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Introduction

@ When signals are sparse/compressible, directly acquire
compressed data
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Introduction and Problem Set-up

Introduction

@ When signals are sparse/compressible, directly acquire
compressed data

@ Replace samples by more general measurements

M x1 N x1
measurements sparse
signal

nonzero

K < M << N entries

@ Recover original signal from y
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Introduction and Problem Set-up

Introduction

@ Compressive sensing systems are not immune to noise, which
is always present in practical acquisition systems

@ Most CS systems treat all noise contributions as sampling
noise,
y=®(xo+w)+z=>bbxp+r

@ What if the measurements are corrupted by sparse or
impulsive noise?

@ Traditional noise aware CS systems consider finite variance
noise models

@ Impulsive noise has infinite or very large variance breaking the
assumptions of traditional LS-based recovery algorithms o
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Introduction and Problem Set-up

Impulsive Noise Effects
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Introduction and Problem Set-up

Impulsive Noise Effects
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Develop simple robust reconstruction strategies that render faithful
reconstruction of sparse signals in impulsive environments. K
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Introduction and Problem Set-up

Solution: Robust Estimation Theory

@ The generalized Cauchy distribution family was introduced by
Rider in 1957

@ The GCD PDF is
f(x) = ad(0P + |x|P)"%/P, 0 < p <2
; — _Pr(2/p)
with @ = Sy
@ For p = 2 we have the Cauchy distribution

@ For p =1 we have the Meridian distribution

o
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Introduction and Problem Set-up

Solution: Robust Estimation Theory

m p
u-
lullie,y = E log{1+7—;}, v>0, ueR™.
=1
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Introduction and Problem Set-up

Solution: Robust Estimation Theory

m p
u-
lullie,y = E log{1+7—;}, v>0, ueR™.
=1

Lorentzian norm: particular case when p =2

@ It is an everywhere
continuous function

@ |t is convex near the origin

o Large deviations are not
heavily penalized as in the )
case of L]_ or L2 -15 — 5 5 2 1w

® & & N o N & o ®
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Introduction and Problem Set-up

Previous Work: Lorentzian Basis Pursuit

Let ® be an m X n sensing matrix such that dos < /2 — 1. Then
for any signal xp € R" such that |Ty| <'s, where Ty = supp(xop),
and observation noise z with ||z[|.., , < €, the solution to

min [Ixfly st lly = ®xlleey <€

x*, obeys the following bound
Ix* = xoll2 < G-y /m(e€ = 1),

where the constant C; depends only on ;.

o
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Previous Work: Lorentzian Basis Pursuit

Let ® be an m X n sensing matrix such that dos < /2 — 1. Then
for any signal xp € R" such that |Ty| <'s, where Ty = supp(xop),
and observation noise z with ||z[|.., , < €, the solution to

min [Ixfly st lly = ®xlleey <€
x*, obeys the following bound

X" = xoll2 < Cs -y - v/ m(e — 1),
where the constant C; depends only on ;.

Problem: Slow and complex to solve!
M
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Numerical Experiments
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Numerical Experiments

Lorentzian Based IHT Algorithm

Ideal optimization problem:

X”e‘]iIQn ly = ®x|[ir,y st Ixllo <'s
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Lorentzian Based IHT Algorithm

Ideal optimization problem:

X”e‘]iIQn ly = ®x|[ir,y st Ixllo <'s

Iterative algorithm:
XD = (X(r) —u® g(t))
where

g =V, lly — oxO 14, -

and Hs(a) is the non-linear operator that sets all but the largest (in

magnitude) s elements of a to zero.
o
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Lorentzian Based IHT Algorithm Formulation

The gradient can be expressed as

gt = —oT Wy (y — ox(9)

where

2
Wieyi =

’yz-i-e,?

with et = y — dx(®)

o
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm

Numerical Experiments

Lorentzian Based IHT Algorithm Formulation

The gradient can be expressed as

gt = —oT Wy (y — ox(9)

where

2
Wi,y = ———
(t)7” ’72 + ei2

with et = y — dx(®)
LIHT Algorithm

Xt = (X(t) + uOST Wiy (y — dx() ))

Computational complexity per iteration: O(mn) 2w
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Stability of LIHT Algorithm

Theorem

Let x € R" be a s-sparse signal. Suppose ® € R™*" meets the RIP
of order 3s. Then if ||z|| 1,y < € and 035 < 1/2, the reconstruction
error of the LIHT algorithm at iteration t is bounded by

Ix = x|z < af|lx|l2 + Byy/m(es = 1),

where

1

ot
a = 283, and ﬁ:\/1+525<1 _O;)

MttH-

R. Carrillo BASP Frontiers 2011



Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Parameter Tuning

5 (Y y

° 4= (Qls7s) — Qo.125))/2

@ Considers a measurement vector with 25% of the samples
corrupted by outliers and 75% well behaved

o
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Parameter Tuning

V= (Q(yo.875) - Q(yo.lzs))/2

@ Considers a measurement vector with 25% of the samples
corrupted by outliers and 75% well behaved

@ Define § = supp(x(t)) and assume support does not change.
Step size:

u(”—m'nH o [y s (x ()+ug(t))]H2
1g"113

Wi esel B

@ [t guarantees that
Iy = ®5x5 Vit < lly = 0537 ety o
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© Lorentzian Iterative Hard Thresholding
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Experimental Set-up

)

Sparse signals with n = 1024, s =8 and P,, = 0.78 in a
Hadamard basis

@ Nonzero coefficients drawn from a Rademacher distribution.
Position randomly chosen

@ Number of random measurements set to m = 128. Gaussian
measurement matrices

@ Contaminated Gaussian and a—stable noise models

@ 1000 repetitions of each experiment averaged

M
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Robustness Against Impulsive Noise

. 2 H _
Cont. Gaussian, 0< = 0.01 «a—stable noise, 0 = 0.1
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Performance varying the number of samples

a—stable noise, 0 = 0.1

40 .
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Image Reconstruction Example (I)

256256 Lena image
Cauchy corrupted measurements
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Image Reconstruction Example (I1)

LS-IHT, LS-IHT with clipping,
R-SNR=-10.7 dB R-SNR=6.2 dB

L
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Lorentzian Iterative Hard Thresholding Lorentzian Based IHT Algorithm
Numerical Experiments

Image Reconstruction Example (I11)

LS-IHT noiseless, LIHT,
R-SNR=23.9 dB R-SNR=20.5 dB

i

e
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Sparse and Compressible Models

@ Compressible signals are
modeled in an L, ball

—Meridian
---Laplacian

EO.B

Ixlly < R

@ Order statistics obey power %0-4

law decay )
X(i) <R- i_l/p % 1; 2 n_0 W 6 70

@ Algebraic-tailed distributions are more suitable models than
exponential-tailed distributions

M
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Bayesian Formulation

Bayesian modeling: All unknowns treated as stochastic quantities
with assigned distributions.
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Bayesian Formulation

Bayesian modeling: All unknowns treated as stochastic quantities
with assigned distributions.

Sampling model:
y =®x+ z.

Maximum a posteriori (MAP) estimate:
N = r r
max p(x|y, I') = max p(y|x, [)p(x|T)

@ p(y|x,T): likelihood of the samples

@ p(x|I): prior of x
e
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Bayesian CS Using Generalized Cauchy Models

@ Model for sparse and compressible signals: algebraic tailed

priors
n

p(x|d, p) = (ad)" H(5P + ‘XI.‘P)—2/p

i=1

o
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Bayesian CS Using Generalized Cauchy Models

@ Model for sparse and compressible signals: algebraic tailed

priors
n

p(x|d, p) = (ad)" H(5P + ‘XI.‘P)—2/p

i=1

@ Assume independent GCD distribution for the noise, with tail
parameter q. Likelihood function:

plylx, o,q) = (a0)™ [ [ (o7 + Iy — 6:19) 72/
i=1

with location vector 8 = ®x
CH
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

MAP Estimate

The MAP estimate assuming a Cauchy distribution for the noise
(g =2), o, 6 and p known, is:

X=arg XTE]'IQ ly — &x|liLy,0 + 2lIx] 1L,

o
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

MAP Estimate

The MAP estimate assuming a Cauchy distribution for the noise
(g =2), o, 6 and p known, is:

X = arg min ly — ®xlliey,0 + 2lxleL,.s

o Easy to formulate in a RWLS framework
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

MAP Estimate

The MAP estimate assuming a Cauchy distribution for the noise
(g =2), o, 6 and p known, is:

X=arg XTE]'IQ ly — &x|liLy,0 + 2lIx] 1L,

o Easy to formulate in a RWLS framework

@ Parameter estimation: noise scale parameter,
~_ y oy
o= 0’5(0(0.875) Q(0.125))

o
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

MAP Estimate

The MAP estimate assuming a Cauchy distribution for the noise
(g =2), o, 6 and p known, is:

X=arg X”é]'lg ly — &x|liLy,0 + 2lIx] 1L,

o Easy to formulate in a RWLS framework

@ Parameter estimation: noise scale parameter,
A y y
o= 0’5(0(0.875) - Q(0.125))

@ Prior parameter estimation: EM approach

o Prior tail parameter, f)tAEML estimate
e Prior scale parameter, 0y = 0.5(Q({ 75) — Q(§.25))
MttH-
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Fixed Point Formulation

Update equation:

D = (0T + 2W] o T Hy
= W 1loT[HOW o + 2/ 1Hy.

where
.. — 1
(6P + [xilP) il
2
o
- () — v — byt
H; _02—|—e,-2’ et =y — ox\.

o
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

GCBCS Algorithm

Require o, dmin, v and J.
Initialize t = 0 and % = T (T + /)~ 1Hy.
While [[X; — X¢—1]l2 > yort < J

1. Update &¢, p W and H.

2. Compute X¢y1 -

3.t+t+1

Return X

o
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

GCBCS Algorithm

Require o, dmin, v and J.
Initialize t = 0 and % = T (T + /)~ 1Hy.
While [[X; — X¢—1]l2 > yort < J
1. Update &¢, p W and H.
2. Compute X¢y1 -
3.t t+1
Return X
o Computational complexity per iteration: O(n?)

@ Bottleneck: matrix inversion
CH
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B an CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments
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© Robust Bayesian CS

@ Numerical Experiments
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Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Experimental Set-up

(]

Sparse signals with n = 1024, s =8 and P,, = 0.78 in a
Hadamard basis

@ Nonzero coefficients drawn from a Rademacher distribution.
Position randomly chosen

@ Number of random measurements set to m = 128. Gaussian
measurement matrices

@ Contaminated Gaussian and a—stable noise models

@ 1000 repetitions of each experiment averaged
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Bay n CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Robustness Against Impulsive Noise

Cont. Gaussian, 02 = 0.01 a—stable noise, 0 = 0.1

Reconstruction SNR, dB
Reconstruction SNR, dB

o 02 ot 0 02 04 06

R 8 1 12
Contamination factor, p Tail parameter,a
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Bay n CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Performance varying the number of samples

a—stable noise, 0 = 0.1

35 ! ! .
—— GCBCS-1,a=2
30~ GCBCS-11,a=0.5 P
- - -GCBCS-l,a=1 -
251 | ——GCBCS-ILa=15 .
—— GCBCS-Il,a=2
o
=l
@ 20 |
P4
2
c
215 —
3
2
g
S 10 ,
j7)
['4
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5 . . . . . . . .

.
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Number of samples, Ic»g2 scale .(l)ﬂ.

R. Carrillo BASP Frontiers 2011



Bayesian CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Image Reconstruction Example (I)

256x256 Lena image
@ Left column: Laplacian BCS
@ Right column: GCBCS
@ Top: m = 8000.
L: PSNR = 18.61 dB,
GC: PSNR =23.81 dB

o Middle: m = 20000.
L: PSNR = 25.56 dB,
GC: PSNR = 26.36 dB

@ Bottom: m = 32000.

L: PSNR = 30.36 dB,
GC: PSNR = 32.10 dB

e
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B an CS Using Generalized Cauchy Models
Robust Bayesian CS Numerical Experiments

Image Reconstruction Example (I1)

Average results for 10 different images, n = 256 x 256 = 65536

40 ‘ ‘ ‘

15+ ‘ ‘ —-e-GCBCS B
- -8-LaplacianBCS
10" - -x= |[HT 1

50 1 2 3 4
Number of measurements x 10
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Summary

Summary

@ Robust reconstruction algorithms are presented based on the
GC models

@ Performance and properties of the algorithms are investigated
in heavy and light tail environments

@ LIHT and GCBCS outperform LS-CS methods in heavy—tailed
noise while providing comparable performance in light—tailed
environments

o Future work:

1. Development of non i.i.d. algebraic models for sparse and
compressible signals
2. Inclusion of prior information like support knowledge or signal

model
MttH-
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