²Ca COULEX - CURRENT STATUS OF THE DATA ANALYSIS

Few words about the experiment

Results...

Data replay...

Kasia Hadyńska-Klęk

⁴² Ca COULEX @ LNL Legnaro

beamtime: Feb.2010

beam: 4 Ca, 170 MeV

targets:

²⁸ Pb, 1 mg/cm² ¹⁹⁷ Au, 1 mg/cm²

particle – y coincidence mode: trigger rate 150÷250 Hz

Doppler correction

DATA REPLAY

Replay done not on the grid – workstation @HIL, Warsaw

4-core AMD Phenom(tm) II X4 965 Processor, 3.4 kHz / core, 512 KB cache / core, 8 GB ram, 10 TB hard disc

New PSA bases (downloaded from IKS Cologne in October)

Narval emulator (downloaded from Legnaro 18.10.2010)

3.5 TB of data $- \sim 2$ weeks of data replay

Special thanks goes to Dino Bazzacco

Data replay - peak shape improvement

EFFICIENCY CALIBRATION – comparison before and after data replay

Postulated interpretation

We assume that the observed gamma line comes from a 2⁺ level placed at 2048 keV.

The 2_2^+ state can be populated directly via $E2(0_1^+ \rightarrow 2_2^+)$

Deexcitation – through E2($2_2^+ \rightarrow 0_1^+$) 2048 keV

It was enough to reproduce the intensity of the 2048 keV gamma ray with B(E2; $2_2^+ \rightarrow 0_1^+$) ~ 1 W.u only