Fluctuations of the current

In the Asymmetric

Simple Exclusion Process

Svylvain Prolhac
T.U. Munchen

June 23, 2010



I. The Asymmetric Simple
Exclusion Process

}. Bethe Ansatz for the

|
fluctuations of the current

III. Exact solution of Baxter's
equation

IV. Tree structures for the
cumulants of the current



Introduction

Equilibrium systems: microscopic description by the Boltzmann — Gibbs
measure.

1
Peq(C) = VA e~ EO)/KT

Systems far from equilibrium: no general theory for the probability to
observe the system in a given microstate, even in a stationary state where
P(C) does not depend on time.

Pstat(c) =7

The study of exactly solvable models helps to understand out of equilib-
rium phenomena.

— Asymmetric Simple Exclusion Process



The Asymmetric Simple Exclusion Process (ASEP)

L sites, n classical particles

Exclusion constraint: at
Most one particle per site

Q= (ﬁ) configurations

hopping rates 1 and gq

Variants: open model, several species of particles, ...

Out of equilibrium stochastic model: stationary currents breaking de-
tailed balance if ¢ #= 1.

Model for physical systems: cellular molecular motors, hopping conduc-
tivity, traffic flow, ...

Quantum integrable model: exact calculations possible.



Time evolution of the probability
Probability P(C) to observe the system in configuration C at time ¢t.

Time evolution of P;(C) given by the master equation

dP,(C)
o= [wecoPi(C) — wercPi(O)]
C'£C
Matrix form (M Markov matrix):
d| P,
B —mipy = Ry = MYy
dt
M has one eigenvalue equal to O. . : o . o
All the other eigenvalues have ; L=10
a strictly negative real part. ﬁ n=9
. | 1 q=0
M not symmetric (¢ # 1) g
= complex spectrum.




Total current

Let Y; be the total distance covered by all the particles (integrated cur-
rent) between time 0 and time ¢.

dP(C,Y -
KOT) = 5 Ry — 1)+ uf 0P Y +1) v e PCY)

C'#C
P (C,Y) coupled for different values of Y

Introduction of a parameter ~, fugacity associated to particle hopping:

0
e,y = Y YR Y)= ("),
Y=
= deformation of the master equation:
dFt(CafY) _ —
=y [evwéié,ﬂ(c’mwre TS F(C ) — wer o Fi(C, )

C'#C
Fi(C,~) decoupled for different values of ~.



Fluctuations of the current

Introduce the deformed Markov matrix M (v)

d| F})
dt
In the long time limit

=MWIF) = ) =M R
(YY) ~ BN
with E(~v) the eigenvalue of M(~) with largest real part.

E(~) is the generating function of the cumulants of the stationary current:

_ D o>, B3 3, P4 _a
E(my=Jyv+ v+ 50+ +

J = Jim & D = jim {Q=00)%)
t—00 oo
E3 = t||m <(Y;5_§SY;€>)3> E4 _ tllm <(Y%—<Y%>)4>—?<(Y%—<}/%>)2>2
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Calculation of E(v): Bethe Ansatz

The matrix M () is related through a similarity transformation to the (non
cy . . . . 1 1
hermitian) Hamiltonian of the XXZ spin chain (A =5 <\/§—|- W) > 1)

1

L
M(’y) ~Hyxy;=— Z (S(x)s(iv) + S(y)s(y) + AS(Z)SfL(—T—)l)

I\)

with *“twisted” boundary conditions:
<+>:(/i>‘LS<+> <>:(/ ) s g = g
L—|—1 o2 1 L+1 Dy L—I—l 51

M (~) is also related to the transfer matrix of the six vertex model with
nonzero external fields.

M (~) is thus diagonalizable using Bethe Ansatz



Bethe equations

Eigenvalues of M (~):

Bethe equations:
L= (—1)n~1 ﬁ L= (Lt g)e i 4 ge 2z,
1 -1+ qleVzj 4 qge=27zz;

Among all the solutions of the Bethe equations, we are interested in the
one corresponding to the largest eigenvalue of M (v) (stationary state).

Selection of the solution corresponding to the largest eigenvalue:

lim z;(v) =1
v—0

For this solution of the Bethe equations

I] =1 and 7IiT\OE(fy) =0



Totally asymmetric model (g = 0)

For the totally asymmetric model (TASEP, all the particles hop in the
same direction), the Bethe equations “decouple”:

(zi— €)'z " = (—1)" T ] (25— €M)
j=1

The second member of the equation does not depend on z: it depends
symmetrically on all the Zj.

Parametric expression for the generating function of the cumulants of
the current (Derrida & Lebowitz, PRL 80, 1998)

E — _n(L=n) >~ (kL) _BF_ E(y)—p(1—p)Ly _LiS/Q(C)
) L kgl <kn> wl—1 Vv p(1-p) V2orL3
_ 1 X (kL\B*k 3/2 Liz/o(C)
- 1 oad L ~
7 L kgl <I’m> k 7 vV 2mp(1—p)

L / \ 7

Finite size system L—oo,y~L32 2=p




Partially asymmetric model (0 <g< 1)

If ¢ %= 0, the Bethe equations do not decouple anymore

b=yt [ LA e s g s
’ =1 1-(1+4+qe 7z + qe_QVzZ-zj

Calculation of the cumulants of the current ?
— rewrite the Bethe equations as a functional equation (Baxter’s equa-
tion).

Change of variables in the Bethe equations

1 — .
71 _ qy;. = el (1 - y)PQqui) + ¢ (1 — qu) ' Q(yi/q) = O

where the polynomial ) defined by

zZ; =€

n

Q)= || (t—y;)

j=1

IS the polynomial whose zeros are the Yj-



Baxter's (scalar) T'QQ equation

Functional equation:

Baxter’'s

QT () = e (1 — )*Q(qt) + ¢"(1 — ) *Q(t/q) (scalar)
T'C) equation

Two unknown polynomials: ) of degree n and 1" of degree L

Equivalent to the Bethe equations: the Bethe roots are the zeros of

Q.

Choice of the eigenstate corresponding to the largest eigenvalue:

Q(t)=t"4+0O(y) = perturbative expansion in ~

Corresponding eigenvalue

B — (1) (Q (1) 1Q <1/q>>

QM) qQ(1/q)



First cumulants of the current

Mean value of the current:
n(L —n)
— 1

J=(1-gq)
Diffusion constant:

(L-1)D _ 3 2 (i) (ami) 1+ gl

(1-q)L (ﬁ)Q 1 — glil
Third cumulant of the current = non gaussianity:
((i = ;))[E; :ézé J%:Z (2 + i + 52) (04 (négl(nfg)
2 2 2 (F4i+77) = <né3)?>(n%j> : J_rj:\' : J_FZ:;'
N 2 s (@47 (73 (nLE—)ﬁgziﬁ (") 1 :z|';' L+ ;';‘"
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Quantum Wronskian
Higher cumulants of the current 7

Using Baxter’'s TQ equation, another functional equation can be written
(Pronko & Stroganov, J. Phys. A 32, 1999): the “Quantum Wronskian"

(1—¢"e M) - )t = Q)P(t/q) — ¢"e 11Q(t/q) P(t)

Two unknown polynomials: ) of degree n and P of degree L — n

Remark: P and T are also solution of Baxter’'s equation “beyond the
equator” (n — L —n)

PT(t) = ¢"(1 — )L P(qt) + (1 — gt) ' P(t/q)

The equation for P and @ still depends on two unknown polynomials. It
can be rewritten as an equation for only one unknown function.



Functions o« and

We define the two functions

a(t) = log (qngEZ@) and B(t) = log (PIEZBI)>

The key point will be that «a(t) has only negative powers in t while 3(t)
has only positive powers in t, which can be understood either:

e as a formal series in v: at each order in v, a(t) is a polynomial in 1/t
while G(t) is a polynomial in ¢

e for finite v > 0, as a Laurent series in t for t inside an annulus in the
complex plane

With this property, the functional equation for P and ) can be rewritten
so that it depends on P and @ only through the function a — (.

Then, the equation for a(t) — B8(t) can be solved, at least perturbatively
in ~.



Functions « and 3: perturbative expansion in ~

The polynomials Q and P corresponding to the largest eigenvalue are
characterized by

QM) =t"+ O (v) and P(t) =1+ 0(7)

Expansion near v =0

0 (Q(ﬂ) _ @1(®) o (Qz(t) B Ql(t)2> 24

tn tn tn 2t2n

2
0g(P(1)) = P1(t)7 + <P2<t> -l ) Pt

Implies that

Ot
a(t) = log <q g§t§Q)> has only strictly negative powers in t

P(t
B(t) = log ( }g({f;})> has only strictly positive powers in t




Functions a and G: Laurent expansion in t

y;: zeros of @ (Bethe roots)
y;. zeros of P (Bethe roots for the system with n < L —n and e7 < ge™7)

q"Q(t/q) E qyi Yi wors of 1/t i
— | — | 1 ——] —1 1—=— Fi '
o= roa (VGUP) = S foa (1) oo (1 %)] pRTEL T

L—n expansion in
B(t) = log <P(t/Q)> = Z [Iog <1 — L~> — log (1 — ;)] powers of ¢ if
P(t) =1 qY; Ui ] < mini {17, qlF;]}

Both expansions converge in the annulus
m?X{|yi|>Q|yi|} < |t] < mji”{|§j|,Q|?7j|}

it max;{|y:|, qlyi|} < min;{|7;|,q|y;}, which seems to be true if v > 0 (from
a numerical solution of Baxter's equation).

Then «(t) — B(t) has a Laurent expansion with an infinity of negative
and positive powers in t for t in the annulus.



Zeros of P and Q (n =10, L = 20)

L=20 L=20
n=10 L, n=10 Lof
q=0.686 2 q=0.686 r
y=0052 | y=0.214 i
1 051
=il :,-': 3 4 1.0 05 03 1.0 15 2.0 25
-lr —osf
ok L
i -10f
L=20 - L=20 Lok
n=10 Lor “316%6 Zeros Z€eros
q=0.
g - Q(t/q) (t/q)
y=0.556 7 y=1.146 of t/q) of P(t/q
05
0.5 / /
| Lo e % R S SR SR B! f.'\ . :’..\..‘.-‘ L ‘.-\
10 -05 0§ L 10 * 15 . -1.0 -05 05 %, %10 0 15 0
-0 —os; \
i Zeros
- l of P(t)
: 10}




Rewriting of the quantum Wronskian

_ "Q(t/q) Q) — It
a(t) = log (q (t)Q) Eo[a]jtﬂ & log (YM) = Eo[alglq o
_ (t/q) _ ¢t
B(t) = Iog( ()) j>o[5]jt9 & log(P(b)) = = 2 Blin=g
(1— e it =0- = 9O o~in QWD) iy
¢n (t/q)"

14l
_. (j;o[ al;t! |J|> (Z 18147 1- qu|> (e_w B e_L7+a(t>56(t))

Depends on «(t) and B(t) only through

Oé(t) Ly B@#) _ q"Q(t/q)P(1)
w(t) = 5 T 5 = log (J eL'VQ(t)P(t/Q)>




Functional equation for w

We define the linear operator X:

uw(t) = ) [u]jtj —  X[u@®]= > [u]jtjl + gV (1 +q°! = 1)

i€l i€l 1 — q|]| 1 — q|0|

The functional equation for P and @) implies

Ry
w(t) = arcsinh <C (1 tnt) eX[’LU(t)]>

where C = —(el7 — ¢™) Q(0) /2 = O (v).
= solution order by order in C

The generating function of the cumulants of the current E(v) is obtained
by the elimination of C' between

(1) a(t): negative
— powers in t
n of w(t)

E(y) = —(1 - ¢)a/(1) and Y=



IV. Tree structures for the
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Tree and forest structures

Equation for w(t)

tn

_ L
w(t) = arcsinh <C (1-1) eX[w(t)]>

Perturbative solution near C = 0

w(t) =Y wi(t)C"

k=1

Expansion of eXw(®l in the equation for w(t) = tree structures

Elimination of the parameter C between

a(1) a(t): negative
E(y) = —(1—-q)d/(1) and =38 Sowers in 1
" of w(t)

using the Lagrange inversion formula = forest structures



Parametric expression for E(~)

_2(1-¢q) & O\ — Wal(g)
Bl =Jy= L(L—1) ,;::2 (5) gg;;k S(q)

_ 2.8 (O W1<g)
Ly Z <2> e S(g)

Trees with “composite nodes’ :
G1 = {@} Gor = {@®@}

3 = {®-©-@®, (69)} Ga = { , }
gs={, , ® g ® 690, ©9-® }
®



Exact formula for all the cumulants of the current

Hi = A{[@©]}

E, = = 03
L—l( 2) h% S(h) H2={[@—@—@]’[@]’[%”

o= flo-orora. forer?] fegel. [ %220 ). [ &)

H4={[] ooo ] [} ©-6-e|,

OROR0

(e ] (2] (2]
PERECE AR %H%%i}



Example: first cumulants of the current

Diffusion constant: ;
[(@—@)]
(L—l)D — Z Q(n—H)(n z) 1—|—q| i
(1—q)L ic7 (L) 1— q||

Third cumulant of the current:

(2

L L L /
(L-1)Bs _ 1 20 oy G G Gl j)
-2 = 6 %:Z 'gz (24 +7°) (i’j)3 ]

3 o o2\ G GE) Ging) 14glil 144l
2 EZ gz (’L T i+ ) (5 1—gll 1—glil

3 2\ Gi) Goe ) G 3) (o) 144l 144l
2 z%:ZJ%:Z( i > ) (ﬁ)jj ] 1—3”‘ 1—3”'




Calculation of W(h)

S _
ooo =
. (@ i

>
|

a
b Yexd

W(h): Z Q(a7b7"'7j)B(a/7b7'"7j)X(a7b7"'7j)
a,b,....]EL

Qla,b,....7)=(=a)°+(a—b—c—d)°+b>+c*+ d°
t(e—f-9?+e+ 2+ (g—h—D)?+h*+ (i~ +5°
B(a,b,...,5) = n(—a)n(a —b—c—d)n(b)n(c)n(d)
x n(—e— f—g)n(e)n(fI)n(g —h —i)n(h)n( — 35)nj)
X(a,b,...,7) = &(a)§(b)¢(c)é(d) x £(f)EQ)

( L ) 1 if z=20
(ﬁ) and £E(z) = i_l_qq“j if 220

with n(z) =




Calculation of the symmetry factors

nb permutations
b trees in h (Ieavci);:ghhe i%r\/eaersiant> S(g9)
h forest: S(h) = (—1)"P trees iy : 11 .
((nb e in h) —1)! g Ecr%e (nb e in g)
(@)

O,
e v dromg il g
. (@ _

c|-1

nb permutations of (=1) 2 |c|3]¢!
tree: S — | the composite nodes | X .
g tree (9) < leaving g invariant ) ) corgosite (|c[11)2|e|nb neighbours of c
node of g
5-1
S I =41 x1° S Sl D ZSS
O



Two interesting scalings for the asymmetry

| | | |
1

Kardar
Edwards . .
o Intermediate Parisi
Wilkinson .
: Regime Zhang
Regime )
Regime
Symmetric Weakly Strongly Totally .
. . . Asymmetric
Exclusion Asymmetric Asymmetric .
. . Exclusion
Process Scaling Scaling
Process

In both weakly asymmetric and strongly asymmetric scalings, ¢ — 1 and
A — 1 when L — o©



Weakly asymmetric scaling 1 —q~ 1/L

Scaling
l—qn~ Y and ~ H

L\/p(l—p) k \/p(l—p)L

Generating function of the cumulants of the current

2 2 3
prrpy 10 ptv 2 1
By~ +L2< S e +/W)>+O<L)

with ¢[z] = % k,l?ik 12),zk
o Bj: Bernoulll numbers.
e Leading term (of order 1/L) quadratic = gaussian fluctuations.
e Sub-leading term (of order 1/L2): non-gaussian correction.

e ©[z] has a non analyticity in z = —=2.

But non-perturbative effects in v in E(v). For |v| > ve. = 27, E(y) becomes
non-gaussian at the leading order in L: phase transition visible on the sub-
leading term of E(~).



Strongly asymmetric scaling 1 —q ~ 1/v/L

Scaling
1 2® and °
—qr Y

VPl —p)L Vp(1 — p)L3/2

Diffusion constant
2 _u?
o0 u<e
D~ 4dp(1 — L/ d
P =p)L | du o ()

Third cumulant of the current

T 00 00 (u2 + UQ)G—UQ—’UQ _ (u2 + uv + U2)€—u2—uv—v2
<_3\f3+3/0 du/o dv tanh(®wu) tanh(dw)

Generating function E(v)

1 X ok oo
B ~ 5 Y 50 [ an(®, @ dus .. duy
L2~ k! J-o

g (P, @): sum over forest structures



Conclusion

e EXxact solution of Baxter’'s equation as a perturbative expansion in the
twist parameter (eigenstate corresponding to the largest eigenvalue).

e Exact combinatorial expression for all the cumulants of the current in
the asymmetric exclusion process (finite size system).

e Phase transition in the weakly asymmetric scaling: what does it mean
for the six vertex model 7

e EXxact solution of Baxter’s equation for finite v 7 For other eigenstates
le

e Direct combinatorial calculation of the cumulants of the current (with-
out Bethe Ansatz) 7

e Calculation of the current fluctuations for other models (open system,
several species of particles) ?



