Signal Basis extracted with the PSCS method and tests with RS algorithm.

FABIO CRESPI - University of MILANO / INFN

Pulse Shape Comparison based Scan (PSCS)

- ☐ The technique is based on a specific pulse shape comparison procedure.
- □ PSCS does not require any 'coincidence' between events: this approach allows to enormously decrease the time duration of the measurements.
- ☐ To identify the gamma ray interaction point position 2 data sets are used: each one corresponding to a specific measurement characterized by a defined collimation of the gamma ray source.

☐ The case in which a signal of one set is identical to a signal of the other is when the two signals originate at the position corresponding to the <u>crossing point of the two lines defined by the source</u>

collimation.

C001 data taken in Liverpool:

1) Front Face Singles Scan

-137Cs source collimated to 1mm swept Across Front face of the detector

Step Lenght = 1 mm
Step Duration = 60 s
X-start 48 mm, X-range 86 mm
Y-start 39 mm, Y-range 86 mm

- -Traces of 128 samples digitized at 100 MHz
- The trigger was generated through a CFD on the core with a threshold of ~300 keV

C001 data taken in Liverpool:

2) Side Singles Scan Data

-137Cs source collimated to 1mm swept Across Side face of the detector

Step Lenght = 1 mm
Step Duration = 30 s
X-start 3 mm, X-range 82 mm
Y-start 38 mm, Y-range 95 mm

3) Higher Statistics Side Singles Scan Data

- 137Cs source collimated to 1mm swept across
Side face of the detector (Step Dur. = 150s)
(performed only for 2 detector rings)

4) Planar Singles Scan Data (not yet used)

-137Cs source collimated to 1.5 mm thick plane

PSCS Method

PSCS has been used to extract the position response of 4 detector

segments: A1,A2,F1,F2

☐ "Brute Force" comparison not possible (CPU time)

→ Signal Parametrization (used also for RS_3D)

Selecting Shapes with an higher "Multiplicity" value allows to obtain an improved result

Signal Basis: Calculated and Experimental

<u>Calculated Basis*</u>: currently implemented and used in AGATA experiments (C001 Asymmetric Detector, used for experimental data acquisition in Liverpool University***)

Experimental Basis: extracted using PSCS scan*** (4 segments)

→ <u>Signals Shapes that reproduce the same trend have been</u> extracted with the <u>Standard Coincidence Scan</u> → C. Unsworth

- *Bart Bruyneel *et al.*, *NIMA* 599 (2009), p. 196
- ***A. Boston *et al.*, *Nucl. Instr. and Meth. B* 261 (2007), p. 1098
- ***F.C.L. Crespi *et al.*, *NIMA* 593 (2008), p.440

- ☐ The XYZ Position of the interactions is extracted comparing the detector signal shape with reference shapes included in a database ("Signal Basis").
- ☐ The Signals in the "Basis" are ordered according to specific parameters (e.g. position of the derived net-charge signal maximum) in order to minimize CPU time.
- For each net charge collecting segment the following operations are performed:
 - ▶ the Signals (transients or net charge) which are likely to have a shape that depends on only one interaction are selected.
 - be these signals are compared with the Basis elements.
 - the element that best matches is subtracted from the detector signal.

* F.C.L. Crespi, *Nucl. Instr. and Meth. A* 570 (2007), p. 459

Example: 662 keV* F.E.P. simulated event**, Segment multiplicity =3.

35	5	11	17	23	29	35
34 446 ke	4 eV	10	16 4 keV	22	28	34
33		•	15	21	27	33
32	2	8	14	20	26	32
31	1	7	13	19	25	31
30	C	72 keV	12	18	24	30

*137Cs source, used in tests with experimental data presented in the following.

** Geant 4 AGATA code used

662 keV

(E. Farnea, D. Bazzacco, LNL-INFN(REP)—202 (2004) 158)

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

Net Charge Signals
Transient Signals
(1 N.C. segment neighbor only)
"Superimposed" Transient Signals
(influenced by multiple N.C. Segments)

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

35	5	11	17	23	29	35
34	4	10	16	22	28	34
33	3	9	15	21	27	33
32	2	8	14	20	26	32
31	1	7	13	19	25	31
30	72 keV	6	12	18	24	30

35	5	11	17	23	29	35
34	4	10	16	22	28	34
33	3		15	21	27	33
32	2	8	14	20	26	32
31	1	7	13	19	25	31
30	2 kéV	6	12	18	24	30

662 keV

— Net Charge Signals

Transient Signals

(1 N.C. segment neighbor only)

"Superimposed" Transient Signals (influenced by multiple N.C. Segments)

Example: 662 keV F.E.P. simulated event, Segment multiplicity =3

Reconstructed Signal

35	5	11	17	23	29	35
34 446 ke	4 eV	10	16 4 keV	22	28	34
33	 -		15	21	27	33
32	2	8	14	20	26	32
31	1	7	13	19	25	31
30	(72 keV	12	18	24	30

Tests with Calculated Signal Basis

662 keV pencil beam moved along Y direction – 5 mm steps (Geant4 + Calculated Signals + preamp response + noise)

Tests with Calculated Signal Basis

662 keV pencil beam moved along X direction – 5 mm steps (Geant4 + Calculated Signals + preamp response + noise)

Tests with Experimental Signal Basis

- □ ¹³⁷Cs (662 keV) collimated data*
- Experimental Signal Basis extracted with PSCS technique** for Segment A1.
- *A. Boston *et al.*, *Nucl. Instr. and Meth. B* 261 (2007), p. 1098
- **F.C.L. Crespi *et al.*, *NIMA* 593 (2008), p.440 and NSS- 2010 (N29-226) Poster Presentation

Conclusions

- ➤PSCS has been applied to data acquired in Liverpool and an "experimental signal basis" has been extracted for 4 C001 detector segments (A1,A2,F1,F2)
- First comparison of the PSCS with other metods (coincidence scan and calculations shows global agreement of the results
- A new version of RS algorithm (RS_3D) providing 3D localization of gamma interaction points (disentangling also multiple hits in a single segment) has been developed and tested with both calculated and experimental signal basis.
 - ▶ 5 mm position resolution is reached BUT time consumption still has to be decreased for allowing the algorithm application on-line
 - → Detector scanning benefits from pulse shape comparison techniques

☐ Future work

- □ Further test the RS_3D algorithm with experimentally extracted PSCS basis, using all the scanned segments. (e.g. looking at the reconstructed energy release distribution along Z axis). This will provide a test also for PSCS technique.
- Complete comparison between PSCS, Coincidence Scan and Calculated signals
- ☐ Improving RS_3D algorithm CPU time performances
- (→ In-beam Test of AGATA clusters with (up to)15 Mev gamma rays, next week @ LNL)
- (→ "Inelastic scattering as a tool to search for highly excited states up to the region of the Giant Quadrupole Resonance", R. Nicolini experiment performed June 2010 @ LNL Doppler Correction)