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Wave function of the system
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A + a  B + b   (α β)

The total wave function Ψ of the system satisfies the Schrodinger 
equation

(H – E) Ψ = 0
and contains outgoing spherical waves in all channels and incoming 

waves in the α channel. Let us denote it

The amplitude of the reaction will be determined by the projection of 

into ψb ψB : 
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Exact expression for reaction amplitude
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The Schrodinger equation can be rewritten as

Multiplying from the left by ψb 
* ψB

* and integrating over ξb and ξB we get 
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The solution of this equation is
Green’s function



To get amplitude for the A + a  B + b (α β) reaction, the 
total wave function Ψα

(+) should be projected into ψβ = ψbψB
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Reaction amplitude

Cross section:

Reaction amplitude and cross section



Green’s function
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To get reaction amplitude, the limit rβ →∞ should be considered. 
For rβ >> r′β ,

( ) ( ))(
22

+)+( Ψψψ−δ=χ
−

∫ αβ
ββ

β
β

ββ
β

αβ
αα

ββ π
μ

Ved
r

rkiee Bb
ii r'krk r'r

h

ββββββββ r'kr'rr'r ⋅−=⋅−≈− ˆˆ rr

)(
22

),ˆ( +Ψψψ−= αβ
βββ

βββα π
μ

Vef Bb
i r'k

kr
h



Distorted waves

Let us introduce arbitrary potential Uβ (rβ)
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Multiplying from the left by ψb 
* ψB

* and integrating over ξb and ξB we get 
 

The reaction amplitude is then 



)(

)(

2
)()( ))((

1
)(

2
+

+

++ Ψ−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−+ψψχ=Ψ αααα

α

αα
α

α
αα μ

rrp UV

G

UHHE AaAa

44444 344444 21

)(
22 )(

2
),ˆ(

2
),ˆ( +)−( Ψ−ψψχ−=−= αββββ

β
βββα

β
βββα π

μ
π
μ

rkrkr UVTf Bb
hh

)()( ))(())((

)(),ˆ(

++)−(

)+()−(

Ψ−−ψψχ=

ψψχ−ψψχ=

αααααββββ

αβββββββα

rr

rkr

UVGUV

UVT

Bb

AaBb

)()(
2

))(()(
2

++ Ψ−=Ψ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−− ααααααα

α

α

μ
rrp UVUHHE Aa

The formal solution can be written as

Then the amplitude can be rewritten as

Exact amplitude contain exact wave function )(+Ψα

This wave function satisfies the Schrodinger equation

Born approximation



Distorted wave Born approximation (DWBA)
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The assumption VbA – Uβ (rβ) ≈ 0 is often made. This assumption 
may look reasonable if x is a nucleon and A is large. Then
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Overlap integrals

Overlap integrals 〈ψB |ψA〉 carry information about nuclear structure.
They are solutions of an integral equation.

(TA+VA – EA)ψA = 0,         (TB+VB – EB)ψB = 0

ψA (TB+VB – EB) ψB = 0

〈ψA|TA + (TB – TA) + VA + (VB – VA) – EA + (EA – EB)| ψB 〉 = 0

〈ψA| (TB – TA) + (EA – EB)| ψB 〉 = 〈ψA |(VA – VB) |ψB 〉

(Tx+ ε)〈ψA| ψB 〉 = – 〈ψA |VAx|ψB 〉

Partial wave expansion of the overlap integral
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Properties of the overlap integrals

I) Asymptotic behaviour

At large r the overlap integral satisfies the equation

(Tx+ ε)IAB (r) = – 〈ψA |VAx|ψB 〉 ≈ 0                                    (for neutral particle x)

(Tx+ Vcoul(r)+ε)IAB (r) = – 〈ψA |VAx – VCoul(r)|ψB 〉 ≈ 0       (for charged particle x)

The asymptotic part of the overlap functions Ilj(r) is given by

Ilj(r) ≈ Clj W-η,l+½ (2κr)/r

Clj is the asymptotic normalization coefficient (ANC),
W      is the Whittaker function, 
κ = (2με)1/2 , ε is the nucleon separation energy

Example: for B=A+neutron and l=0: Ilj(r) ≈ Clj exp(-κr)/r



II) Normalization

Definition: the norm of Ilj(r) is called the spectroscopic factor.

(× B)

The meaning of the spectroscopic factor from the shell model point of view.
The shell model wave function is a linear combination of the Slater determinants
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The spectroscopic factor is expressed only via coefficients CA,αA
and CB,αB

which are probability amplitudes of a particular shell occupation 
scheme.



Modelling the overlap functions:

(Tx+ ε)〈ψA| ψB 〉 = – 〈ψA |VAx|ψB 〉 ≈ – VAx 〈ψA |ψB 〉

or          (Tx + VAx (r) + ε) Ilj(r) = 0

Ilj(r) = S1/2 ϕlj(r), 

ϕlj(r) is the normalized solution of the two-body equation and the 
spectroscopic factor S is thought to be determined from experiment.

Often, a standard Wood-Saxon potential with r0 ≈1.25 fm, a ≈ 0.65 fm 
is used to determine ϕlj(r) while the depth V0 is fitted to reproduce ε.
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Typical example of the overlap functions for stable nuclei

ε ≈ 5 MeV,   l=1



Peripheral transfer reactions

The reaction amplitude can be rewritten as follows:

Tint probes the overlap integral Ilj(rxA) in the nuclear interior. 

Text probes the tail of the overlap integral Ilj(rxA), the magnitude of 
which is given by the ANC.

Ilj(rxA) = S1/2 ϕlj(rxA) = S1/2 blj W−η,l+1/2 (2κrxA)/rxA

Clj = S1/2blj

blj is the single-particle ANC
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Contribution to the A(d,p)B reaction amplitude

14C+d, 
Ed=14 MeV

16O+d, 
Ed=15 MeV

41Ca+d, 
Ed=11 MeV

D.Y.Pang, F.M.Nunes, A.M.Mukhamedzhanov, Phys. Rev. C 75, 024601 (2007)

14C+d, 
Ed=14 MeV

16O+d, 
Ed=15 MeV

41Ca+d, 
Ed=11 MeV

Cut off in the distance between d and A (fm)
Cut off in the distance between n and A (fm)

The contribution of the asymptotic region into (d,p) reaction 
amplitude dominates



The spectroscopic factor 
determined from experiment as

depends on b.

The ANC determined from 
experiment as

does not depend on b.

does not 
depens on b
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Cross sections of peripheral reactions are factorized via ANCs:
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L.Trache et al, Phys.Rev. C 67, 062801 (2003)
Example: 12C(8Li,7Li)13C



Can blj be determined from experimental data in a mode-independent way?

Original idea (S.A.Goncharov, et al, Yad.Fiz. 35, 662 (1982)):

Text can be fixed using ANCs measured from peripheral reactions. 
Then Tint can be determined.
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bexp=1.3 -0.17
+0.26 fm-1/2

Sexp=1.19+0.08
-0.21

r0 = 1.0 fm, a = 0.49 fm

13C(p,d)12C  Ep = 18.6 MeV
S.A.Goncharov et al, Yad.Fiz. 44, 303 (1986) 

b (fm)
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208Pb(d,p)209Pb
A.M. Mukhamedzhanov and F.Nunes, Phys. Rev. C 72, 017602 (2005)

b = 1.82 fm-1/2

S = 0.74



A(d,p)B reactions. Beyond the Born approximation.
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Beyond the Born approximation:
taking deuteron breakup into account.
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Solving 3-body Schrödinger equation in the adiabatic 
approximation. Johnson-Soper model.
R.C. Johnson and P.J.R. Soper, Phys. Rev. C1,976 (1970)

Adiabatic assumption:

Then the three-body equation becomes

To calculate the reaction amplitude

Only those part of the wave function, where rnp ≈ 0, are needed:
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Johnson-Soper model

• The zero-range (d,p) reaction amplitude formally looks exactly the 
same as the  zero-range DWBA amplitude

• The three-body wave function is calculated from the two-body 
Schrödinger equation

• The adiabatic interaction potential is a sum of the proton and neutron 
potentials taken at half deuteron energy

• The model takes the deuteron breakup into account as ψd(R,0)
includes all deuteron continuum states
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Solving 3-body Schrödinger equation using Weinberg 
state expansion. Johnson-Tandy model.
R.C. Johnson and P.C. Tandy, Nucl. Phys. A235, 56 (1974)

Weinberg basis:

It is assumed that only first term of the expansion is important. It 
can be found if all the coupling to the other channels are neglected
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Johnson-Tandy model

• The (d,p) reaction amplitude formally looks exactly the same as the  
finite-range DWBA amplitude

• The three-body wave function                         is calculated from the 
two-body Schrödinger equation

• The Johnson-Tandy two-body “deuteron” potential is calculated in a 
folding procedure involving a sum of the proton and neutron potentials 
taken at half deuteron energy

• The model takes the deuteron breakup into account as the projection 

of Vnp(rnp)ϕ1(rnp) χ1(R) onto any deuteron continuum state is not zero

),( npAnp rR)+(ψ



Deuteron potential: adiabatic vs conventional
J.D.Harvy and R.C.Johnson, Phys. Rev. 3, 636 (1971)

Conventional potential has an absorptive part that has to account for 
deuteron breakup. In adiabatic approach, this breakup is explicitly 
included.



116Sn(d,p)117Sn  Ed=8.22 MeV

R.R. Cadmus Jr.,and W. Haeberli, Nucl. Phys. A327, 419 (1979)

Deuteron potential:



12C(d,p)13C   at  Ed = 51 MeV
A.M. Mukhamedzhanov and F. Nunes, Phys. Rev. C 72, 017602 (2005)

Calculated using adiabatic 
d-12C potential

DWBA

It is not possible to 
determine b (and 
therefore S) from this 
graph.

Adiabatic cross sections are “more peripheral” than the conventional DWBA 
cross sections, the contribution from partial waves with low relative orbital 
momentum is suppressed



Remnant term in the transfer reaction amplitude.
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2) The remnant term that does 
not factorize via SFs or 
ANCs and is not bounded by 
small rxb

The DWBA reaction amplitude has two terms:

Adiabatic calculation always assume that the 
remnant term can be neglected.



Approximate way to include remnant term
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• Often VbB is chosen as a complex optical potential between b and B.
• No theoretical justification is given to this choice. 
• Remnant term is important for heavy particle transfer



12C(d,p)13C  Ed= 8 MeV
Vnp+ VpA - VpB
Vnp

W.R. Smith, Nucl. Phys. A130, 657 (1969)

28Si(d,p)29Si
Vnp+VpA-VpB
ΔV0np=-4 MeV
WpA=0

Comparing remnant 
and no-remnant 
calculations

Comparing various 
verions of remnant 
calculations

Ed=10  
MeV



Avoiding calculation of the remnant term
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Recoil excitation and breakup

A

b x
rβ

rAx

rbx

VAx ≠ 0

Vbx= 0

VAb ≠ 0
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What does it mean?

• Breakup of B is included in          as its overlap with any continuum state
of B is not zero.

• The breakup of B occurs because A inside B interacts with b, gets a 
recoil and then passes it via VAx to x.

• The price to pay for getting rid of the remnant term is to include recoil 
excitation and breakup of B.
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Wave function           in the adiabatic model:
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N.K. Timofeyuk and R.C.Johnson, 
Phys. Rev. C 59, 1545 (1999)



Transfer reactions with dispersive optical potentials
N. B. Nguyen et al, Phys. Rev. C84, 044611 (2011)
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DOM from has been described in terms of 32 parameters used to fit data 
sets for 40 ≤A ≤ 208 and 4 ≤ E ≤200 MeV (taken from J.M. Mueller et al, 
Phys. Rev. C 83, 064605 (2011) )
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132Sn+N



132Sn(d,p)133Sn, Ed = 9 .46 MeV
Johnson-Tandy adiabatic model has been used to calculate 
transfer cross sections, remnant term is neglected.

DOM can also predict potential 
well for neutron bound state

Standard WS
DOM

132Sn+n



ANCs obtained from transfer reactions using

• Global systematic of nucleon optical potentials CH89
• DOM

Woods-Saxon potential used 
for neutron bound state

DOM used for 
neutron bound state



Spectroscopic factors obtained using

• Global systematic of nucleon optical potentials CH89
• DOM

Woods-Saxon potential used 
for neutron bound state

DOM used for 
neutron bound state



Summary
• Exact amplitude can be written using distorted waves

• Born approximation for exact wave function can be introduced that selects only 
one channel of interest

• Transfer reactions probe overlap functions. Many transfer reactions are 
peripheral, they are sensitive only to the asymptotic part of the overlap integral 
given by ANCs. If potential well for bound state are reliably determined then
spectroscopic factors can be studied in transfer reactions as well.

• In the A(d,p)B reaction deuteron breakup channels play important role. They 
can approximately be taken into account using Johnson-Soper and Johnson-
Tandy approximations. These approximations allow available DWBA codes to 
be used.   

• Remnant term can be exactly excluded from transfer reaction calculations but 
then recoil excitation and breakup effects in the final nucleus should be taken 
into account  

• Transfer reactions benefit from using optical potentials obtained from DOM. 
Then ANCs and SFs are less dependent on incident energies.

)+()−( Ψ−+ψψχ= αββββββα )(),ˆ( rkr UVVT bAbxBb


