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Scope of the section

® Provide the basic notation to be used later

® Describe the CKM matrix and the KM

Give a very brief historical review



Status

® Historical bckgrnd is not yet written

® Basic formulae have been typeset

Figures have been added




The CKM matrix and the Kobayashi-Maskawa mecha-
nism

Scope: The KM mechanism as an extension to quark miz-
ing; and resulting in the CKM matriz. Introduce approzx-
imations that will be encountered in the rest of the book.
The following journal papers should be cited

— KM: Kobayashi and Maskawa (1973)

— Nobel Release: [REF7?]

— PDG CKM Review article via PDG: Amsler et al.
(2008)

— Wolfenstien: Wolfenstein (1983)

The observed charged-current interactions can be writ-
ten as

dr,
He. = L (ar entn) Voekmy" | sL | W, (1)

V2 by

where Vokwm 1s given by

Vud Vus Vub
Vekm = | Ved Ves Vb | - (2)
Via Vis Vib




Here the V;; are couplings of quark mixing transitions
from an up-type quark i = u,c,t to a down-type quark

7 =d,s,b.

In the standard model the CKM matrix is unitary by
construction. Using the freedom of phase redefinitions for
the quark fields, the CKM matrix has (n—1)? physical pa-
rameters for the case of n families. Out of these, n(n—1)/2
are (real) rotation angles, and ((n —3)n+2)/2 are phases,
which induce CP wviolation. For n = 2, no CP violation 1s
possible, while for n = 3 a single phase appears.
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The CKM matrix for 3 families may be represented
three rotations and a matrix generating the phase:

c12 s12 0] c13 0 s13
U= |—-s12¢120| , Uwz=| 0 10|, (3)
0 01 —S13 0 C13
1 0 0] 10 0
Uz = |0 co3 s23| , Us=1|01 0
0 —S893 Ca3 00 C_iow
where c;; = cos#;;, s;; = sinf;;, and ¢ 1s the complex

phase responsible for CP violation, and by convention the
mixing angles 6;; are chosen to lie in the first quadrant so
that the s;; and c;; are positive. A common way to write

it is proposed by the PDG [REF]:

$12C13 S13e” "
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The elements of the CKM matrix exhibit a pronounced hierarchy. While the diagonal elements are close to unity, the
off-diagonal elements are small, such that e.g. V,,4 > V,,s > Vi;;,. In terms of the angles 6;; we have 0,5 > 033 > 0,3.
This fact 1s usually expressed in terms of the Wolfenstein parametrization, which can be understood as an expansion
in A\ = |V,|. It reads up to order \*
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The parameters A, p, and 7 turn out to be of order
one. When using the above Wolfenstein parametrization,
one has to keep in mind that unitarity 1s satisfied only up
to the order \?.

One can obtain an exact parameterisation of the CKM
matrix in terms of A, A, p, and 7, for example, by following
the convention of Buras, Lautenbacher, and Ostermaier

(1994), where

(6)
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on substituting Eqns. 6 through 8 into Eq. 4, and noting
that sin®6 = 1 — cos? 6.
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These relations can be depicted by triangles in the com-
plex plane; inserting the Wolfenstein parametrization, both |
relations turn out to be identical, up to terms of order \°.
Eq. (9) is referred to as the unitarity triangle, and is de-
picted in Figure 1. The apex of the unitarity triangle is
given by the coordinate (p,7]), where p = p[1 — \%2/2 +
O], and 77 = n[1 — A2/2 + O(A\?)].

A non-trivial umitarity triangle indicates CP violation,
which 1s proportional to the area of the triangle. Observa-
tion of CP violation has shown that the unitarity triangle
1s indeed non-trivial, and the angles of the unitarity tri-
angle are defined as

(11)
(12)

= B =arg [—V.aV}/ViaViL)
a = arg [—ViaVih/VadVab)
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The Unitarity Triangle

The unitarity relations Vokwm - V(?:KM = 1 and V(?erl\fI :
Vekm = 1 vield six independent relations corresponding
to the off-diagonal zeros in the unit matrix. However, most
of these triangles are “squashed”, 1.e. they have disparate
sides. Only two triangles have sides of comparable length,
which means that they are of same order in the Wolfen-
stein parameter A\. The two relations are

VaaVap, + VeaVy, + ViaVig, =0, (9)
VaaVig + VasVi + Vab Vi, = 0. (10)

¢3 =y = arg [~ VaaVip/VeaVab] (13)

where this definition 1s independent of the specific phase
choice expressed in Eq. (4).

Conventionally different notations have been used in
the literature for the angles of the Umitarity Triangle. In
particular the BABAR experiment has used «a, 3, and v
to denote the angles, whereas the Belle experiment has
reported results in terms of ¢, ¢, and ¢3. For clarity on
presenting and discussing results in later sections, after
reminding the reader of the different notational choices,
we proceed to discuss results in terms of the &1, @2, @3
basis.
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Fig. 1. The Unitarity Triangle.

Chapters 14.6, 14.7, and 14.8 discuss measurements of
the angles ¢, @9, and @3, respectively. Measurements of
the magnitues of CKM matrix elements V,, V., Vig, and
Vis can be found in Chapters 14.1 and 14.2. It 1s possible to
perform global fits using data from many decay processes
and theoretical input from Lattice QCD calcuations to
over-constrain our knowledge of the CKM mechanism 1n
the determination of the apex of the triangle. These global
fits, both 1n the context of the SM and allowing for physics
beyond the SM are discussed in Chapter 22.




Outlook

® Can be finished very soon

® Still need to provide a balanced view on the

... which should be sufficiently compact.




