Langlands duality
from
modular duality

Jorg Teschner

DESY Hamburg



Motivation

There is an interesting class of N = 2, SU(2) gauge theories Go associated to a
Riemann surface C' (Gaiotto), in particular C' +— Lagrangian of Go. The theories
Gco generalize theories studied by Seiberg and Witten.

Low energy theory described in terms of prepotential Fc(a), a = (a1, .. .,a35—34n),
which can be calculated from spectral curve of the SU(2)-Hitchin system associated

to C.

Gauge theory instanton calculus (Moore, Nekrasov, Shatashvili) defines a natural
deformation Z¢(a; €1, €2) of Fe(a),

Fo(a) = lim e1e02¢(a; €, €3).

€1,e0—0

Amazing observation (Alday, Gaiotto, Tachikawa):
exp(Zc(a; €1,€2)) = Conformal blocks of Liouville theory.

What has Liouville theory to do with the Hitchin system?



Simplest example of a Hitchin system: Gaudin model

Case C = P'\ {z1,...,2,}. DOF: J. € sl(2)c, r = 1,...,n modulo SL(2,C).

Consider
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In this case transfer matrix:

- ) H Ja b
2 T T rYs
q:m@)zz((y—z»ﬁy—zr)’ He =D

r=1

A Poisson bracket can be introduced as
(JO, JEY = +6,,JF, {JF,J7} = 26,,J°.

The H, commute w.r.t. the Poisson structure = Integrability.



Quantum SL(2,C)-Gaudin model

Cconsider the tensor product of n principal series representations P; of SL(2,C).
It corresponds to the tensor product of representations of the Lie algebra s[(2,C)
generated by differential operators 7 acting on functions W(x1,Z1,..., %y, Ty) as

jr_ — aa:ra jro — xraacr — jfm jr—i_ — _xgaxr + 2jr$7°7

and complex conjugate operators 7¢. Casimir parameterized via j, as j,.(j,. +1). Let
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where the differential operator 7, is defined as
/ 1
jrs c= naa’jrajsa = jr0j80+§ (jr+js_ + jr_js—'_) )

while J, is the complex conjugate of J,s. The Gaudin Hamiltonians are mutually
commuting,
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Separation of variables (SOV) for the Gaudin model |

Diagonalize J~ by means of the Fourier transformation
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The generators J? are mapped to the differential operators D,
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Define variables to y1,...,yn_9,u related to the variables 1, ..., f, via
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Separation of variables (SOV) for the Gaudin model Il

It was shown by Sklyanin that the eigenvalue equations H,. W = E,.U are transformed
into Baxter equations

=~ [ jr(jr + 1 E,
02 +t =0, ( ) .
(0, + t(yx))x (k) k=22 e

r=1
The dependence with respect to the variables y;, has completely separated.

Solutions to the Gaudin-eigenvalue equations H,, W = E,.¥ can therefore be constructed
In factorized form

U= ][ xaluriq)-

k=1



Generalization: Hitchin’s integrable system

Phase space: My ~ Moduli space of Higgs pairs (£,0),

£ = (V, A>1) holomorphic SU(2)-bundle on C
0 € HO(C,End(E) ® Q). ’

modulo complex gauge transformations.

Associate to (£, 6) the quadratic differential
q = tr(6?).

Expanding ¢ with respect to a basis {q1,...,¢35—3+n} of the 3¢ — 3 4+ n-dimensional
space of quadratic differentials,

39g—3+n

q = Z H,q,,
r=1

defines functions H,, r =1,...,39g —3+n on My (C) called Hitchin’s Hamiltonians.



(Pre-) Quantization of Hitchin’s integrable system
The main results of Beilinson-Drinfeld on the geometric Langlands correspondence
can roughly be reformulated in the language from integrable models:

e There exist differential operators D,., r = 1,...,3g9 — 3 +n which commute with
each other and have H,. as their leading symbol (classical limit).

e To each solution of the eigenvalue equations D, W = E,.W¥ there corresponds an
oper, a second order differential operator locally of the form €207 + t(y)
(= Baaxter equation), which behaves under change of coordinates on C' as

3
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e There exist natural operations $(y) (" Hecke functors”) on the spaces of solutions
to the eigenvalue equations which act as

(y) ¥ — b(y)¥, (€9, +t(y)v(y) =0.

"Hecke functors” ~ Q-operators. (cf. A. Gerasimov's talk and O. Foda, to appear).



Liouville theory |

Liouville theory is a CFT, central charge ¢ = 1+6Q%, Q := b-+b"1. It is characterized
by the correlation functions of n primary fields e2®®(#r.%r) denoted as

20n¢(zn,2n) ... p2a $(21,21)
(e eI >>cq'

C, is a family of Riemann surfaces parameterized by ¢ = (q1, ..., ¢39—3+n).
The dimension A, of the primary field e2ard(zr,Zr) js A = A, = a.(Q — ).

The correlation functions can be represented in a holomorphically factorized form

( e2ond(zn,2n) | p2o1d(z1,21) >>Cq — /d,u(a) \]—"g(a)\Q.

The conformal blocks

Fo(a) = < p2and(zn) | p201¢(21) >

a

are objects that are defined from the representation theory of the Virasoro algebra.



Liouville theory Il

Consider insertions of degenerate fields like

< O >a _ < e2ond(zn) || o2016(21) e—%¢(yl) .. e—%¢(y1) >

a

The conformal blocks satisfy the BPZ equations
BPZ
D, % (Ony) =0, Vk=1,...,1,

with differential operators D,'"* being for g = 0 given as
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Solutions to KZ equations from Liouville theory

Claim: (Stoyanovsky; Ribault, J.T.)

Ansatz G(u|z) := wd (D0, i) On(ylz) F(ylz) , yields a solution to the KZ-equations

9 ¢(z|z) = H,P(x|2).

(k + 2)8%

from any given solution F(y|z) to the BPZ-equations.

e O,(y|z) is defined as

n n—2
r _(t—
e Variables uq,..., i, related to y1,...,Yn_2,u via E n Br_ _ Hk—l Et yk))
— Ar r=1\ 7 &7

r=1

e Parameters are related via b* = —(k+2)7!, a, = a(j,) == b(j, +1) + b7 1.



Critical level limit

Consider G(u|z) := wd (D0 i) Onlylz) F(ylz), for k — —2 < b — oo. On the
one hand note that one may solve

0
0z,

(k+2)—G(z|z) = H.G(z|z).

in the form

G(z]z) ~ exp(—b"S(2))¥(ul2)(1+O0B77)),
provided that W(z|z) is a solution to the Gaudin eigenvalue equations H,.V = E,.W
with E,. given in terms of S(z) by E, = —3,,.5(z).

On the other hand: Modular duality of Liouville theory (invariance under b — b~ 1)
= limit b — oo is equivalent to classical limit:

Flylz) ~ exp(—=b*S(2)) 1:[ Ve(yr),  where (9, + t(y)vr(y) = 0.
k=1

Geometric Langlands correspondence




Quantization conditions from Yang’s potential
It is not easy to define quantization conditions for the Hitchin systems.

Proposal (Nekrasov—Shatashvili; cf. K.Kozlowski, J.T. for Toda—example):

For algebraically integrable systems it is natural to formulate the quantization
conditions in terms of Yang's potential W (a),

e Function Wy : B — C, B: Space of eigenvalue of the Hamiltonians,

e a = (ai,...,an), a "special’ system of coordinates on B.

Quantization conditions can then be formulated as

0
a—CLTWC(CL) = 27T’L"I7,7~, r = 1,...,N.

For SL(2,C)-Gaudin/Hitchin it is also natural to consider complex quantization
where

Re(a,) = mim,, a%Re()/\/c(a)) = Tin,, r=1,...,N.



Yang’s potential for Hitchin systems

Define H,.(a, z) as the accessory parameters which gives the oper P the monodromy
pp : ™ (C) — PSL(2,C) such that

2C08h% = tr(pp(vr)) ,

for curves v1,...,7v,_3 that constitute a cut system. We claim that the function
W(a, z) which does the job can be defined by the equations

H.(a,z) = aaZTW(a z),
with H, defined by the expansion ¢(y) = > _ ((y o) + o= ) for g = 0. The
integrability condition is
0 H. — 8
0z, (9,25

This follows from W(a, z): Semiclassical Liouville conformal block. Note

W(a,z) = We(a,z) = lim e2Zc(a; €, €2), e1=h.

eo—0



This is part of a larger picture [arXiv 1005.2846]

Hitchin system

(A)€2 l/ \‘ (B)Gl
Isomonodromic quantized Hitchin
deformations systems

(C)e, ™\ 7 (D),

Liouville theory
WZNW-model

where the arrows may be schematically characterized as follows:

(A) Hyperkahler rotation within the Hitchin moduli space Myz(C).
(B) Quantization [Beilinson-Drinfeld], [Nekrasov-Shatashvili]
(C) Quantization [arXiv 1005.2846]

(D) This arrow may be called quantum hyperkahler rotation.



