
NOVEL TECHNIQUES FOR 
ULTRAFAST FEW-BODY SCATTERING

CALCULATIONS

Nuclear Physics Theory Workshop

―Modern Methods in Collision Theory” (MMCT2011),

5-9 December 2011, Strasbourg, France

V. I. Kukulin,

Moscow State University, Russia



2

Lecture 1

Part I:

Solving Quantum Scattering Problems on the 

Basis of Continuum Discretization

Contents

1. Discrete and continuous spectra of the Hamiltonian.

2. Weil’s eigen-differentials method.

3. Stationary wave packets and their properties.

4. Description of the wave-packet formalism for solution of quantum 

scattering problems.

5. The case of a complex interaction potential.

6. Scattering of charged particles.

7. Relation between stationary wave packets and pseudo-states.
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The eigenstates of the Hamiltonian
1. Discrete spectrum

H | Ψk › = Ek | Ψk › , k=1,..,M    (1)

The solution of the Schrödinger equation exists at the discrete energy 

values Ek only.

‹ r | Ψk › = Ψk(r) — the wavefunction of the bound state.

The asymptotic boundary condition:
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2. Continuous spectrum

H | Ψ(E) › = E | Ψ(E) ›                                       (3)

The solution of the Schrödinger equation (3) exists at arbitrary energy 

values E ≥ 0.

The asymptotic boundary condition:

Ψ(E,r) → A(E) sin (kr+ ).          

A(E) — amplitude, — phase shift, k=√2E — wave number.

r→∞

The eigenfunctions of the kinetic-energy operator
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States of continuous spectrum
For such states the wavefunctions do not descend in the coordinate space, i.e. 

they are unnormalized. Therefore, the description of continuous spectra of 

quantum-mechanical  systems is not possible in a Hilbert space (in a strict sense).

For solution of this problem one may use 

Weil’s eigen-differentials method.

( , ) ( ') '.

E

E

E E E dE

Let’s define the eigen-differential of the continuous-spectrum wavefunction 

as an integral over a narrow energy bin:

Then, according to the Weil’s method, the complete set of orthogonal eigenstates

of the Hamiltonian consists of the bound states and eigen differentials:

The so-defined states are normalized, i.e. belong to a Hilbert space.
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Eigen differentials
An arbitrary function from a Hilbert space can be expanded on this complete set

of eigenstates: 

1

( , ) ( , )
bN

k k

k

C C E E E

The norm of the eigenfunction is defined as an integral

( ) ( ') ' ( ) ( , )

E

E

N E E dE E E E

In the limit of infinitesimal widths of the energy intervals the expansion for an

arbitrary function turns to the ―ordinary‖ form

0
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with the usual ―norm‖
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Stationary wave packets

E0
E1 Ei-1 Ei EN

*

i

Ei

Discretization of the continuous spectrum

Let’s consider the free Hamiltonian H0 (the kinetic-energy operator)

Let’s divide the continuous spectrum of the H0 into the energy bins [Ei-1,Ei]i=1
N :

E0 = 0

EN = Emax

On each bin we can construct a stationary wave packet

i=1,..,N
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H E l r rj kr k
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0 0( , ) ( ', ) ( ')E l E l E EThe ―normalization‖ condition for the eigenfunctions:
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Properties of the stationary wave packets
1. The set of SWP is orthonormalized:

After ―packeting‖ the free-motion wavefunction becomes normalized!

2. Behavior of the ―packet‖ function in the coordinate representation
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Behavior of the ―packet‖ function in the coordinate representation
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Coordinate dependencies of the wave packets for different ratios of  their 

widths i to the energy eigenvalues Ei
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The smaller the width of a wave-

packet state the slower its decrease 
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Because of infinitely large

range of Coulomb forces, it is

impossible to expand the exact

Coulomb functions in the

eigenfunctions of the kinetic-energy

operator.

However, the Coulomb

wave packets can be expanded on

a finite set of free wave packets.

Thus, ―packeting‖ the

wavefunctions is an efficient tool for

smoothing the singularities,

appearing due to long-range

interactions.

Thus the wave-packets can decay very slowly. Therefore, the basis constructed 

from such functions is very convenient for approximation of the continuous-spectrum 

eigenstates of some Hamiltonian H. This holds also for long-range interactions.

Coulomb WP (CWP)

Approximated CWP 

on the basis of free WP

Free WP
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The formalism of stationary wave packets 

With the use of the FWP basis, it is possible to construct the finite-dimensional 

analogs of the basic operators and equations of the quantum scattering theory.

Let’s introduce the projector onto the wave-packet subspace (in each partial wave l):

The properties of projecting

1. Projection of an eigenfunction of the free-motion  Hamiltonian H0

Overlap integral of FWP and a plane wave:



12

Thus, the result of projecting the eigenfunction of the Hamiltonian H0 onto the wave-

packet subspace is the wave-packet function on the interval, to which the energy E 

belongs:

2. Projection of an operator, functionally depending on the Hamiltonian H0

Let’s consider an operator R(H0) depending upon H0. Its spectral expansion in the complete 

basis of the H0 -eigenstates takes the form:

Now let’s apply the projectors from the left and from the right:

General formula 

for wave-packet 

representation for an 

arbitrary function of H0. 
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Finite-dimensional representation for the Hamiltonian itself  looks as:

So, the eigenvalues of the Hamiltonian matrix in the wave-packet basis coincide with 

the average points of energy intervals.

Finite-dimensional representation for the resolvent of the Hamiltonian H0

G0(E)=[E+i0-H0]
-1

The free resolvent is defined as

In the wave-packet representation we obtain the following expression:

In the wave-packet representation the eigenvalues of the resolvent can be calculated

in an explicit form.
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An additional averaging over energy

The  resolvent G0(E) shows the singularities at the boundaries

of the energy intervals at the real values of the energy E. To regularize these 

singularities, one can perform an additional averaging over energy:

The finite-dimensional expression for the free resolvent may be used further on

for calculation of scattering observables. 

The Lippmann-Schwinger integral equation for the T-matrix:

T(E) = T(E) + V G0(E) T(E)

V – interaction potential

T(E) – scattering operator, related to the scattering amplitude at the real E > 0

averaged eigenvalues

of  the free resolvent
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Finite-dimensional (matrix) analog of the

Lippmann-Schwinger equation

T(E) = T(E) + V G0(E) T(E) – integral LSE

Let’s replace the operators by their finite-dimensional analogs in the wave-packet 

basis, and also perform the additional averaging over energy. The result is the matrix 

equation

matrix element of an

interaction potential

For a wide class of interactions the matrix elements of the potential operators can be

calculated analytically in the wave-packet basis.
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Finite-dimensional analog of the transition operator T(E)

The matrix elements of the transition operator are defined as follows:

off-shell amplitude on-shell scattering amplitude,

related to observables

Wave-packet analogs:

Thus, with the use of free-wave-packet basis, scattering observables can be found

from the simple matrix equation. The only “input parameters” are the nodes of

discretization and the matrix elements of the interaction potential in the wave-packet

basis.
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The unitarity condition for wave-packet analog of the transition operator

Let’s  rewrite the equation for wave-packet analog of the transition operator in the following form:

It follows from this expression that the imaginary part of T-matrix is related to the imaginary 

parts of the resolvent eigenvalues gj
k as

S-matrix elements:

Thus, for hermitian potential operators S-matrix derived within the wave-packet 

approach is unitary: |Sk| = 1.

(here we omit the index k that defines the 

energy interval to which the wave-packet 

operators belong)
In the case of hermitian V we obtain:
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Illustrations for WP-technique: calculation of partial phase shifts

The partial phase shifts are easily found from the on-shell amplitude

Phase shifts for n-p scattering

Malfliet-Tjon NN potential

(MT III)

V(r) =  VR e-3.11r/r – VA e-1.55r/r

VR= 1438.7 MeV fm, 

VA=   626.9 MeV fm. 

l=0
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Finite-dimensional representations for operators

Along with finite-dimensional representations for transition operator, the wave-

packet technique allows to build the FD-approximations for other operators of 

quantum scattering theory as well.

Resolvent of the total Hamiltonian

G(Z) = [Z – H]-1

The resolvent identity (Lippmann-Schwinger equation for the resolvent):

V

in the wave-packet

representation

Note, that operators V-1 do not exist for local interaction potentials.

However, in the wave-packet representation the operator V-1 is defined simply as 

an inverse matrix for potential operator V.
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Resolvent of the total Hamiltonian

1) The finite-dimensional representation of the resolvent may be used for solving 

scattering problems at Z = E + i0. In doing this, it is convenient to apply an 

additional averaging over energy:

2) For complex Z the finite-dimensional representation of the resolvent may be used

for finding parameters of resonant states. The total resolvent has poles at the

energies of bound and resonant states. 

The transcendent equation

det || [G0(Z)]-1 – V|| = 0

defines the bound-state and resonance poles. Here G0 and V are matrices of the

operators in the wave-packet basis.

The interrelation to the transition operator:

T(E) = V + V G(E+i0) V
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Equation for wavefunctions

The wavefunctions of the Hamiltonian, which describe scattering, satisfy the

Lippmann-Schwinger equation:

( ) ( )

0 0| ( , ) | ( , ) ( i0) | ( , )E l E l VG E E l

After replacing the exact scattering wavefunctions by their wave-packet analogs

( )

1

| |
N

k ik i

i

z x

the finite-dimensional analog of LSE takes the form

( ) ( )

0| | |k k k kz x z

( ) ( )

0| ( , ) | , | ( , ) |k kE l z E l x
1[ , ]k kE E E

Solution of this equation may be written as

, where
1( )

01ik i k k ik
x z   

for the k-th interval, the expansion coefficients 

are defined by the k-th column of the matrix
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Wave operator

Let’s construct the total matrix of transformation from the free wave packets to the

perturbed ones. For this purpose we gather the expansion coefficients for all

Intervals k=1,..,N in the matrix

1 1

01 011 1

1 1

01 01

1 1

1 1

N N

NN NN



  



   

   

It’s easily seen that is the matrix representation of the operator

( ) ( )

1 , 1

| | | | |,
N N

k k i i k k

k i k

z x x x z x

which is the finite-dimensional analog of Møller wave operator

( ) ( )

0

0

| ( ) ( ) |E E dE

ik
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Complex interaction potential

V(r,r')= -U(|r+r'|)W(|r-r'|)
The interaction between composite particles is usually defined by a non-local 

complex potential of the Perey-Buck form                                                .

Scattering of neutrons by the 56Fe nucleus

• N=5

— N=10

— N=20

— N=40

R
e

In the case of complex potential, the

scattering phase is also complex. The

decrease of elastic-scattering

probability is characterized by a

parameter which is called ―inelasticity

coefficient‖:

l = |Sl| = exp[-2 Im l(E)]

Matrix elements for non-local

interaction potential: 
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Differential cross section for n+56Fe elastic scattering 

at the incident energy En=7 MeV

The differential cross section obtained within the wave-packet technique coincides

with the cross section calculated for a local phase-equivalent potential.
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Scattering of charged particles

The total Hamiltonian in the case of charged particles has the form

H = H0 + VC + VS VC(r) = Z1Z2e
2/r, VS(r) – short-range potential

HC

The Hamiltonian HC is used now as a ―free‖ Hamiltonian. The basis functions are built 

from regular Coulomb functions (eigenfunctions of the Coulomb Hamiltonian HC). 

Coulomb wave packets (CWP)

The equation for Coulomb-nuclear part of the transition operator:

finite-dimensional representation

of Coulomb resolvent
finite-dimensional representation

of  short-range potential operator
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Illustration: the s- and  d-wave Coulomb-nuclear partial 

phase shifts for scattering
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Interrelation between stationary wave packets and pseudo-states

Let’s consider some basis of square-integrable functions

' , '1
| ,

N

n n n n nn

The wavefunction of a quantum system satisfies the Schrödinger equation

| |H E
Let’s expand the wavefunction on our basis:

1

| |
N

n n

n

C

The expansion coefficients Cn are found from the matrix equation

' '

' 1

( ) 0, 1,.., ,
N

nn n

n

H E C n N

Non-trivial solution of this matrix equation is reduced to diagonalization of the 

Hamiltonian matrix, i.e. to finding the eigenvectors and eigenvalues of this matrix.

The eigenvalues are obtained from the equation:

' 1
det || || 0

N

nn n n
H E

' 'nn n nH H
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Eigenstates of the Hamiltonian matrix

As a result of diagonalization of the Hamiltonian matrix one obtains the complete

set of eigen energies and eigenvectors

1
1

, , 1,..,
N

N
n n

nn i i ii
i

C z C n N

Eigenstates with energies n<0 (n=1,..,Nb) may be considered as approximations

to bound states of initial Hamiltonian.

Eigenstates of the Hamiltonian matrix with positive energies n>0 (n=Nb+1,..,N)
correspond to the continuous spectrum of initial Hamiltonian. 

As  they are different from the exact scattering functions, such states are 

called as pseudo-states of the Hamiltonian.

1 2 43 k5 k+1 N

discrete spectrum discretized continuum

E=0 threshold

Expansion of the Hamiltonian eigenfunctions on some basis of finite dimension

leads to discretization of continuous spectrum of this Hamiltonian.
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Properties of pseudo-states

1) Pseudo-states (together with bound states) form an orthonormalized set:

' , ' , , ' 1,..,n n n nz z n n N

2) The Hamiltonian matrix is diagonal in the pseudo-state representation

' , ' , , ' 1,..,n n n n nz H z n n N

3) The wavefunctions of pseudo-states are proportional to exact continuous-spectrum 

functions in some restricted region of coordinate space and decrease outside of 

this region: 

0( ) ( ; ),n nz r B E r r r
Characteristic range r0 depends on

properties of the basis functions

If the range r0 is greater than the range of interaction, then the pseudo-states can be 

used instead of exact wavefunctions for finding scattering observables. 

The main problem here is the  finding of the normalization coefficients Bn
(normalization problem).



The properties of pseudo-states are mainly the same as the properties of stationary

wave packets.

Let’s compare these states to each other. For this purpose, we shall use 

discretization parameters, for which the eigenstates of the Hamiltonian matrix

coincide in the wave-packet and our L2 bases.

As an example, we consider Gaussian basis
2( ) exp( ),n n nr D r

Dn – normalization coefficients, n – basis parameters.

Let’s construct the pseudo-

state spectrum for the 

kinetic-energy operator H0

on this basis.

As a result of diagonalization, 

we obtain the set of 

eigenvalues n and 

respective pseudo-state 

functions ( ).nx r
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Let’s now divide the continuous spectrum of the Hamiltonian H0 into bins, so that the 

average points Ei
* of the bins to coincide with the eigenvalues i of the Hamiltonian 

matrix in the chosen Gaussian basis.

We may then construct the stationary wave packets             using this decomposition 

of the H0 continuous spectrum.

Let’s compare directly the coordinate dependencies for two different types 

of functions (wave-packet states and pseudo-states), corresponding to the same 

eigenvalues of the discretized Hamiltonian spectrum.

The both types of wavefunctions 

almost coincide in a restricted 

region r<R and fall in different 

ways outside this region.

Thus, the amplitudes of wave-

functions agree within some

restricted  region R.

x(
r)

( )ix r
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A new treatment of pseudo-states

So, the above direct comparison between pseudo-states and stationary wave 

packets allows to draw the following conclusions:

1. The Hamiltonian pseudo-states, obtained by diagonalization of its matrix built on

some L2-basis, should be considered as approximations to stationary wave packets 

rather that  for exact scattering functions.

2. The normalization coefficients Bn when passing from pseudo-states to exact

continuous-spectrum functions depend on the distribution of discrete energies of 

pseudo-states and are equal to the square roots of the widths of discretization

intervals which these pseudo-states are associated with.

3.  The wave-packet formalism may be used for solution of scattering problems on an 

arbitrary L2-basis. So, in practical calculations, the wave-packet states can be 

replaced by the respective pseudo-states of the free Hamiltonian on the chosen 

basis.

( ) ( ; ) ( ) ( ; )n n n n n nz r B E r z r E r B

pseudo-state wave packet
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Reconstruction of discretization widths from eigen energies

As a result of Hamiltonian diagonalization a discrete set of eigen energies is obtained.

For using pseudo-states in the calculations the end points of discretization intervals 

and bin widths should be found from this energy distribution.

A few possible ways of doing this exist.

1. Recursive procedure

* *

0 1 1 1 10, 2 2 , 1,.., ,i i i i i iE E E E E E i N E E

After performing this procedure the eigenvalues turn out to be located precisely in the 

average points of the bins. However, the entire energy distribution is used for 

determination of local widths. If this distribution is defined by inhomogeneous function,

then the local concentration in one part of the spectrum will influence all bins. This may 

lead to some distortions, for example, to non-physical negative widths.

2. ―Local‖ formula

( )
( ),k n

k n

df k
f k

dk
1 1

12
1 2

1
, 2,.., 1,

2

, .
2 2

n n n

N
N N

n N

Simplified version:
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To illustrate this procedure we show here the phase-shift calculations on 

the  harmonic-oscillator basis.
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discretized spectrum of the 

kinetic-energy operator

We found the phase shifts for the Austern potential (model complex interaction of the 

deuteron with heavy nuclei):

2
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To summarize:

We presented in this first part of the Lecture 1 some basic notions and 

formalism for wave-packet discretization of continuum and finding the 

S-matrix for various types of interactions. 
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Part II:

Description of Composite-Particles Scattering

by a Stable Target

Contents

1. Formulation of the problem for scattering of a composite particle by a 

structureless target.

2. Johnson and Soper method.

3. Multichannel scattering problems.

4. Continuum-discretized coupled-channels (CDCC) method.

5. Application of the wave-packet discretization method to the problem.

6. Detailed comparison of the CDCC-and wave-packet solutions.

7. Impact of closed channels to the elastic-scattering cross section.

8. Construction of effective potentials for composite particle interaction.
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Let’s consider the scattering of a composite particle {bc} by a structureless target A.  

This is a three-body problem. In order to find the observables, one should 

solve a Schrödinger equation for the wavefunction of the entire system taking 

into account the boundary conditions in different asymptotic channels…

b

c

A

r1

R1

b

c

A

r3

R3

b

c

A
r2

R2

…or solve a system of Faddeev equations.
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We shall consider a simplified scheme, in which boundary conditions in one asymptotic 

channel only are taken into account. Herewith we neglect the rearrangement 

processes, when a fragment of the system {bc} is picked up by the target A.

This approximation is justified if there are no bound states

in subsystems {bA} and {cA}.

The total Hamiltonian has the form:

ext

0 0( ) ( ) ( ) ( ) ( )bc

bc bA b cA c bcH h h v r v r v r H VR r

The channel Hamiltonian defines 

asymptotic states of the system:

b

c

A

r

R

rb

rc

0 0

0

( ) ( ( ) ( ))

            ( ) ( ).

bc

bc bc

bc

H h h v r

h h

R r

R r

The external interaction:

ext 1 1
( )

2 2
bA cAV v vr,R R + r R r

Coordinates:

,b c

b c

r = r -r

1
R = r +r

2

coordinate of relative motion

of particles b and c

center-of-mass coordinate 

of subsystem {bc}

(for equal masses of particles b and c)
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The way of solution
The total three-body wavefunction can be represented in the form of expansion 

on the complete set of two-body Hamiltonian hbc states:

0 0

0

( , ) ( ) ( ) ( , ) ( ) (1)dr R r R r R

bound-state wavefunction
continuous-spectrum

wavefunctions

— possible quantum numbers

After substituting this expansion into three-body Schrödinger equation

,H E

one obtains an infinite system of coupled equations. Solution of this system is

practically impossible, therefore, different approximations are generally used rather

than total expansion (1). 

For example, in the Johnson and Soper method the entire continuous spectrum

of the Hamiltonian hbc is replaced by one pseudo-state with the energy 1.

(it is assumed for simplicity that there is only one bound state in the subsystem {bc}) 
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Johnson and Soper method (R.C. Johnson & P.J.R. Soper, 1970) 

0 0 1 1( , ) ( ) ( ) ( ) ( )r R r R r R

The approximation to the total wavefunction of a system is

After substituting this expression into Schrödinger equation and projecting onto

the states 0 and 1, the system of two coupled equations is obtained:

0

1

0

0

H E

H E

0 0 0 0 0 1 1

1 1 1 1 1 0 0

( ) ( ) ( )

( ) ( ) ( )

H E H

H E H

R R R

R R R

Or, in more detail,

ext ext

0 0( ) ( ) ( ), 0,1i i i bc i i iiH h h V h V iR R R

ext ext ext

0 1 0 0 1 01 1 0 10( ) ( ),  ( )bcH h h V V H VR R R

The following notation for channel-coupling potentials has been introduced here:

ext ext( ) ( ) ( , ) ( )ij i jV V dR r r R r r

vbc(r)

r0

1

0 0 0 1 1 1,  bc bch h
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So, the wavefunctions for elastic scattering and for excited two-body pair in a 

continuum state can be found from the coupled equations:

ext ext

0 ( ) ( ) ( ) ( ) ( ) ( ), , 0,1ii i i ij jh V E V j i iR R R R R

Asymptotic boundary conditions:

( ) ( )

,0 ,0 2

0

2 ( )
( ) ( , ) ( , ), , 0,1i i

i i i i i i
R

K m E
R u K R S u K R K i

K 

Si,0 – the S-matrix elements, defining the probability of elastic scattering (i=0) and 

excitation into continuum (i=1).

The Johnson-Soper model represents a simple example of the reduction of three-

body scattering problem to multichannel (two-channel one in the present case) 

scattering problem. 

The peculiarity of such problems consists in the fact, that the continuous spectrum of 

the Hamiltonian is degenerate at the energies above the second channel threshold 

( 1 in the model). Therefore, the system (1) at these energies has, besides the 

solution satisfying the boundary conditions (2), an additional linearly independent 

solution corresponding to an incident wave in the second channel 1. 

(1)

(2)
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Spectrum of two-channel free Hamiltonian

The two-body coupled-channel Hamiltonian for two-channel system can be 

represented in the matrix form
0

00 010 0

1
10 110 1

0

0

V Vh

V Vh
H

free Hamiltonian coupling potentials

0 1

The continuous spectrum starts from the first threshold 0. 

In the region 0<E< 1, for each energy, there exists the unique solution 

of Schrödinger equation for the wavefunction, corresponding to an incident wave 

in the first channel. Herewith, the second channel is closed.

In the region E> 1 the spectrum is doubly degenerate. For each energy 

there exist two linearly independent solutions, each of them being related to an 

incident wave in the respective channel.
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Multichannel scattering problems can also be solved via multichannel Lippmann-

Schwinger equation for the wavefunction.

Singularities of two-channel resolvent

0 1

cuts

0 11
00 010 00 00

1 1
10 111 11 0

[( ) 0 ] 0

0 [( ) 0 ]0

V V E i h

V V E i h

In our two-channel case this equation takes the form

two-channel free resolvent

The elastic-scattering amplitude is obtained from the expression

00 01 01 1 1

el 0 0 00 0 0 01 1

10 11 1

0
V V

A V V
V V


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The method of Johnson and Soper provides a good qualitative description for the 

influence of intermediate breakup on the elastic-scattering process. For a good 

quantitative description of this effect the continuum-discretized coupled-channels 

method was developed.

Differential cross section for 

elastic scattering of deuterons by  
58Ni nuclei at the energy 21.6 

MeV, calculated with taking the 

intermediate continuum excitation 

into account (solid curve),

and also on the basis of the 

folding model, i.e. without taking 

this effect into account (dashed 

curve).

(Johnson & Soper, PRC, 1970)
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Continuum-discretized coupled-channels (CDCC) method

The CDCC method is based on discretization of the continuous spectrum of the 

Hamiltonian hbc. Herewith, the expansion for the total three-body wavefunction

of the system takes the form of a finite sum vbc

r

0 0( , ) ( ) ( ) ( ) ( )r R r R r Ri i

i

Here i(r) denote the states of the discretized 

spectrum with energies i.

The CDCC system of equations takes the same form

as the Johnson-Soper system:

ext ext

0 ( ) ( ) ( ) ( ) ( ) ( ), 0,..,ii i i ij j

j i

h V E V i NR R R R R

( ) ( )

,0 ,0 2

0

2 ( )
( ) ( , ) ( , ), , 0,..,i i

i i i i i i
R

K m E
R u K R S u K R K i N

K 

In the expansion (2) the open channels with energies i<E are only taken into

account. For inclusion of the closed channels into consideration the form of

boundary conditions should be modified.



46

Spectrum of the multichannel Hamiltonian being used in CDCC approach

0 1 2 3 4 5

After crossing every new threshold, the degeneracy degree (of continuous spectrum) 

is increased by unity.

Initial spectrum of three-body channel Hamiltonian

0

two-body continuous

spectrum
three-body breakup

threshold
three-body continuous

spectrum with the infinite-order

degeneracy 
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The approximation of initial infinite-order degenerate spectrum by the 

multichannel spectrum of a finite-order degeneracy works  generally quite well and 

is, therefore, commonly used.

However, the energy dependency of the observables can have some 

superfluous unphysical singularities in the vicinity of threshold points of 

multichannel spectrum.   

1 10 100
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E  - 
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   (MeV)

Example: The modulus of the 

elastic-channel S-matrix for the

11-channel problem has 

singularities near the threshold 

values of energy.

at the opening of  the second channel

S-matrix becomes inelastic

singularities

(cusps) near the

threshold points
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Total discretization of three-body continuum

The solution of initial three-body problem can be built by using total discretization

of the channel-Hamiltonian (Hbc) spectrum on the basis of the Wave-Packet 

Continuum-Discretization method (WPCD) .

0 ( ) ( ).bc bcH h hR r

Elements of the three-body wave-packet basis are constructed here as products

of wave-packet states of two-body Hamiltonians h0 and hbc: ,ik i kZ z x

We shall use the states with fixed values of pair angular momenta l and L, and also 

total orbital angular momentum and its projection M:

, , , ( ) ( ) ,l L l L

i j i j lLz x z r x Rr R r R

The matrix of the channel Hamiltonian (and also of any operator, functionally 

depending on it) is diagonal on the constructed basis:

The state z0 of two-body wave-packet basis corresponds to the bound state 0(r) in the

subsystem {bc} (we assume for simplicity that it is an s-wave state).

*

' ' , ' ,' ' 0 ' '' ., , i bi j bc i j i j i ic i j j j i i jj jz h z x x x hz x Ez zz xx H
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The resolvent of the channel Hamiltonian
( ) 1( ) [ 0 ]bc bcG E E i H

This operator is represented by the convolution of two-body resolvents:

( ) ( ) ( )

0

1
( ) ( ) ( )

2
bc bcG E g E g d

i

Using spectral expansions for the operators, we obtain the following

expression for Gbc:
( ) ( ) ( ) ( ),BC CC

bc bc bcG E G E G E

where bound-continuum (BC) and continuum-continuum (CC) parts have the forms

0 0

0 0 2 0 0 2

2

0 20

, ( ), , ( ),
( )

0

BC

bc

E E
G E dE

E i E

1 0 2 1 0 2

1 2

1 20 0

( ), ( ), ( ), ( ),
( )

0

l L l Ll

CC

bc

L l l

E E E E
G E dE dE

E i E E
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Finite-dimensional approximation of the channel resolvent 

1

0 0 0 0 2
0 0 0 0

1 0 2

1
, , , , ,

0

j

j

EN
BC

bc j j j j

j j E

dE
z x M G z x M G

E i E


Projecting exact expressions for BC and CC parts of the channel resolvent onto the 

states from three-body wave-packet basis, we obtain the following finite-dimensional 

representations for these operators:

1 1

1 2

, 1 1 1 2

1
, , , , ,

0

Ll
jil L

l L
i j

EEK N
CC l L lL l L lL

bc i j ij i j ij l L
L l i j i j E E

dE dE
z x M G z x M G

E i E E


the resolvent eigenvalues

Total channel resolvent in the wave-packet representation:

BC CC

bc bc bc  
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The observables can be found from the finite-dimensional analog of three-body 

Lippmann-Schwinger equation for the transition operator:

bc   
Here the matrix analog of the external-interaction operator has been used:

' ' ' '

' '

, ', ' ,

'

' , '

', , ,, ,,, ,l Ll L l L

i j i j

l L l L i i j j

l L

i j bA cA i jz x M V V z xz x x MMM z

matrix element in three-body

wave-packet basis

The elastic-scattering amplitude is proportional to the diagonal matrix element of the

wave-packet T-matrix:

0 ,0

el 0 1( ) , ,
j j

j j

j

A E E E E


The non-diagonal matrix elements of the wave-packet T-matrix define the breakup

amplitudes.  
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With the use of approximations for two-body wave-packet states of Hamiltonians 

h0(R) and hbc(r) through pseudo-states in appropriate L2 bases, it is possible to 

obtain analytic expressions for matrix elements of the external-interaction operator.

Thus, exploring the expansions

,   ,l l L L

i in i j jk k

n k

z C x B

we obtain the following formula for matrix elements of interaction potential:

' '

' '

' '

' ' ' ' ' '

, ', '

, , , ,

, , , ,

l L l L

i j bA cA i j

l L l L

in i n jk j k n k bA cA n k

n k n k

z x M V V z x M

C C B B M V V M

these matrix elements can be calculated 

analytically for a wide class of interactions



53

Results for d+58Ni elastic scattering 

at the incident energy Ed = 21.6 MeV 

Differential cross section

for elastic scattering

Argand-plot

for partial S-matrix elements
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Comparative analysis of results obtained within

wave-packet continuum discretization and CDCC approaches 

Differential cross section for elastic scattering of deuterons by 58Ni

nuclei at the incident-deuteron energy Ed = 80 MeV.

At rather high collision 

energies the results of two 

methods, based on total

and partial discretizations 

of continuous spectrum, 

almost coincide.
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However, the results obtained in calculations at lower collision energies were

initially different for these two methods.

The origin of these discrepancies was in the fact  that the contribution

of closed channels in discretized spectrum of the subsystem {bc} was usually 

neglected in CDCC approach.

n-p discretized spectrum

E

K=Emax

0

p

open channels

closed channels

total energy of the system

At low incident-deuteron

energies the contribution of 

closed channels becomes

noticeable.

In the wave-packet approach the closed ―deuteron‖ channels are taken into 

account in exactly the same way as open channels.

In constrast, in the CDCC-method the modification of boundary conditions for the 

wavefunction components, corresponding to the closed channels, is required.   
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Results of calculations at the 

incident energy Ed = 21.6 MeV.

Studying the convergence over 

maximal energy Emax of the 

channels taken into account.  

The fully converged cross section

is obtained only at Emax= 110 MeV.

a

b

c

a – without considering

closed channels

b,c – with taking different

numbers of closed channels

into account

Results of two approaches 

coincide at the same Emax!
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Results of calculations at the incident 

energy Ed=12 MeV.

The fully converged cross section is 

reached only at Emax= 77 MeV

As the incident energy decreases, the

contribution of closed channels to

elastic-scattering amplitude gets more

and more important.
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Comparative study has shown that the results of wave-packet

and CDCC methods almost coincide, if the all channels of discretized spectrum of 

subsystem {bc} up to the same values of the energy Emax are taken into account. 

Herewith, the internal details of discretization (the distribution of pseudo-

state energies, the number of discretization intervals, etc.) are not important.

However, the wave-packet continuum discretization method is connected

with the integral formulation of scattering problems and has, therefore, substantial

advantages.

In particular, this approach allows to construct finite-dimensional 

approximations of the three-body integral operators.
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Construction of effective interaction potentials

for composite particles

With usage of the Feshbach’s projection technique, the expression for effective two-

body potential, describing the interaction of the subsystem {bc} with the target A and 

taking an intermediate breakup of this subsystem into account, can be obtained. 

This so-called Feshbach’s potential has non-local and energy-dependent form.

Let’s introduce two projectors – the projector onto the bound state of the subsystem

{bc} and its orthogonal complement:

0 0 ,   1 ,   Q 0.F z z Q F F

The total three-body wavefunction of the system can be represented as the sum of

its F- and Q-projections:

( ) ( ) ( )E F E Q E

wavefunction component defining

the elastic-scattering part

wavefunction component defining

the subsystem-breakup part
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The resolvent of the Hamiltonian QHQ is defined as
( ) 1( ) [ 0 ]QG E E i QHQ

The wavefunction component corresponding to the breakup is then expressed through

the elastic-scattering component in the following way:

Let’s substitute the above two-component representation for the wavefunction into 

three-body Schrödinger equation and then apply F- and Q-projectors from the left:

( )    (1)
( )           

( )    (2)

FHF E FHQ
H F Q E

QHQ E QHF

( ) ( )QQ G E QHF

Substituting this expression into the equation (1), we obtain the equation for the

wavefunction of elastic scattering: 

( )( ) ( )QFHF E F FHQG E QHF F

effective non-local 

energy-dependent

potential

( )U E
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Simplifying further the left- and right-hand sides of the equation for elastic-scattering 

component, we obtain:

0 0 0[ ( ) ( ) ( )] ( ) ,h V R E F U E FR

and the effective interaction potential has the form

ext ( ) ext( ) ( ) .QU E FV QG E QV F

where V0(R) is the so-called folding potential

ext

0 0 0( ) ( ) ( , ) ( ) ,V R z V z dr r R r r

Finding this operator on the basis of conventional approaches is in general even 

more difficult problem that solution of the initial three-body problem. 

However, within the wave-packet technique, this task can be easily done.
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Let’s introduce two-body wave-packet bases for the Hamiltonians h0 and hbc

max

0 1
0

, ,
l

l
K

l

i i
l

z z
max

1
0

L
L

N
L

j j
L

x

and construct from them the three-body wave-packet basis for the three-body channel

Hamiltonian Hbc.

It is then apparent that projectors F and Q can be defined as parts of the total 

wave-packet projector:

0 0

1 , 1 1

, , , , , , , , , ,
l LKN N

l L l L

j j i j i j

j L l i j

z x z x z x z x    

The total resolvent GQ can be found from the channel resolvent by solving 

Lippmann-Schwinger equation in the wave-packet Q-subspace: 

( ) ext ( )CC CC

Q bc bc Q Q    

The channel resolvent in the Q-subspace is the usual СС part of the channel

resolvent. The matrix of this operator is diagonal in the wave-packet basis.

and
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After having obtained the operator GQ in the wave-packet basis, the expression for

the Feshbach operator takes the form

ext ( ) ext

0 0

ext . ' ' ' ' ext

0 , ' ' ' ' 0

, ', ' , ', '

( )

, , , ,

Q

l L lL l L l L

i j ij i j i j

L l L l i j i j

U E z V V z

z V z x G z x V z


matrix elements of

the operator
( )

Q

form factors

The form factors can be explicitly calculated from the formula

 

ext

0

0 ext

0 0

( ) , ,

( ) ( , ) ( ) , ( ) ( )

lL l L

ij i j

l L lL

i lL j ij

B z V z x

z r Y V z r d x R B R Y

R

r r R r R r R 

the angular part takes this form

owing to conservation of the 

total angular momentum
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 . ' ' * ' ' *

, ' ' ' '

, ', ' , ', '

( , , ) ( ) ( ) ( ') 'lL l L lL l L

ij i j ij i j

L l L l i j i j

U E G E B R B R Y YR R' R R

Thus, the operator for effective interaction of a composite particle with a target in 
the wave-packet representation has the form

Imaginary part

Real part
Feshbach potential for d+Ni scattering

at the deuteron energy Ed = 80 MeV

=0
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The total potential of interaction of a composite particle with a target nucleus

consists of the folding potential V0(R) and Feshbach potential U(E,R,R’). The non-

local Feshbach potential generally has a shorter effective range and gives a smaller 

contribution to the elastic-scattering cross section, than the local folding potential. 

Therefore, the ―internal‖ basis of much  smaller dimension (in 5-10 times), than 

the dimension of the ―external‖ basis, may be utilized.

The wave-packet form for the effective Feshbach potential can be used 

straightforwardly for treatment of composite-particles scattering by a target nucleus.

Herewith, the discretization of the continuous spectrum of the free Hamiltonian 

h0(R) can be employed effectively.

It is important to emphasize, that parameters and size of such ―external‖ wave-

packet basis for the free Hamiltonian may be different from those for  the ―internal‖ 

wave-packet basis (for the same Hamiltonian), which has been taken for 

construction of the Feshbach potential.

Thus, introducing Feshbach potential allows to essentially decrease the 

dimension of the three-body wave-packet basis, which is necessary for solving the 

total three-body problem of elastic scattering of a composite particle by a target 

nucleus.
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Differential cross sections for elastic scattering of deuterons by heavy nucleus,

obtained on the basis of the wave-packet Feshbach potential at different 

dimensions of the internal basis: N = 30 (solid curve), N = 50 (dotted curve) and 

N = 70 (dash-dotted curve). The cross section corresponding to the folding potential 

is shown by the dashed curve. The external-basis dimension is Next = 300!
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To summarize:

In the lecture we discussed some novel general formalism in quantum 

scattering theory based on total few-body continuum discretization with usage of 

the wave-packet basis of L2-type. 

The wave-packet continuum discretization technique has been 

demonstrated clearly to result in straightforward matrix equations with regular 

matrix elements instead of singular integral equations in a conventional approach. 

This novel approach makes it possible to reformulate easily few-body 

scattering problems via effective non-local Feshbach potential between composite 

projectile and target, which fully takes into account the projectile (target) breakup.

In the next lecture we will discuss how to solve in such an approach the full 

Faddeev equations. 


