N-Body problem and potentials : toward a Relativistic Dynamics

Rudy Marty October 20° 2010

in collaboration with : J. Aichelin

History

N-body dynamics \rightarrow old problem for astrophysics, nuclear physics, ...

The classic case is well-studied with a lot of many body potentials, and the ultra-relativistic case is taken without interaction due to the No Interaction Theorem.

(Currie, Rev. Mod. Phys. 35(1963))

No Interaction Theorem

No Interaction Theorem : we cannot admit any interaction for a system with a speed close to the speed of light if we want to keep

No Interaction Theorem

No Interaction Theorem : we cannot admit any interaction for a system with a speed close to the speed of light if we want to keep

• Invariant world-lines (respect of Poincaré's algebra),

No Interaction Theorem

No Interaction Theorem : we cannot admit any interaction for a system with a speed close to the speed of light if we want to keep

- Invariant world-lines (respect of Poincaré's algebra),
- 8N (q^{μ}, p^{μ}) independent degrees of freedom,

No Interaction Theorem

No Interaction Theorem : we cannot admit any interaction for a system with a speed close to the speed of light if we want to keep

- Invariant world-lines (respect of Poincaré's algebra),
- 8N (q^{μ}, p^{μ}) independent degrees of freedom,
- Space-time dissociation (clusterisation with potential).

Particles are in a 8N dim. space, but the e.o.m. are just for 6N. So we have to put 2N constraints in our hyperspace (for energy and time).

Dimensional reduction II

But attention : in this case \mathcal{H} is not an hamiltonian !

If we use the standard Poisson's Bracket for a system under constraints, we will find wrong e.o.m. In our case, Dirac give a tool for constrained dynamics : the Dirac's Brackets.

Dirac's Brackets

$$\{A, B\}_D = \{A, B\} - \{A, \phi_i\} C_{ij} \{\phi_j, B\}$$

with a matrix $C_{ij} = \{\phi_i, \phi_j\}^{-1}$ of constraints ϕ .

(Dirac, Lectures on Quantum Mechanics (1964))

Rudy Marty

Constraints

The choice ...

Now we have to choose these 2N constraints. But the final aim must be to find consistent e.o.m..

My choice of invariant constraints

On-shell mass constraint for energy :

$$K_{i} = p_{i}{}^{\mu}p_{i\,\mu} - m_{i}{}^{2} + V_{i} = 0$$

Time constraints (interaction or not (χ_i) in a fixed referential (χ_N)) :

$$\chi_i = \sum_{j \neq i} q_{ij}^{\mu} \left(R_{ij} p_{ij\mu} + (1 - R_{ij}) P_{\mu} \right) = 0$$

$$\chi_N = \frac{P^{\mu}}{\sqrt{P^{\mu}P_{\mu}}} \frac{1}{N} \sum_{i=1}^N q_{i\mu} - \tau = 0$$

Rudy Marty

Constraints

The choice ...

Now we have to choose these 2N constraints. But the final aim must be to find consistent e.o.m..

My choice of invariant constraints

On-shell mass constraint for energy :

 $\Delta E = 0$

Time constraints (interaction or not (χ_i) in a fixed referential (χ_N)) :

$$\Delta \tau_{\rm cm} = 0$$
 or $\Delta \tau_{\rm labo} = 0$

$$\langle \tau_i \rangle - \tau = 0$$

Rudy Marty

Relativistic Dynamics

Constraints

Skitech

... which is not a choice

If you remember the Dirac's Bracket, you know that constraints appear in e.o.m.

For example the kind of energy constraint is easy to guess with the similarity with a "classical" hamiltonian, but we don't want to see the time constraint appear in the e.o.m. !

In the end it is right that we can choose constraints, but we have to find consistent e.o.m.

Skitech

Classical dynamics

With a standard Hamiltonian such as

$$\mathscr{H} = E = \sqrt{\mathbf{p}^2 + m^2 - V(\mathbf{q})}$$

we get standard e.o.m. :

$$\frac{\partial \mathbf{q}_i}{\partial t} = \{\mathbf{p}_i, \mathcal{H}\} = \frac{\partial \mathcal{H}}{\partial \mathbf{p}_i} = \frac{\mathbf{p}_i}{E_i}$$
$$\frac{\partial \mathbf{p}_i}{\partial t} = \{\mathbf{q}_i, \mathcal{H}\} = -\frac{\partial \mathcal{H}}{\partial \mathbf{q}_i} = -\frac{\partial V}{\partial \mathbf{q}_i} + \text{coll.}$$

Constrained e.o.m.

For a constrained dynamics, especially in the relativistic case, the "hamiltonian" is not the energy. It is the world-line projection operator over the symplectic manyfold . . .

Without mathematical words

$$\mathcal{H}\equiv\sum_{i}^{2N}\lambda_{i}\phi_{i}=\sum_{i}^{N}\lambda_{i}K_{i}=0$$

Here a consequence of the projection on a referential is the added λ factor. Is is called a Lagrange's Multiplier.

Lagrange's Multiplier I

This λ factor is used to fix the system over our hypersurface.

Global view

$$\lambda_j = C_{2Nj}$$
 with $C_{ij} = \{\phi_i, \phi_j\}^{-1}$

But for N particles we just need N factors. We can fix for example $\{K_i, K_j\} = 0$.

Constrained view

$$\lambda_j = S_{Nj}$$
 with $S_{ij} = \{\chi_i, K_j\}^{-1}$

Rudy Marty

Lagrange's Multiplier II

The matrix inversion is a time consumming process for computers. But my time constraint give a matrix which is always invertible.

The other important point is that if we want consistent e.o.m., we need to find a good K_i constraint which respect $\{K_i, K_j\} = 0$. This is called the Komar-Todorov condition.

This condition have consequences on the type of potential which is allowed in Relativistic Dynamics and I will discuss it in the next and last section.

(Todorov, JINR(1976); Komar, PRD 18(1978))

Rudy Marty

Relativistic Dynamics

Equations of motion

With the previous constraints we can find the right equations of motion for free particles, and a causal action in case of interaction.

Final e.o.m.

$$\frac{\partial q_i^{\mu}}{\partial \tau} = 2 \lambda_i p_i^{\mu}$$

$$\frac{\partial p_i^{\mu}}{\partial \tau} = -2 \sum_{k=1}^N \lambda_k \frac{\partial V_k}{\partial q_{i\mu}}$$

Of course we use these e.o.m. only in 6 dim. For free particles $\lambda = 1/2E$, but for interacting particles this is a little bit different.

Rudy Marty

Relativistic Dynamics

Relativistic differences

Small example with constant masses (one heavy and two light) without interactions but different time constraints

Relativistic differences

Small example with constant masses (one heavy and two light) without interactions but different time constraints

Action viewpoint

We have to minimize action in our system. That leads to maximize time correlation of the forces and collisions.

Rudy Marty

Relativistic Dynamics

Action viewpoint

We have to minimize action in our system. That leads to maximize time correlation of the forces and collisions. So the perfect space to do that is the center of mass.

Rudy Marty

Relativistic Dynamics

Potential I

In the case with potential we have to be carefull because if we have to respect $\{K_i, K_j\} = 0$ that give :

Komar-Todorov condition

$$p_i^{\mu} \frac{\partial V_j}{\partial q_i^{\mu}} - p_j^{\mu} \frac{\partial V_i}{\partial q_j^{\mu}} + \{V_i, V_j\} = 0$$

and the potential V_i which respect this equation become difficult to find.

Potential II

The only potential which work with the previous equation is

Solution of potential

$$V_i = \sum_{j
eq i} V_{ij}(q_{Tij}^2)$$

So we use the simple case of 2-body potential. It can only depend on transverse invariant distance :

Conclusion

Conclusions & Outlooks

- We have a complete consistent method to describe a Relativistic Dynamics,
- We can find the good e.o.m. for free particle in all cases, and for interacting particles with soft potentials and we conserve energy,
- What is happen in case of very strong potential ? Violation of Causality or of the speed of light ?
- Maybe we must investigate research in new constraints ? New potentials ? Question session is opened ...

Thanks for your attention