Hydrodynamic modes in neutron star crust

Luc Di Gallo

Luth-Observatoire de Paris-Meudon

Meeting of nuclear theorists, October 20th

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Neutron star structure Specific heat of a neutron star Hydrodynamic modes in "lasagna" Conclusion

Neutron star structure

- 2 Specific heat of a neutron star
 - Introduction
 - The inner crust
 - Thermal properties of the pasta phase

Hydrodynamic modes in "lasagna"

- Characteristics of "lasagna"
- Superfluid hydrodynamics
- Solving the equations
- Results

4 Conclusion

- ∢ ⊒ →

Neutron star structure Specific heat of a neutron star Hydrodynamic modes in "Iasagna" Conclusion

A neutron star is characterised by:

- A radius: $R \simeq 10 15 Km$
- A mass: $M \simeq 1 2M_{\odot}$

• Compacity:
$$\Xi = \frac{GM}{Rc^2} \simeq 0.2$$

- Average density: $\rho \simeq 3.10^{14} g.cm^{-3}$
- Temperature: $T \simeq 10^6 - 10^9 K$
- Period of rotation $P \simeq 0.001 10s$
- Magnetic field: $B \simeq 10^7 - 10^{15} G$

Figure: Neutron star structure, Dany Page

イロン 不同 とくほう イヨン

Neutron star structure Specific heat of a neutron star Hydrodynamic modes in "Iasagna" Conclusion The inner crust Thermal properties o

One of the neutron star observables is the surface temperature which can give constraints on the thermal evolution estimating its age.

- Specific heat is one of the elements to study the thermal evolution of neutron star
- Specific heat is a sum over different contributions from the different excitations (nuclei, phonons, electrons,...)
- Shortly after the birth the core contains still a lot of energy which escapes through the crust ⇒ I will study thermal properties of the crust.

Figure: Specific heat contribution as a function of the density at $T = 10^9$ K, Gnedin et al. 2001 $rac{1}{} + 2 + 2 + 2 = 2$

Neutron star structure **Specific heat of a neutron star** Hydrodynamic modes in "lasagna" Conclusion

We will be interested in the inner crust which contains the structure called "pasta phase".

Figure: Neutron star crust

- This part of the crust is characterised by the transition from homogneous matter to the lattice of atomic nuclei.
- Pasta phase = very deformed nuclei.

글 > : < 글 >

Neutron star structure Specific heat of a neutron star Hydrodynamic modes in "lasagna" Conclusion

Introduction The inner crust Thermal properties of the pasta phase

What are the different contributions to thermal properties?

- Paired nucleons: contribution strongly suppressed due to pairing gap.
- Contribution of ions, electrons and free neutrons to specific heat
- But superfluidity ⇒ low energy collective excitations called hydrodynamic modes.
- These modes are first order perturbations in density and propagate at sound velocity.

Figure: Energy gap of pairing.

きょうきょう

Figure: Representation of "lasagna"

I take the condition of:

- Lasagna: periodic alternance of two slabs("gazeous" and "liquid") with different proton and neutron densities \implies different thermodynamical properties
- Zero temperature approximation \implies neutrons and protons are treated as superfluids.
- Superfluid hydrodynamics approximation in each slab
- Non-relativistic approximation.

A 3 - 5

 Neutron star structure
 Characteristics of "lasagna"

 Specific heat of a neutron star
 Superfluid hydrodynamics

 Hydrodynamic modes in "lasagna"
 Solving the equations

 Conclusion
 Results

Two basic equations for deriving superfluid hydrodynamics:

- Conservation of particle number: $\partial_{\mu} \, n^{\mu} = 0$
- Energy-momentum conservation (Euler equation): $\partial_{\mu}T^{\mu\nu} = 0$ with $T^{\mu}_{\nu} = P\delta^{\mu}_{\nu} + \sum_{x=n,p} n_{x}^{\mu}\mu_{\nu}^{x}$

Characteristics of hydrodynamics with two superfluid components (n,p):

- No viscosity.
- Entrainment between the two fluids: non dissipative interaction which misalign velocities and momentum.

Parameters appearing in the hydrodynamic equations are calculated within a Landau-Fermi liquid model. Relativistic Mean Field interaction with $\sigma - \omega - \rho - \delta$ mesons is employed with density dependent parameters defined in Avancini et al. (2009).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Neutron star structure	Characteristics of "lasagna"
Specific heat of a neutron star	Superfluid hydrodynamics
Hydrodynamic modes in "lasagna"	Solving the equations
Conclusion	Results

We take linearised equations in each slab.

 \Longrightarrow Two eigenvectors with associated sound velocity. The two fluids (n, p) are coupled for each eigenvector.

글 > : < 글 >

Neutron star structure Specific heat of a neutron star Hydrodynamic modes ni lasagna" Solving the equations Conclusion Results

We take linearised equations in each slab.

 \Longrightarrow Two eigenvectors with associated sound velocity. The two fluids (n, p) are coupled for each eigenvector.

Ø Boundary conditions between slabs:

At $T \sim 10^8 \text{K} \implies$ time period of modes \gg characterisic time of β -interaction, relaxation time

- \implies Fluids are inviscid
- \implies Contact is maintained

 \Longrightarrow Continuity of perpendicular fluid velocities and continuity of chemical potentials

向下 イヨト イヨト

	Characteristics of "lasagna"
Specific heat of a neutron star Hydrodynamic modes in "lasagna"	Superfluid hydrodynamics Solving the equations
Conclusion	Results

- We take linearised equations in each slab.

 Two eigenvectors with associated sound velocity. The two fluids
 (n, p) are coupled for each eigenvector.
- Oundary conditions between slabs:
 - Continuity of perpendicular fluid velocities.
 - Continuity of chemical potentials.

글 🖌 🖌 글 🕨

	Characteristics of "lasagna"
Specific heat of a neutron star	Superfluid hydrodynamics
Hydrodynamic modes in "lasagna"	Solving the equations
Conclusion	Results

We take linearised equations in each slab.

 \Longrightarrow Two eigenvectors with associated sound velocity. The two fluids (n, p) are coupled for each eigenvector.

- Ø Boundary conditions between slabs:
 - Continuity of perpendicular fluid velocities.
 - Continuity of chemical potentials.
- We use the Floquet-Bloch theorem to take into account the periodicity (U(z + L) = U(z)e^{iqL} where L is the periodicity).
 For now we have considered only waves propagating along z axis

Figure: Baryonic density $n_b = 0.0804 fm^{-3} \sim \frac{\rho_0}{2}$.

Figure: Baryonic density $n_b = 0.0013 fm^{-3}$.

в) в

• Acoustic Branch with linear dispersion law for low momentum

• Optic branches with a cut-off at frequency $\omega \equiv \frac{u_2}{\sqrt{L_2}} j\pi$

I have introduced a formalism for wave propagation in "lasagna" taking into account superfluidity and the periodic structure. The dispersion relations show interesting acoustic and optic branches. I expect this kind of excitation may have a significant contribution to thermal properties of the pasta phase (Specific heat...).

I have to develop:

- Consider all directions for hydrodynamic modes in order to calculate the specific heat.
- Resolve the problem for other geometrical structures.
- Non-zero temperature \implies addition of a "normal fluid".