

Newest Results from MINOS

Alexandre Sousa University of Oxford for the MINOS Collaboration

International Workshop on Next Nucleon decay and Neutrino detectors NNN 08

Laboratoire APC, Paris, France September 11, 2008

The MINOS Collaboration

Argonne • Arkansas Tech • Athens • Benedictine • Brookhaven • Caltech Cambridge • Campinas • Fermilab • Harvard • IIT • Indiana • Minnesota-Duluth Minnesota-Twin Cities • Oxford • Pittsburgh • Rutherford • Sao Paulo • South Carolina Stanford • Sussex • Texas A&M • Texas-Austin • Tufts • UCL • Warsaw • William & Mary

NNN 08, Paris, 11/09/08

Alex Sousa, University of Oxford

The MINOS Experiment

- **MINOS (Main Injector Neutrino Oscillation Search)**
 - Long-baseline neutrino oscillation experiment

Basic concept

- Create a neutrino beam provided by 120 GeV protons from the Fermilab Main Injector
- Measure energy spectrum at the Near Detector, at Fermilab
- Measure energy spectrum at the Far Detector, 735 km away, deep underground in the Soudan Mine.
- Compare Near and Far measurements to study neutrino oscillations

MINOS Physics Goals

- Precise measurements of $|\Delta m^2_{32}|$ and $sin^22\theta_{23}$ via ν_{μ} disappearance
- Search for or constrain exotic physics such as sterile \boldsymbol{v}
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Compare v, \overline{v} oscillations
- Atmospheric neutrino and cosmic ray physics
- Study v interactions and cross sections using the high statistics Near Detector data set

Event Topologies

Monte Carlo

v_u CC Event

long µ track & hadronic activity at vertex

NC Event

short event, often diffuse

v_e CC Event

short, with typical EM shower profile

Energy resolution

- •π[±]: 55%/√E(GeV)
- µ[±]: 6% range, 10% curvature

Charged Current Analysis of 3.36×10²⁰ POT of MINOS Data

- Precision measurement of $|\Delta m^2|$ and $sin^2 2\theta$ -

CC Event Selection

- CC / NC Event classification is performed with a k-nearest neighbor (kNN) based algorithm with four inputs:
 - Track length (planes)
- For hits belonging to the track:
 - 2. Mean pulse height/plane
 - 3. Fluctuation in pulse height
 - 4. Transverse track profile

Near Detector

CC selection eficiency

MINOS Preliminary

NC contamination

NNN 08, Paris, 11/09/08

CC efficiency / NC contamination

0.8

0.6

0.4

0.2

0

0

2

Systematic Uncertainties

• The impact of different sources of systematic uncertainty is evaluated by fitting modified MC in place of the data:

The three largest shifts are included as nuisance parameters in the oscillation fit.

NNN 08, Paris, 11/09/08

Alex Sousa, University of Oxford

CC Energy Spectrum Fit

 Fit the energy distribution to the oscillation hypothesis:

 $P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^2(2\theta) \sin^2\left(\frac{1.27\Delta m^2 L}{E}\right)$

- Including the three largest sources of systematic uncertainty as nuisance parameters
 - Absolute hadronic energy scale: 10.3%
 - -Normalization: 4%
 - -NC contamination: 50%

Allowed Regions

Most precise measurement of $|\Delta m|^2$ performed to date!

NNN 08, Paris, 11/09/08

Alex Sousa, University of Oxford

Alternative Hypotheses

Neutral Current Analysis of 2.46×10²⁰ POT of MINOS Data

- Looking for sterile neutrino mixing -

NNN 08, Paris, 11/09/08

NC/CC Event Separation

- NC events are typically shorter than CC events
- Expect showers and no tracks or very short tracks reconstructed for NC events
- Main background from inelastic (high-y) v_{μ} CC events

Alex Sousa, University of Oxford

NC Analysis Results - Rate

- Compare the NC energy spectrum with the expectation of standard 3-flavor oscillation physics
 - Depletion of Far Detector NC spectrum may indicate sterile neutrino mixing
- Fix the oscillation parameter values

 $R \equiv \frac{N_{Data} - E}{S_{uc}}$

- $\sin^2 2\Theta_{23} = 1$ $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$ $\Delta m_{21}^2 = 7.59 \times 10^{-5} \text{ eV}^2$, $\Theta_{12} = 0.61$ from KamLAND+SNO
- Θ_{13} = 0 or 0.21 (normal MH, δ =3 π /2) from CHOOZ Limit
 - N.B. CC v_e are classified as NC by the analysis
- Make comparisons in terms of the *R* statistic:
- For different energy ranges •
 - 0-3 GeV
 - 3-120 GeV
 - All events (0-120 GeV)

Predicted CC background from all flavors

Predicted NC

interaction signal

NC Analysis Results - Rate

- Plot shows the selected FD NC energy spectrum for Data and oscillated MC predictions
- Expect largest NC disappearance for E < 3 GeV if sterile mixing is driven by Δm²₃₂
- Depletion of total NC event rate (1-*R*) < 17% at 90% C.L. for the 0-120 GeV range

Data is consistent with					
no NC deficit at FD					
and thus with no					
sterile neutrino mixing					

$E_{\rm reco} ({\rm GeV})$	N_{Data}	$S_{\rm NC}$	$B_{\rm CC}^{\nu_{\mu}}$	$B_{\rm CC}^{\nu_{\tau}}$	$B_{\rm CC}^{\nu_e}$
0 - 3	100	101.1	11.2	1.0	1.8(9.3)
3 - 120	191	98.0	64.2	3.5	11.8(24.6)
0 - 3	R = 0.	85 ± 0.1	0 ± 0.07	$(0.78 \pm$	0.10 ± 0.07
3 - 120	R = 1.	14 ± 0.1	4 ± 0.10	$(1.02 \pm$	0.14 ± 0.10
0 - 120	R = 0.	99 ± 0.0	9 ± 0.07	$(0.90 \pm$	0.09 ± 0.08

NC Analysis Results – f_sFit

- Assume one sterile neutrino and that mixing between $\nu_{\mu},\,\nu_{s}$ and ν_{τ} occurs at a single Δm^{2}
- Survival and sterile oscillation probabilities become: $P(\nu_{\mu} - \nu_{\mu}) = 1 - \alpha_{\mu} \sin^{2}(1.27\Delta m^{2}L/E)$ $P(\nu_{\mu} - \nu_{s}) = \alpha_{s} \sin^{2}(1.27\Delta m^{2}L/E)$
- Simultaneous fit to CC and NC energy spectra yields the fraction of ν_{μ} that oscillate to ν_{s} :

$$f_{s} = \frac{P(v_{\mu} \to v_{s})}{1 - P(v_{\mu} \to v_{\mu})} = 0.28^{+0.25}_{-0.28} \text{(stat.+syst.)}$$

 $f_s < 0.68$ (90% C.L.)

Submitted to PRL (arXiv:hep-ex/0807.2424)

v_e Appearance Analysis

- Constraining θ_{13} -

ve Selection

•NC and short v_{μ} CC events are the dominant backgrounds

•Neural Network v_e selection algorithm based on characteristics of electromagnetic showers

 MC tuned to bubble chamber experiments for hadronization models

•Data/MC comparisons show disagreements due to hadronic model

 Correct the model to match the data using data-driven methods in ND

 Background predictions from two methods agree within statistical uncertainty

Reconstructed Energy (GeV)

Future θ_{13} Limits

- Expect 12 signal and 42 bg events at the CHOOZ limit for the current exposure
- Data-driven systematics are hoped to drop to 5% in future years
- Inverted hierarchy shown only for lowest exposure for simplicity

Summary and Conclusions

- The MINOS Experiment is making several contributions to our understanding of Neutrino Physics
- New measurement of atmospheric oscillation parameters from v_{μ} disappearance:
 - $-\left(|\Delta m|^2 = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2 \right) (68\% \text{ C.L.})$
 - $-(\sin^2(2\theta) > 0.90 (90\% \text{ C.L.})$

- Decay and decoherence models are disfavored at 3.7 σ and 5.7 σ , respectively

• New results from search for oscillations into sterile neutrinos:

- -(1-R < 17% at 90% C.L., 0 < E < 120 GeV)
- $[f_s < 0.68 \quad (90\% \text{ C.L.})$
- Consistent with no sterile neutrino mixing
- First results on v_e appearance expected later this year and have sensitivity below the CHOOZ limit.

Backup Slides

R

The NuMI Neutrino Beam

Hadron Monitor

• Beam energy spectrum can be modified by varying the relative positions of target and horns.

92.9%
$$v_{\mu}$$
, 5.8% \overline{v}_{μ} , 1.3% $v_e + \overline{v}_e$

- Beam performance:
 - 10µs spill of 120 GeV protons every 2.2s
 - Intensity: 3.0×10¹³ POT/spill
 - 0.275 MW beam power
 - 10¹⁸ POT/day

Accumulated Beam Data

Many thanks to Fermilab's Accelerator Division

Total NuMI protons to 00:00 Monday 25 August 2008

The MINOS Detectors

Near Detector

- Located 1km downstream of the target
- ~1kt (980t) total mass
- Shaped as squashed octagon (4.8×3.8×15m³)
- Partially instrumented (282 steel, 153 scintillator planes)
- Fast QIE readout electronics, continuous sampling during beam spill

Muon Spectrometer planes 121 : 281

Far Detector

- Located 735km away in Soudan mine, MN
- 5.4kt, 2 supermodules
- Shaped as octagonal prism (8×8×30m³)
- 486 steel planes, 484 scintillator planes
- Veto shield (scintillator modules)
- Spill times from Fermilab for beam trigger

NNN 08, Paris, 11/09/08

Hadron Shower

planes 61 : 120

Target

planes 0:20 planes 21:60

Veto

Alex Sousa, University of Oxford

之

Near to Far Extrapolation

Far detector energy spectrum without oscillations is not the same as the Near detector spectrum

- Start with near detector data and extrapolate to the far detector
 - Use Monte Carlo to provide corrections due to energy smearing and acceptance
 - Encode pion decay kinematics and the geometry of the beamline into a beam transport matrix used to transform the ND spectrum into the FD energy spectrum

Data Sensitivity

For a true value at the Sensitivity l∆m²l (×10⁻³eV²) 5.2 best fit point of: $|\Delta m^2| = 2.43 \times 10^{-3} \, eV^2$ $sin^{2}(2\theta) = 1.00$, **MINOS** data 26.5% of unconstrained fits have a fit value of $sin^2(2q) \ge 1.07$. 90% c.l. contours 0.8 0.85 0.95 0.9 $sin^2(2\theta)$

Neutral Current NC Energy Spectrum

NC selected Data and MC energy spectra for Near Detector

- Good agreement between Data and Monte Carlo
- Discrepancies much smaller than systematic uncertainties
- NC events are selected with 90% efficiency and 60% purity

Systematic Errors

- **Relative Normalization**: ±4%
 - POT counting, Near/Far reconstruction efficiency, fiducial mass
- **Relative Hadronic Calibration:** ±3%
 - Inter-Detector calibration uncertainty
- Absolute Hadronic Calibration: ±11%
 - Hadronic Shower Energy Scale(±6%), Intranuclear rescattering(±10%)
- Muon energy scale: ±2%
 - Uncertainty in dE/dX in MC
- CC Contamination of NC-like sample: ±15%
- NC contamination of CC-like sample: ±25%
- Cross-section uncertainties:
 - m_A (qe) and m_A (res): ±15%
 - KNO scaling: ±33%
- **Poorly reconstructed events:** ±10%
- Near Detector NC Selection: ±8% in 0-1 GeV bin
- Far Detector NC Selection: ±4% if E < 1 GeV,
 <1.6% if E > 1 GeV
- Beam uncertainty: 1σ error band around beam fit results

	$0-3~{ m GeV}$	$3 - 120 \mathrm{GeV}$
Absolute E_{had}	$\pm < 0.01$	± 0.05
Relative E_{had}	± 0.03	± 0.04
Normalization	± 0.04	± 0.08
Near detector selection	± 0.02	_
ν_{μ} -CC background	± 0.03	± 0.01
Total:	± 0.07	± 0.10

Effect of the most relevant systematic uncertainties on **R**

v_{μ} to $v_{sterile}$ in SuperK

- High energy v experience matter effects which suppress oscillations to sterile v
 - Matter effects not seen in upμ or high-energy PC data
 - Reduction in neutral current interactions also not seen
 - constrains v_s component of v_u disappearance oscillations
- Pure v_{μ} -> v_s disfavored
 - v_s fraction < 20% at 90% c.l.
- Result published only in conference proceedings

ve Selection

- •Neural Network v_e selection algorithm based on characteristics of electromagnetic showers
- •MC tuned to bubble chamber experiments for hadronization models
- •Data/MC comparisons show disagreements due to hadronic model
- •Developed two data-driven methods to correct the model to match the data
- Muon Removed CC Events (MRCC)
 - Use well understood ν_{μ} CC data sample with removed track hits to correct NC event number
 - Beam ν_e known from MC, subtract from NC component to obtain ν_μ CC
- •Horns on/off
 - pions are not focused with horns off and energy spectrum peak disappears
 - Estimate NC and ν_{μ} CC from differences between horns on/off data samples and MC
- Extrapolate each background to FD to obtain data-driven sensitivities

Muon Removal

>20% Data/MC discrepancy in both the standard v_e and the muon removed CC samples

- Comparisons of standard Data and MC shower topological distributions disagree in the same way as does MRCC data with MRCC MC
 - So MC hadronic shower production/modeling is a major contribution to the disagreement.
 - Kinematic phase space of MRCC and selected NC events matches well, but MRCC and selected CC events do not.
- The MRCC sample is thus used to make ad-hoc correction to the model to NC events per bin
 - Beam v_e from MC, CC events are the remainder

Horn on/off Method

• After applying v_e selection cuts to Near Detector data, the composition of the selected events is quite different with the NuMI focusing horns on or off.

$$N_{on} = N_{NC} + N_{CC} + N_{e}$$
(1)
$$N_{off} = r_{NC} * N_{NC} + r_{CC} * N_{CC} + r_{e} * N_{e}$$
(2)

from MC:

$$\mathbf{r}_{NC(CC,e)} = \mathbf{v}_{NC(CC,e)}^{off}/\mathbf{N}_{NC(CC,e)}^{on}$$

• Get horn on/off ratios from MC,
then solve for NC and CC
backgrounds in bins of energy,
get beam v_e from the beam
MC (a well understood number)
– Independent of hadronic modeling

Reconstructed Energy (GeV)