightarrow J/\psi \phi$, $\Delta \Gamma_s$ (with order calculation). 2-3p
 - Rather than having subsubsections we indicate in the table which are inputs for the SM fit and inputs for the BSM fits
- Section Theoretical Inputs
 - Subsection Derivation of hadronic observables 2p
 - Subsection Lattice QCD inputs 4p
- Benchmark models 5p
- Section Results from the global fits
- Section Global fits beyond the Standard Model 4p
 - Subsection New-physics parameterizations 4p
 - Subsection Operator analysis 2p
 - Section Conclusions 1-2p

total: 36-38 pages

Motivation

The CKM matrix is specified by 4 independent parameters, in the Wolfenstein approximation they are λ , A, $\overline{\rho}$, and $\overline{\eta}$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + A^2\lambda^5(\frac{1}{2} - \rho - i\eta) & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 - \frac{1}{2}A^2\lambda^4 & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 + A\lambda^4(\frac{1}{2} - \rho - i\eta) & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} + O(\lambda^6)$$

Unitarity of the CKM matrix specifies relations among the parameters

e.g. $V_{ud}V_{ub}^{\star} + V_{cd}V_{cb}^{\star} + V_{td}V_{tb}^{\star} = 0$

Combine measurements from the B and K systems to overconstrain the triangle

→ test if phase of CKM matrix is only source of CP violation

$$rg\left(-\frac{V_{td}V_{tb}^{\star}}{V_{ud}V_{ub}^{\star}}\right) \quad \beta, \phi_{1} = arg\left(-\frac{V_{cd}V_{cb}^{\star}}{V_{td}V_{tb}^{\star}}\right) \quad \gamma, \phi_{3} = arg\left(-\frac{V_{cd}V_{cb}^{\star}}{V_{td}V_{tb}^{\star}}\right)$$

G. Eigen, Vxb workshop, SLAC, October 51 2009

 $\alpha, \phi_2 = \alpha$

Motivation

- In the SM in the absence of errors all measurements of UT properties exactly meet in ρ and η
- The extraction of $\overline{\rho}, \overline{\eta}$ depends on QCD 15 parameters that have large theory uncertainties
- We use 3 different fit methods: CKMfitter, UTfit and Scanning method which differ in the

CKMfitter Methodology

- CKMfitter (Rfit) is a frequentist-based approach to the global fit of CKM matrix
- Likelihood function:

$$\mathcal{L}[\boldsymbol{y}_{mod}] = \mathcal{L}_{exp}[\boldsymbol{x}_{exp} - \boldsymbol{x}_{th}(\boldsymbol{y}_{mod})] \times \mathcal{L}_{th}[\boldsymbol{y}_{QCD}]$$

- \rightarrow First term measures agreement between data, x_{exp} , and prediction, x_{th}
- Second term expresses our present knowledge on QCD parameters
- \rightarrow y_{mod} are a set of fundamental and free parameters of theory (m_t, etc)
- Minimize

and determine

$$\chi^{2}(\gamma_{mod}) \equiv -2\ln(\mathcal{L}[\gamma_{mod}])$$

$$\Delta \chi^{2}(\boldsymbol{y}_{mod}) = \chi^{2}(\boldsymbol{y}_{mod}) - \chi^{2}_{min;\boldsymbol{y}_{mod}}$$

where $\chi^2_{\text{min};\text{ymod}}$ is the absolute minimum value of χ^2 function

- Separate uncertainties of QCD parameters into statistical (σ) and non-statistical (theory) uncertainties (δ)
- statistical uncertainties are treated like experimental errors with a Gaussian likelihood

Rfit Methodology

- Treatment of theory uncertainties (δ):
 - → If fitted parameter a lies within the predicted range $x_0 \pm \delta x_0$ contribution to χ^2 is zero
 - → If fitted parameter a lies outside the predicted range x₀±δx₀ the likelihood L_{th}[y_{QCD}] drops rapidly to zero, define:

$$-2 \ln \mathcal{L}_{th}[\mathbf{x}_{0}, \kappa, \zeta] = \begin{cases} \mathbf{0}, & \forall \mathbf{x}_{0} \in \left[\overline{\mathbf{x}}_{0} \pm \zeta \delta \mathbf{x}_{0}\right] \\ \left(\frac{\mathbf{x}_{0} - \overline{\mathbf{x}}_{0}}{\kappa \delta \mathbf{x}_{0}}\right)^{2} - \left(\frac{\zeta}{\kappa}\right)^{2}, & \forall \mathbf{x}_{0} \notin \left[\overline{\mathbf{x}}_{0} \pm \zeta \delta \mathbf{x}_{0}\right] \end{cases}$$

- 3 different analysis goals
 - Within SM achieve best estimate of y_{th}
 - Within SM set CL that quantifies agreement between data and theory
 - Within extended theory framework search for specific signs of new physics

UTfit Methodology

UTfit is a Bayesian-based approach to the global fit of CKM matrix

- For M measurements c_j that depend on ρ and η plus other N parameters x_i the function $f(\overline{\rho}, \overline{\eta}, x_1, \dots, x_N \mid c_1, \dots, c_M)$ needs to be evaluated by integrating over x_i and c_j
- Using Bayes theorem one finds

$$\mathbf{f}(\overline{\rho},\overline{\eta},\mathbf{x}_{1},\ldots,\mathbf{x}_{N} \mid \mathbf{c}_{1},\ldots,\mathbf{c}_{M}) \propto \prod_{j=1,M} \mathbf{f}_{j}(\mathbf{c}_{j} \mid \overline{\rho},\overline{\eta},\mathbf{x}_{1},\ldots,\mathbf{x}_{N}) \prod_{i=1,N} \mathbf{f}_{i}(\mathbf{x}_{i}) \mathbf{f}_{0}(\overline{\rho},\overline{\eta})$$

where $f_0(\overline{\rho}, \overline{\eta})$ is the a-priory probability for $\overline{\rho}$ and $\overline{\eta}$

• The output pdf for ρ and η is obtained by integrating over c_j and x_i

UTfit Methodology

Measurement inputs and all theory parameters are described by pdfs

- Errors are typically treated with a Gaussian model, only for B_k , ξ and $f_B \int B_B$ a flat distribution representing the theory uncertainty is convolved with a Gaussian representing the statistical uncertainty
- So if available, experimental inputs are represented by likelihoods
- The method does not make any distinction between measurement and theory parameters
- The allowed regions are well defined in terms of probability
 Allowed regions at 95% probability means that you expect the "true" value in this range with 95% probability
- By changing the integration variables any pdf can be extracted
 This yields an indirect determination of any interesting quantity

The Scanning Method

- The basis is the original approach by M.H. Schune & S. Plaszczynski used for the BABAR physics book
- The fit method was extended to include over 250 single measurements
- The four QCD parameters B_k , f_B , B_B , ξ and V_{ub} , V_{cb} , have significant theory uncertainties, thus they are scanned in the following way
 - We express each parameter in terms of $x_0 \pm \sigma_x \pm \delta_x$, where σ is a statistical uncertainty and δ_x is the theory uncertainty
 - We select a specific value $x^* \in [x_0 \delta_x, x_0 + \delta_x]$ as a model
 - We consider all models inside the $[x_0 \delta_x, x_0 + \delta_x]$ interval
 - In each model the uncertainty σ_q is treated in a statistical way
- The uncertainties in the QCD parameters η_{cc} , η_{ct} , η_{tt} , and η_B and the quark masses $m_c(\overline{m}_c)$ and $m_b(\overline{m}_b)$ are treated like statistical uncertainties, since these uncertainties are relatively small → however, if necessary, we can scan over any of these parameters

The Scanning Method

- We perform maximum likelihood fits using a frequentist approach
- A model is considered consistent with data if $P(\chi^2_M)_{min} > 5\%$
- For consistent models we determine the best estimate and plot a 95% CL (ρ, η) contour → we overlay contours of consistent models
 → however, though only one of the contours is the correct one, we do not know which and thus show a representative numebr of them
- For accepted fits we also study the correlations among the theoretical parameters extending their range far beyond the range specified by the theorists
- We can input α , ϕ_2 and γ , ϕ_3 via a likelihood function or directly using individual $B \rightarrow \pi\pi$, $\rho\pi$, $\rho\rho$, $a_1\pi$, $b_1\pi$ measurements and GLW, ADS and Dalitz plot measurements in $B \rightarrow D^{(*)}K^{(*)}$ & sin(2 β + γ), respectively
- \clubsuit We can further determine PP, PV VV amplitudes and strong phases using Gronau and Rosner parameterizations in powers of λ

Work is in progress to include cos 2β , β_s , A^q_{SL} , $\Delta\Gamma_s$ and τ_s add contours of sin 2α , γ and sin $(2\beta+\gamma)$ and improve on display G. Eigen, Vxb workshop, SLAC, October 31 2009

Differences among the 3 Methods

Likelihood

- Fit methodologies differ: 2 frequentist approaches vs 1 Bayesian approach
- Theory uncertainties are treated differently in the global fits
- Presently, measurement input values differ plus some assumptions differ
- For V_{ub} and V_{cb} there is an issue how to combine inclusive and exclusive results
 - Inclusive/exclusive averages \leftrightarrow individual results
 - Resulting errors
- ➡ We need to standardize measurement inputs, QCD parameters (at least numerical values should agree) and assumptions

Input Measurements from B Factories

- V_{ub} and V_{cb} measured in exclusive and inclusive semileptonic B decays
- Δm_d from $B_d B_d$ oscillations
- CP asymmetries $a_{cp}(\psi K_S)$ from $B \rightarrow ccK_s$ decays \rightarrow angle β
- α from $B \rightarrow \pi\pi$, $B \rightarrow \rho\rho$, & $B \rightarrow \rho\pi CP$ measurements, add $B \rightarrow a_1\pi$, $B \rightarrow b_1\pi$

 \blacksquare GLW, ADS and GGSZ analyses in $B{\rightarrow}D^{(*)}K^{(*)}$

Input Measurements from B Factories

- sin(2 β + γ) measurement from $B \rightarrow D^{(*)}\pi(\rho)$
- cos 2 β from B \rightarrow J/ ψ K^{*} and B \rightarrow D⁰ π^{0}
- $B \rightarrow \tau v$ branching fraction

Other Input Measurements

- $|\epsilon_{\rm K}|$ from CP violation in K decays
- $\Delta m_d / \Delta m_s$ from $B_d B_d$ and $B_s B_s$ oscillations
- CKM elements V_{ud}, V_{us}, V_{cd}, V_{cs}, V_{tb}

Measurement Inputs

	Observable	CKMfitter	UTfit		Scanning M	
•	V _{us}	0.2246±0.0012	0.2259±0.0009		0.2258±0.0021	
	V _{ub} [10 ⁻³]	3.79±0.09±0.41*	4.11 ^{+0.27} -0.28	(inc)		
			3.38±0.36	(exc)	3.84±0.16±0.29	(ex
	V _{cb} [10 ⁻³]	40.59±0.37±0.58*	41.54±0.73	(inc)		
			38.6±1.1	(exc)	40.9±1.0±1.6 (ex	(c)
	B(B→τν) [10 ⁻⁴]	1.73±0.35	1.51±0.33		1.79±0.72	
	∆m _{Bd} [p <i>s</i> ⁻¹]	0.507±0.005	0.507±0.005 17.77±0.12 2.229±0.010 0.671±0.023		0.508±0.005	
	∆m _{Bs} [ps ⁻¹]	17.77±0.12			17.77±0.12	
	ε _κ [10 ⁻³]	2.229±0.010			2.232±0.007	
	sin 2β	0.671±0.023			0.68±0.025	
	α[ππ, ρπ, ρρ]	1-CL(α)	$-2\Delta ln(\mathcal{L})$		Β, Տ, C for ππ & ρρ	
	γ [GGSZ, GLW, ADS]	1-CL(γ)	-2∆ln(<i>L</i>)		GGSZ, GLW, ADS	
	cos 2β	J/ψK*	J/ψK*, D ^ο π ^ο		To be done	
	2β+γ	D ^(*) π(ρ)	-2∆ln(<i>L</i>)		D ^(*) π(ρ)	
<u>I</u>	J	* use average values 15				

Lattice QCD Inputs

🖨 Parameter	CKMfitter			UTfit		Scanning	
	Mean	σ_{stat}	$\delta_{ ext{theo}}$	Mean	σ	Mean σ_{stat} δ_{theo}	
f _{Bs} [f _{Bd}]	228 ±	<u>-</u> 3	±17	245	±25	[216 ±10 ± 20]	
f _{Bs} ∕f _{Bd}	1.199 ±	800.0	±0.023	1.21	±0.04		
B _{Bs} [B _{Bd}]	1.23 ±	0.03	±0.05	1.22	±0.12	[1.29 ±.05 ±.08]	
Β _Β ₅/Β _Β ₄ [ξ]	1.05 ±	0.02	±0.05	1.00	±0.03	[1.2 ±.028 ±.05]	
B _K [2 GeV]	0.525 ±	0.0036	±0.052				
Β _κ	0.721	±0.005	±0.040	0.75	±0.07	0.79 ±0.04 ±0.09	
m _c (m _c) [GeV]	1.286	±0.013	±0.040	1.3	±0.1	1.27±0.11	
$m_t(\overline{m}_t) [GeV]$	165.02 ±	1.16	±0.11	161.2	±1.7	163.3 ±2.1	
η_{cc}	η_{cc} Calculated from $m_c(m_c) \& \alpha_s$		1.38	±0.53	1.46±0.22		
η_{ct}	η _{ct} 0.47±0.04			0.47	±0.04	0.47±0.04	
η _{tt} 0.5765±0.0065				0.574	±0.004	0.5765±0.0065	
η _β (MS)	0.551±0.007			0.55	±0.01	0.551±0.007	
C S	0.1176±0.	.0020		0.119	±0.03	0.118	

Tension from $\mathcal{B}(B \rightarrow \tau v)$

Ц

- $\mathcal{B}(B \rightarrow \tau v)$ is proportional to $|V_{ub}|^2$ and f_{Bd}^2
- from global fit
 B(B→τν)=(0.79^{+0.016}_{-0.010})×10⁻⁴
- WA: $\mathcal{B}(B \to \tau v) = (1.73 \pm 0.35) \times 10^{-4}$
- 2.4σ discrepancy
- If B(B→τν) or sin 2β are removed χ²_{min} in global fit drops by 2.4 |V_{ub}|, |V_{cb}| remain unaffected

Constraints in the m_H -tan β Plane From BABAR/Belle average m_B² B⁺ $\frac{m_{B}^{2}}{m_{H^{+}}^{2}(1+\varepsilon_{0}\cdot\tan\beta)}\tan^{2}\beta$ r_{_H} = | 1 we extract H⁺ B⁺ $r_{_{_{H}}} = 1.67 \pm 0.34_{_{exp}} \pm 0.36_{_{f_{_{B}}},V_{_{ub}}}$ 95% C.L. exclusions 1000 10⁹ ∆a_µ<4.6 We can use the 95% CL MH to present exclusions at 800 Dark matter 95% CL in the $m_{\mu_{\perp}}$ -tan β plane r_H 600 5 4 400 3 95%CL $B \rightarrow X_s \gamma$ 2 Κ→μν 1 200 atror 0 0.0 0.1 0.20.3 0.4 tan β/m_{H} 0 ATLAS 50 discovery curve 10 0 20 30 40 50 60

9

tan β

G. Eigen, Vxb workshop, SLAC, October 31 2009

Model-Independent Analysis of UT

Solution Assume that new physics only affects short-distance part of ΔB =2

• We use model-independent parameterization for B_d and B_s

$$\frac{\left\langle \boldsymbol{B}_{q}^{0} \middle| \boldsymbol{\mathcal{H}}_{\Delta B=2}^{\textit{full}} \middle| \overline{\boldsymbol{B}}_{q}^{0} \right\rangle}{\left\langle \boldsymbol{B}_{q}^{0} \middle| \boldsymbol{\mathcal{H}}_{\Delta B=2}^{\textit{SM}} \middle| \overline{\boldsymbol{B}}_{q}^{0} \right\rangle} = \Delta_{q}^{\textit{NP}} = \left| \Delta_{q}^{\textit{NP}} \middle| \exp\left\{ 2i\phi_{q}^{\textit{NP}} \right\}$$

where $H^{\text{full}} = H^{\text{SM}} + H^{\text{NP}}$

- Several observables are modified by the magnitude or phase of Δ_q^{NP}
- In B_d system we compare $R_u \& \gamma$ with sin 2β , sin 2α and Δm_d that may be modified by NP parameters (Δ_d , ϕ_d)

In B_s system we compare R_u & γ with Δm_s , β_s , and $\Delta \Gamma_s$ that may be modified by NP parameters (Δ_d , ϕ_d)

- Dominant constraints come from β and Δm_d
- \clubsuit Semileptonic asymmetries A_{SL} exclude symmetric solution with $\eta \mbox{-}0$

 $\Delta_{d}=1 \text{ (SM) is disfavored by 2.1}\sigma \text{ (discrepancy }\mathcal{B}(B\to\tau\nu) \text{ and sin 2}\beta)$ $\Rightarrow \phi_{d}^{NP}=(-12^{+9}-_{6})^{0} @ 95\% CL \text{ (}\Rightarrow \text{discrepancy is 0.6}\sigma \text{ w/o }\mathcal{B}(B\to\tau\nu)\text{)}$ G. Eigen, Vxb workshop, SLAC, October 31 2009 21

Model-Independent Analysis of UT for $|\Delta_s|$ - ϕ_s

 $= \text{Inputs: } \phi_s, \Delta m_d, \Delta m_s, A_{SL}^{Bd}, A_{SL}^{Bs}, \Delta \Gamma_s, \tau_s, \mathcal{B}(B \rightarrow \tau v)$

- Dominant constraints come from direct measurements of ϕ_s , $\Delta \Gamma_s^{1/2}$ in B \rightarrow J/ $\psi \phi$ and Δm_s from the Tevatron
- ϕ_s is 2.2 σ away from the SM prediction

 Δ_s =1 is disfavored at 1.9 σ level independent of $\mathcal{B}(B \rightarrow \tau v)$

Final Remarks

- Among the 3 global CKM fitting methods we need to standardize
 - All measurement inputs
 - What QCD parameters to use, their central values, their statistical errors and their theory errors
 - The notation for quantities in the text, on plots and in equations
- We need to specify which input parameters are used in the fits and standardize on the assumptions
 - \rightarrow This is important for comparing results
- We will present results in form of plots with values listed in tables
 we accompany the results with a few remarks
 in particular in cases of discrepancies we need to discuss them
- Most of the writing probably has to be done by the co-conveners

More Recent Publications

- CKMfitter publications
 - J. Charles et al., Eur. Phys. J. C41, 1-135, 2005.

UTfit publications:

- M. Bona et al., JHEP 0610:081, 2006.
- M. Bona et al., Phys.Rev.D76:014015, 2007.
- M. Bona et al., Phys.Rev.Lett.97:151803, 2006.
- M Bona et al., Phys.Lett.B687:61-69, 2010.

Scanning method

- G. Eigen et al., Eur.Phys.J.C33:S644-S646,2004.
- G.P. Dubois-Felsmann et al., hep-ph/0308262.

