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Wave function of the system

a A+a > B+b (a->p)
o

B

The total wave function ¥ of the system satisfies the Schrodinger
equation

(H-E)¥Y =0
and contains outgoing spherical waves in all channels and incoming
waves in the o channel. Let us denote it ‘{’O(f)
The amplitude of the reaction will be determined by the projection of \Po(f)

into y, g : Xﬂ(rﬂ): (\Vb\VB‘LPO(;))



Exact expression for reaction amplitude

The Schrodinger equation can be rewritten as

Z/Jﬁ a g a !
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Multiplying from the left by v, " w5 " and integrating over &, and &g we get
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The solution of this equation is
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Reaction amplitude and cross section

To get amplitude forthe A + a = B + b (o = ) reaction, the
total wave function qja(+) should be projected into y = y,yg
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To get reaction amplitude, the limit ;—oc should be considered.
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Distorted waves

Let us introduce arbitrary potential U ; (rﬂ)
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Multiplying from the left by v, " yg ™ and integrating over &, and &g we get

= )= ) ~(+) (+)
Ls (”ﬁ)— Xp Oup +Id”'ﬂ Gy (rﬂ’r'ﬂ)(\VbWB‘Vﬂ -U, (”ﬂ)‘qjof )
The reaction amplitude is then
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Exact amplitude contain exact wave function ¥.”

fﬂa(r’ ,B)__ 2 ﬁa(ﬂ’ ﬂ)__ <Xﬂ \Vb\VB‘V _Uﬂ(rﬂ)‘LP"(‘+)>
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This wave function satisfies the Schrodinger equation
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The formal solution can be written as
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Then the amplitude can be rewritten as Born approximation
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Distorted wave Born approximation (DWBA)

DWBA (4 _ [, (+)
Tgy " (rg k) = <xﬂ V|V = U (s \vaw>
"
A, IS obtained from optical model in channel o
% IS obtained from optical model in channel 8 A
B\ 4

V= Vig=Y zv,.j=z{z+z }vi;= Vos + Voa.

ieb jeB ieb Ljex jeA

The assumption V, , — U,(rj) ~ O is often made. This assumption
may look reasonable if x is a nucleon and A4 is large. Then

T2y k) = ([ drdrgy (ko ) 1y vy 0 (R, 1)

Ly (rr) = (W, Vv w ) = (W, Vv v s, )



Overlap integrals

Overlap integrals (y;, |y ,) carry information about nuclear structure.
They are solutions of an integral equation.

(T, +Vi-E)v, =0, (Tp+Vs-Eg)yz =0
Wy (TB+VB_EB) Yz =0
<\|]A|TA + (TB_ TA) tV, (VB_ VA) -E,+ (EA_EB)l ve)=0

Wyl (Ts—-T,) +(E;~Eplwg) = |(V,=V3) W)

(T e)Xwlwe) = —u Vlvg)

Partial wave expansion of the overlap integral
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Properties of the overlap integrals

1) Asymptotic behaviour

At large r the overlap integral satisfies the equation

(T+e),,(n=-Cy, |V, Iwz)=0 (for neutral particle x)

(T+V,, )re),z (r)= =y, V= Ve, Mg )=0  (for charged particle x)
The asymptotic part of the overlap functions /,(r) is given by
]zj(’”) ~Cy W s (2xr)lr

C, isthe asymptotic normalization coefficient (4NC),
W is the Whittaker function,
k= (2ue)”?, ¢ is the nucleon separation energy

Example: for B=A-+neutron and [=0: ]lj(lf) = Clj exp(-xr)lr



I1) Normalization

Definition: the norm of 1,(r) is called the spectroscopic factor.

S,j:[O derI,_zj(r) (x B)

The meaning of the spectroscopic factor from the shell model point of view.
The shell model wave function is a linear combination of the Slater determinants

V= Z CA,aA DA,aA o, = {n111j1m171 ----- nAZAjAmATA}
x4
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The spectroscopic factor is expressed only via coefficients C, , and Cp
which are probability amplitudes of a particular shell occupation
scheme.



Modelling the overlap functions:
(Tt eXwul wg) = =Wy IVdwg ) ==V (wy lwg)
or (T, + V() +e) I,(r) = 0

]zj(r) = 512 golj(r), _(‘;dr rzgp; (r)=1

¢@,(r) is the normalized solution of the two-body equation and the
spectroscopic factor S is thought to be determined from experiment.

Often, a standard Wood-Saxon potential with r, #1.25 fm, a = 0.65 fm
is used to determine ¢,(r) while the depth 7} is fitted to reproduce .



arpitrary units

Typical example of the overlap functions for stable nuclei
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Peripheral transfer reactions

The reaction amplitude can be rewritten as follows:

T g k) = [[ i,y Ve, ) 1y (om0 (K, 1)

ext

Rcut o0
:_‘-0 drxA""+IR drxA"":];n+T
T« Probes the overlap integral /,(r, ;) in the nuclear interior.

T.,. probes the tail of the overlap integral / Zj(rx ), the magnitude of
which is given by the ANC.

Izj(” ) =S %-(’” ) =S sz W—n,m/z (2K )14

C, = S2b,
b,

/ IS the single-particle ANC



Contribution to the A(d,p)B reaction amplitude
D.Y.Pang, F.M.Nunes, A.M.Mukhamedzhanov, Phys. Rev. C 75, 024601 (2007)
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Cross sections of peripheral reactions are factorized via ANCs:
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Can b,j be determined from experimental data in a mode-independent way?

Original idea (S.4.Goncharov, et al, Yad.Fiz. 35, 662 (1982)):

= [VST,, (b)+ VST, |

\ does not

depends on S

G(e) Tmt +7—;xt

T, can be fixed using ANCs measured from peripheral reactions.
Then T, .. can be determined.

int

o0y syl 7 | = 2Ol 7
R, (b)= c,(6) _ % (9) _
" S th b ;z Ce-zxp o




Rin(0)

13C(p,d)2C E,= 18.6 MeV
S.A.Goncharov et al, Yad Fiz. 44, 303 (1986)
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208Ph(d,p)29°Pb

A.M. Mukhamedzhanov and F.Nunes, Phys. Rev. C 72, 017602 (2005)
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A(d,p)B reactions. Beyond the Born approximation.

Exact w.f.

Ty, (r ,kﬂ) = <X(ﬂ_)\|jb\|]B‘Vﬂ —Uy (rﬂ) LIJO(‘+)>

Born approximation:

(+) o ~(
¥, ~ Xd+)(rd)\|jd (rnp)\VA
Beyond the Born approximation:
taking deuteron breakup into account.

P
np
d \ \Ija(t ) ~ \ljiln;(R’ rnp) \le

n

(TR +T;1p + I/np + I/nA + VpA _E)WS;;?(R’ rnp) — O

R



Solving 3-body Schrodinger equation in the adiabatic
approximation. Johnson-Soper model.

R.C. Johnson and P.J.R. Soper, Phys. Rev. C1,976 (1970)

Adiabatic assumption: (Tnp +V,,+ sd)\p(A%(R, r,,)=0

Then the three-body equation becomes
(TR+V;1A+Vp/1_Ed)\ljfz;f;)(R’rnp):o’ Ed :E_gd
To calculate the reaction amplitude

7, (e, W, (R, 1,,)

T,Ba (”; 1kﬂ) — <X(ﬁ_)\|jb\|18

Only those part of the wave function, where r, ~ 0, are needed:

p
(TR +V,,(R)+ VpA (R) _Ed)WSZa(RQ) =0



Johnson-Soper model

* The zero-range (d,p) reaction amplitude formally looks exactly the
same as the zero-range DWBA amplitude

Tﬂzj - <Xf3—)(Afo)[AB (R) ] \VS;)p (R’O)>

* The three-body wave function is calculated from the two-body
Schrodinger equation .

I e (T +V,,(R)+V,,(R) - E, )y, (R0) =0
* The adiabatic interaction potential is a sum of the proton and neutron
potentials taken at half deuteron energy

» The model takes the deuteron breakup into account as vy (R,0)
Includes all deuteron continuum states



Solving 3-body Schrodinger equation using Weinberg
state expansion. Johnson-Tandy model.

R.C. Johnson and P.C. Tandy, Nucl. Phys. A235, 56 (1974)

VoL (R.r,) =Y 0 r,) 1 (R) %=~V i)
i=1
Weinberg basis:
T, +ar, +e,)or,)=0, o =1,0,=0, <<Pl- Vop (P,-> = =0,

It is assumed that only first term of the expansion is important. It
can be found if all the coupling to the other channels are neglected

(T, +V(R)-E,)x"(R) =0

V(R)=| dr,,

2 r, r,
(Pl(rnp) I/np (rnp)(l/n/l (R + 7p) + VpA (R o 2p )j



Johnson-Tandy model

* The (d,p) reaction amplitude formally looks exactly the same as the
finite-range DWBA amplitude

« The three-body wave function \|ff4+n)p(R ) is calculated from the

r
] np
two-body Schrodinger equation

* The Johnson-Tandy two-body “deuteron” potential is calculated in a
folding procedure involving a sum of the proton and neutron potentials
taken at half deuteron energy

* The model takes the deuteron breakup into account as the projection

of Vnp(rnp)(pl(rnp) v,(R) onto any deuteron continuum state is not zero



Deuteron potential: adiabatic vs conventional
J.D.Harvy and R.C.Johnson, Phys. Rev. 3, 636 (1971)
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Conventional potential has an absorptive part that has to account for
deuteron breakup. In adiabatic approach, this breakup is explicitly
included.



116Sn(d,p)t’Sn E,=8.22 MeV
R.R. Cadmus Jr.,and W. Haeberli, Nucl. Phys. A327, 419 (1979)

Deuteron potential:
—Potential D (Adiabatic)
—— Potential A (Gilobal)

—— Potentiol B (Elas. Scatt.) . |
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12C(d,p)**C at E =51 MeV

A.M. Mukhamedzhanov and F. Nunes, Phys. Rev. C 72, 017602 (2005)
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Adiabatic cross sections are “more peripheral” than the conventional DWBA
cross sections, the contribution from partial waves with low relative orbital
momentum is suppressed

Calculated using adiabatic



Remnant term in the transfer reaction amplitude.

Ty des) = (05 W sV = U () w0 )

V=t =% T o= ST+ T b= ok s

ieb jeB ieb Ljex jeA
The DWBA reaction amplitude has two terms:

DWBA
T

b (r 1kﬂ):<x(ﬂ_)\|]b\|]B‘Vbx

X(05+)\|!a\|!A> 1) The main term that factorizes
via SFs or ANCs and

depends on small r,

+ <X,(B—)\|jb\|jB | Z Vi, —Uz(rs)| vy oy ) 2) The remnant term that does
ieb, jed not factorize via SFs or

ANCs and is not bounded by
small r,

Adiabatic calculation always assume that the
remnant term can be neglected.



Approximate way to include remnant term

QW DV =Ugs(e) [0S v, v )

ieb,jeA

~ (s W [V () = U 5 (1) 0 W oW 1)

« Often V,; is chosen as a complex optical potential between b and B.
* No theoretical justification is given to this choice.
 Remnant term is important for heavy particle transfer



W.R. Smith, Nucl. Phys. A130, 657 (1969)
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Avoiding calculation of the remnant term

T,Ba (r ’kﬂ) = <X(ﬂ_)\|’b\|fB‘Vbx (1) +V,, (1) _Up (’”ﬂ) X(oc+)\|]a\|jA>

Reminder: derivation of reaction amplitude:

[EHbHAsz ;
/uﬂ /’le

2
pIB _ pr o I/bA _ VxA} \P0(5+) — I/beIJO(tJr)’

UArp) is arbitrary. Let us choose Z V.. instead of U Arp)

Y
ieb, jeA

T (k) = (051

w)

2

2 ~
[EHbHA AR mmjwo

zluﬁ zlqu




Recoil excitation and breakup

V=0 . NG
b Tpx Tﬂa (l" ’kﬂ) = <(|),B ‘Vbx

w)

(T+V,,+V., E)¢(+)—

# 0 What does it mean?

* Breakup of Bis included in d)g) as its overlap with any continuum state
of B is not zero.

e The breakup of B occurs because A inside B interacts with b, gets a
recoil and then passes itvia V', to x.

* The price to pay for getting rid of the remnant term is to include recoil
excitation and breakup of B.



Wave function <|>}+) In the adiabatic model:
—ipkgr,,
(I)(+) _XbA)(kﬂ’rbA)\l]Ax(rAx)e o 1 ﬂzmx /(mx+mA)

In the zero-range approximation,  V, (v, )v, (1. )=D,0(r,—r.)

the A(a,b)B reaction amplitude becomes

ZR * r
T =Dy [ dr gl (kyr)e™ vy ()2 (k1)
In the conventional approach (that assume that the remnant term is small)

T iwa = Do | dr x5 (k. 1)y, (1S (K, 1)

~

p=m,l(m +m,)



do/dS (mb/sr)
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N.K. Timofeyuk and R.C.Johnson,
Phys. Rev. C 59, 1545 (1999)
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V [MeV]

Transfer reactions with dispersive optical potentials
N. B. Nguyen et al, Phys. Rev. C84, 044611 (2011)
(r,r’,E): Vo(r,r')+ AV(r,r’,E)+iW(r,r’,E)
AV(r,r’,E):EjdE' rr',E)

V4 E—-FE'

DOM from has been described in terms of 32 parameters used to fit data
sets for 40 <A <208 and 4 < E <200 MeV (taken from J.M. Mueller et al,

Phys. Rev. C 83, 064605 (2011) )
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1325n(d,p)133Sn, E, = 9 .46 MeV

Johnson-Tandy adiabatic model has been used to calculate
transfer cross sections, remnant term is neglected.

L] o e e e e e e — DOM can also predict potential
* EXP well for neutron bound state
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ANCs obtained from transfer reactions using

» Global systematic of nucleon optical potentials CH89
« DOM

Woods-Saxon potential used DOM used for
for neutron bound state neutron bound state

Nucleus E; (MeV) CH89 +WS DOM + WS DOM DOM(th)

“HCa 20 5.0 4.4 4.4 2.8
56 4.6 3.8 3.8

Y(Ca p) 31.7 24 4 24 .4 29.6
13 27.9 227 22.6
19.3 26.0 23.1 23.0
56 35.8 23.5 23.2

133Sn 9.46 0.78 0.71 0.49 0.56

209pp 8 4.5 4.1 4.2 2.5
20 2.4 1.7 1.7




Spectroscopic factors obtained using

» Global systematic of nucleon optical potentials CH89
« DOM

Woods-Saxon potential used  DOM used for
for neutron bound state neutron bound state

Nucleus FE,; Data CH89+ WS DOM + WS DOM DOM(th)

‘1Ca 20 [29] 0.96 0.85 0.86 0.75
56 [30] 0.88 0.73 0.74
“Ca 2 [31] 0.94 0.72 0.66 0.80
13 [32] 0.82 0.67 0.61
19.3 [32] 0.77 0.68 0.62
56  [33] 1.1 0.70 0.62
3Sn 946 [1] 1.1 1.0 0.72 0.80
2Ph 8  [34] 1.7 1.5 1.2 0.76

20 [35] 0.89 0.61 0.51




Summary

Exact amplitude can be written using distorted waves
T (k) = (X5 VW 4V Vs = U 5 ()| 917)

Born approximation for exact wave function can be introduced that selects only
one channel of interest

Transfer reactions probe overlap functions. Many transfer reactions are
peripheral, they are sensitive only to the asymptotic part of the overlap integral
given by ANCs. If potential well for bound state are reliably determined then
spectroscopic factors can be studied in transfer reactions as well.

In the A(d,p)B reaction deuteron breakup channels play important role. They
can approximately be taken into account using Johnson-Soper and Johnson-
Tandy approximations. These approximations allow available DWBA codes to
be used.

Remnant term can be exactly excluded from transfer reaction calculations but
then recoil excitation and breakup effects in the final nucleus should be taken
into account

Transfer reactions benefit from using optical potentials obtained from DOM.
Then ANCs and SFs are less dependent on incident energies.



