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Framework

History

N-body dynamics → old problem
for astrophysics, nuclear physics, . . .

The classic case is well-studied with a lot of many body potentials,
and the ultra-relativistic case is taken without interaction due to

the No Interaction Theorem.

(Currie, Rev. Mod. Phys. 35(1963))
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Framework

No Interaction Theorem

No Interaction Theorem : we cannot admit any interaction for a
system with a speed close to the speed of light if we want to keep

Invariant world-lines (respect of Poincaré’s algebra),

8N (qµ, pµ) independent degrees of freedom,

Space-time dissociation (clusterisation with potential).
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Framework

Dimensional reduction I

Particles are in a 8N dim. space, but
the e.o.m. are just for 6N. So we
have to put 2N constraints in our
hyperspace (for energy and time).

Equations of motion

∂qi

∂t
= {pi ,H }

∂pi

∂t
= {qi ,H }

=⇒

∂qµi
∂τ

= {pµi ,H}

∂pµi
∂τ

= {qµi ,H}
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Framework

Dimensional reduction II

But attention : in this case H is not an hamiltonian !

If we use the standard Poisson’s Bracket for a system under
constraints, we will find wrong e.o.m. In our case, Dirac give

a tool for constrained dynamics : the Dirac’s Brackets.

Dirac’s Brackets

{A,B}D = {A,B} − {A, φi}Cij{φj ,B}

with a matrix Cij = {φi , φj}−1 of constraints φ.

(Dirac, Lectures on Quantum Mechanics (1964))
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Constraints

The choice . . .

Now we have to choose these 2N constraints.
But the final aim must be to find consistent e.o.m..

My choice of invariant constraints

On-shell mass constraint for energy :

Ki = pi
µpiµ −mi

2 + Vi = 0

Time constraints (interaction or not (χi ) in a fixed referential (χN)) :

χi =
∑
j 6=i

qµij
(
Rijpijµ + (1 − Rij )Pµ

)
= 0

χN =
Pµ√
PµPµ

1

N

N∑
i=1

qiµ − τ = 0
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Constraints

The choice . . .

Now we have to choose these 2N constraints.
But the final aim must be to find consistent e.o.m..

My choice of invariant constraints

On-shell mass constraint for energy :

∆E = 0

Time constraints (interaction or not (χi ) in a fixed referential (χN)) :

∆τcm = 0 or ∆τlabo = 0

< τi > − τ = 0
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Constraints

. . . which is not a choice

If you remember the Dirac’s Bracket,
you know that constraints appear in e.o.m.

For example the kind of energy constraint is easy to guess with the
similarity with a “classical” hamiltonian, but we don’t want to see

the time constraint appear in the e.o.m. !

In the end it is right that we can choose constraints,
but we have to find consistent e.o.m.
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E.o.M. & Potentials

Classical dynamics

With a standard Hamiltonian such as

H = E =
√

p2 + m2 − V (q)

we get standard e.o.m. :

∂qi

∂t
= {pi ,H } =

∂H

∂pi
=

pi

Ei

∂pi

∂t
= {qi ,H } = −∂H

∂qi
= −∂V

∂qi
+ coll.
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E.o.M. & Potentials

Constrained e.o.m.

For a constrained dynamics, especially in the relativistic case, the
“hamiltonian” is not the energy. It is the world-line projection

operator over the symplectic manyfold . . .

Without mathematical words

H ≡
2N∑
i

λiφi =
N∑
i

λiKi = 0

Here a consequence of the projection on a referential is
the added λ factor. Is is called a Lagrange’s Multiplier.

Rudy Marty Relativistic Dynamics 12/ 22



E.o.M. & Potentials

Lagrange’s Multiplier I

This λ factor is used to fix the system over our hypersurface.

Global view

λj = C2Nj with Cij = {φi , φj}−1

But for N particles we just need N factors.
We can fix for example {Ki ,Kj} = 0.

Constrained view

λj = SNj with Sij = {χi ,Kj}−1
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E.o.M. & Potentials

Lagrange’s Multiplier II

The matrix inversion is a time consumming process for computers.
But my time constraint give a matrix which is always invertible.

The other important point is that if we want consistent e.o.m., we
need to find a good Ki constraint which respect {Ki ,Kj} = 0.

This is called the Komar-Todorov condition.

This condition have consequences on the type of potential which is
allowed in Relativistic Dynamics and I will discuss it in the next

and last section.

(Todorov, JINR(1976); Komar, PRD 18(1978))
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E.o.M. & Potentials

Equations of motion

With the previous constraints we can find the right equations of
motion for free particles, and a causal action in case of interaction.

Final e.o.m.

∂qµi
∂τ

= 2 λip
µ
i

∂pµi
∂τ

= −2
N∑

k=1

λk
∂Vk

∂qiµ

Of course we use these e.o.m. only in 6 dim. For free particles
λ = 1/2E , but for interacting particles this is a little bit different.
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Phenomenology

Relativistic differences

Small example with constant masses (one heavy and two light)
without interactions but different time constraints

Rudy Marty Relativistic Dynamics 17/ 22



Phenomenology

Relativistic differences

Small example with constant masses (one heavy and two light)
without interactions but different time constraints

Rudy Marty Relativistic Dynamics 17/ 22



Phenomenology

Action viewpoint

We have to minimize action in our system. That leads to
maximize time correlation of the forces and collisions.

So the perfect space to do that is the center of mass.
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Phenomenology

Potential I

In the case with potential we have to be carefull because
if we have to respect {Ki ,Kj} = 0 that give :

Komar-Todorov condition

pµi
∂Vj

∂qµi
− pµj

∂Vi

∂qµj
+ {Vi ,Vj} = 0

and the potential Vi which respect this equation
become difficult to find.
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Phenomenology

Potential II

The only potential which work with the previous equation is

Solution of potential

Vi =
∑
j 6=i

Vij(q
2
Tij)

So we use the simple case of 2-body potential.
It can only depend on transverse invariant distance :

Variable for potential

qT
µ
ij = qµij −

qνij pijν

p2
ij

pµij
CM
= (0, ~qij)
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Conclusion

Conclusions & Outlooks

We have a complete consistent method to describe a Relativistic
Dynamics,

We can find the good e.o.m. for free particle in all cases, and for
interacting particles with soft potentials and we conserve energy,

What is happen in case of very strong potential ? Violation of
Causality or of the speed of light ?

Maybe we must investigate research in new constraints ? New
potentials ? Question session is opened . . .
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