
Langlands duality

from

modular duality

Jörg Teschner

DESY Hamburg

– Typeset by FoilTEX –



Motivation

There is an interesting class of N = 2, SU(2) gauge theories GC associated to a

Riemann surface C (Gaiotto), in particular C 7→ Lagrangian of GC. The theories

GC generalize theories studied by Seiberg and Witten.

Low energy theory described in terms of prepotential FC(a), a = (a1, . . . , a3g−3+n),
which can be calculated from spectral curve of the SU(2)-Hitchin system associated

to C.

Gauge theory instanton calculus (Moore, Nekrasov, Shatashvili) defines a natural

deformation ZC(a; ε1, ε2) of FC(a),

FC(a) = lim
ε1,ε2→0

ε1ε2ZC(a; ε1, ε2) .

Amazing observation (Alday, Gaiotto, Tachikawa):

exp(ZC(a; ε1, ε2)) = Conformal blocks of Liouville theory.

What has Liouville theory to do with the Hitchin system?
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Simplest example of a Hitchin system: Gaudin model

Case C = P1 \ {z1, . . . , zn}. DOF: Jr ∈ sl(2)C, r = 1, . . . , n modulo SL(2,C).
Consider

θ(y) =
(

J0 J+

J− −J0

)
=

n∑
r=1

Jr

y − zr
,

In this case transfer matrix:

q = tr(θ2) =
n∑

r=1

(
δr

(y − zr)2
+

Hr

y − zr

)
, Hr =

∑

s 6=r

Ja
r Jb

s

zr − zs
ηab .

A Poisson bracket can be introduced as

{ J0
r , J±s } = ±δrsJ

±
s , { J+

r , J−s } = 2δrsJ
0
s .

The Hr commute w.r.t. the Poisson structure ⇒ Integrability.
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Quantum SL(2,C)-Gaudin model

Cconsider the tensor product of n principal series representations Pj of SL(2,C).
It corresponds to the tensor product of representations of the Lie algebra sl(2,C)
generated by differential operators J a

r acting on functions Ψ(x1, x̄1, . . . , xn, x̄n) as

J−r = ∂xr, J 0
r = xr∂xr − jr, J +

r = −x2
r∂xr + 2jrxr,

and complex conjugate operators J̄ a
r . Casimir parameterized via jr as jr(jr + 1). Let

Hr ≡
∑

s 6=r

Jrs

zr − zs
, H̄r ≡

∑

s 6=r

J̄rs

z̄r − z̄s
,

where the differential operator Jrs is defined as

Jrs := ηaa′J a
r J a′

s := J 0
r J 0

s +
1
2

(J +
r J−s + J−r J +

s

)
,

while J̄rs is the complex conjugate of Jrs. The Gaudin Hamiltonians are mutually

commuting,

[ Hr , Hs ] = 0 , [ Hr , H̄s ] = 0 , [ H̄r , H̄s ] = 0 .
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Separation of variables (SOV) for the Gaudin model I

Diagonalize J− by means of the Fourier transformation

Ψ̃(µ1, . . . , µn) =
1
πn

∫
d2x1 . . .

∫
d2xn

n∏
r=1

|µr|2jr+2eµrxr−µ̄rx̄rΨ(x1, . . . , xn) .

The generators Ja
r are mapped to the differential operators Da

r ,

D−r = µr, D0
r = µr∂µr, D+

r = µr∂
2
µr
− jr(jr + 1)

µr
,

Define variables to y1, . . . , yn−2, u related to the variables µ1, . . . , µn via

n∑

i=1

µi

t− zi
= u

∏n−2
j=1 (t− yj)∏n
i=1(t− zi)

.
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Separation of variables (SOV) for the Gaudin model II

It was shown by Sklyanin that the eigenvalue equations HrΨ = ErΨ are transformed

into Baxter equations

(∂2
yk

+ t(yk))χ(yk) = 0 , t(y) ≡ −
n∑

r=1

(
jr(jr + 1)
(yk − zr)2

− Er

yk − zr

)
.

The dependence with respect to the variables yk has completely separated.

Solutions to the Gaudin-eigenvalue equations HrΨ = ErΨ can therefore be constructed

in factorized form

Ψ =
n−2∏

k=1

χk(yk; q) .
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Generalization: Hitchin’s integrable system

Phase space: MH ' Moduli space of Higgs pairs (E , θ),

{ E = (V, A0,1) holomorphic SU(2)-bundle on C
θ ∈ H0(C, End(E)⊗ Ω1

C).

}
,

modulo complex gauge transformations.

Associate to (E , θ) the quadratic differential

q = tr(θ2) .

Expanding q with respect to a basis {q1, . . . , q3g−3+n} of the 3g − 3 + n-dimensional

space of quadratic differentials,

q =
3g−3+n∑

r=1

Hr qr ,

defines functions Hr, r = 1, . . . , 3g− 3 + n on MH(C) called Hitchin’s Hamiltonians.
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(Pre-) Quantization of Hitchin’s integrable system

The main results of Beilinson-Drinfeld on the geometric Langlands correspondence

can roughly be reformulated in the language from integrable models:

• There exist differential operators Dr, r = 1, . . . , 3g− 3 + n which commute with

each other and have Hr as their leading symbol (classical limit).

• To each solution of the eigenvalue equations DrΨ = ErΨ there corresponds an

oper, a second order differential operator locally of the form ε2∂2
y + t(y)

(⇒ Baxter equation), which behaves under change of coordinates on C as

t(y) 7→ (y′(w))2t(y(w))− 1
2
{y, w} , {y, w} ≡ y′′′

y′
− 3

2

(
y′′

y′

)2

.

• There exist natural operations H(y) (”Hecke functors”) on the spaces of solutions

to the eigenvalue equations which act as

H(y) : Ψ → ψ(y)Ψ , (ε2∂2
y + t(y))ψ(y) = 0 .

”Hecke functors” ' Q-operators. (cf. A. Gerasimov’s talk and O. Foda, to appear).
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Liouville theory I

Liouville theory is a CFT, central charge c = 1+6Q2, Q := b+b−1. It is characterized

by the correlation functions of n primary fields e2αrφ(zr,z̄r) denoted as

〈〈
e2αnφ(zn,z̄n) · · · e2α1φ(z1,z̄1)

〉〉
Cq

.

Cq is a family of Riemann surfaces parameterized by q = (q1, . . . , q3g−3+n).

The dimension ∆r of the primary field e2αrφ(zr,z̄r) is ∆r ≡ ∆αr := αr(Q− αr).

The correlation functions can be represented in a holomorphically factorized form

〈〈
e2αnφ(zn,z̄n) · · · e2α1φ(z1,z̄1)

〉〉
Cq

=
∫

dµ(a) |Fσ
q (a)|2 .

The conformal blocks

Fσ
q (a) ≡ 〈

e2αnφ(zn) · · · e2α1φ(z1)
〉

a

are objects that are defined from the representation theory of the Virasoro algebra.
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Liouville theory II

Consider insertions of degenerate fields like

〈 On,l

〉
a
≡ 〈

e2αnφ(zn) · · · e2α1φ(z1) e−
1
bφ(yl) · · · e−1

bφ(y1)
〉

a

The conformal blocks satisfy the BPZ equations

DBPZ
yk

· 〈 On,l

〉
= 0 , ∀ k = 1, . . . , l ,

with differential operators DBPZ
yk

being for g = 0 given as

DBPZ
yk

= b
2 ∂2

∂y2
k

+
n∑

r=1

(
∆r

(yk − zr)2
+

1

yk − zr

∂

∂zr

)
−

l∑

k′=1
k′6=k

(
3b−2 + 2

4(yk − yk′)2
− 1

yk − yk′

∂

∂yk′

)
.
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Solutions to KZ equations from Liouville theory

Claim: (Stoyanovsky; Ribault, J.T.)

Ansatz G̃(µ|z) := u δ
(∑n

i=1 µi

)
Θn(y|z)F(y|z) , yields a solution to the KZ-equations

(k + 2)
∂

∂zr
Φ(x|z) = Hr Φ(x|z) .

from any given solution F(y|z) to the BPZ-equations.

• Θn(y|z) is defined as

Θn(y|z) =
∏

r<s≤n

z
1

2b2
rs

∏

k<l≤n−2

y
1

2b2

kl

n∏
r=1

n−2∏

k=1

(zr − yk)
− 1

2b2 . (1)

• Variables µ1, . . . , µn related to y1, . . . , yn−2, u via
n∑

r=1

µr

t− zr
= u

∏n−2
k=1(t− yk)∏n
r=1(t− zr)

.

• Parameters are related via b2 = −(k + 2)−1, αr ≡ α(jr) := b(jr + 1) + b−1.
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Critical level limit

Consider G̃(µ|z) := u δ
(∑n

i=1 µi

)
Θn(y|z)F(y|z) , for k → −2 ⇔ b → ∞. On the

one hand note that one may solve

(k + 2)
∂

∂zr
G(x|z) = Hr G(x|z) .

in the form

G(x|z) ∼ exp(−b2S(z))Ψ(µ|z)(1 +O(b−2)) ,

provided that Ψ(x|z) is a solution to the Gaudin eigenvalue equations HrΨ = ErΨ
with Er given in terms of S(z) by Er = −∂zrS(z).

On the other hand: Modular duality of Liouville theory (invariance under b → b−1)

⇒ limit b →∞ is equivalent to classical limit:

F(y|z) ∼ exp(−b2S(z))
n−2∏

k=1

ψk(yk) , where (∂2
y + t(y)ψk(y) = 0.

Geometric Langlands correspondence
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Quantization conditions from Yang’s potential

It is not easy to define quantization conditions for the Hitchin systems.

Proposal (Nekrasov-Shatashvili; cf. K.Kozlowski, J.T. for Toda-example):

For algebraically integrable systems it is natural to formulate the quantization

conditions in terms of Yang’s potential WC(a),

• Function WC : B → C, B: Space of eigenvalue of the Hamiltonians,

• a = (a1, . . . , aN), a ”special” system of coordinates on B.

Quantization conditions can then be formulated as

∂

∂ar
WC(a) = 2πinr, r = 1, . . . , N .

For SL(2,C)-Gaudin/Hitchin it is also natural to consider complex quantization

where

Re(ar) = πimr,
∂

∂ar
Re(WC(a)) = πinr, r = 1, . . . , N .
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Yang’s potential for Hitchin systems

Define Hr(a, z) as the accessory parameters which gives the oper P the monodromy

ρP : π1(C) → PSL(2,C) such that

2 cosh
ar

2
:= tr(ρP (γr)) ,

for curves γ1, . . . , γn−3 that constitute a cut system. We claim that the function

W(a, z) which does the job can be defined by the equations

Hr(a, z) = − ∂

∂zr
W(a, z) ,

with Hr defined by the expansion q(y) =
∑n

r=1

(
δr

(y−zr)2
+ Hr

y−zr

)
for g = 0. The

integrability condition is
∂

∂zr
Hs =

∂

∂zs
Hr .

This follows from W(a, z): Semiclassical Liouville conformal block. Note

W(a, z) ≡ Wε1(a, z) = lim
ε2→0

ε2ZC(a; ε1, ε2) , ε1 ≡ ~ .
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This is part of a larger picture [arXiv 1005.2846]

Hitchin system

(A)ε2
↙ ↘ (B)ε1

Isomonodromic quantized Hitchin

deformations systems

(C)ε1
↘ ↙ (D)ε2

Liouville theory

WZNW-model

where the arrows may be schematically characterized as follows:

(A) Hyperkähler rotation within the Hitchin moduli space MH(C).

(B) Quantization [Beilinson-Drinfeld], [Nekrasov-Shatashvili]

(C) Quantization [arXiv 1005.2846]

(D) This arrow may be called quantum hyperkähler rotation.
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