Topological defects in Liouville CFT

V.B. Petkova

(overview of old work with J.-B. Zuber

and arXiv:0912:5535)

Saclay, Rencontres Itzykson 2010

Topological defects

("seams" along non contractable cycles) algebraically defined: [VP-Zuber]

operators X in $\mathcal{H}_{\mathbf{phys}} = \oplus_{l,\overline{l}\in\mathcal{I}} \ Z_{l\overline{l}} \ \mathcal{V}_{l}\otimes \overline{\mathcal{V}}_{\overline{l}}$ commuting with the left and right chiral algebras of the CFT

$$[L_n, X] = [\overline{L}_n, X] = 0$$

the condition ensures that the operator X is invariant under a distorsion of the line to which it is attached.

• Classification - from the study of twisted partition functions, modified by the insertion of such operators. In the $\hat{sl}(2)$ - related rational CFT - the integrable WZW model, or the minimal Virasoro - encoded in generalised "ADE" (Ocneanu) graphs.

- Extensions to the non-rational conformal theories like the Liouville CFT
- \mathcal{H}_{phys} integral over continuous reps.

Problem:

• how the insertion of defects modifies the OPE of local fields

 $\Phi_{(\alpha_1,\bar{\alpha}_1)}(x_1)X\Phi_{(\alpha_2,\bar{\alpha}_2)}(x_2)_{|_{x_{12}\to 0}}\sim?$ spectrum, OPE coeffs

 \rightarrow study crossing (duality) relations for 4-point functions on the sphere with inserted defects

• in Liouville CFT the problem appears to be related - in the context of the AGT correspondence - to the search for Liouville counterparts of expectation values of generalised Wilson and 't Hooft loop operators in $\mathcal{N} = 2$ supersymmetric 4d gauge theories - [AGGTV] (Alday, Gaiotto, Gukov, Tachikawa, H. Verlinde), [DGOT] (Drukker, Gomis, Okuda, Teschner) - by different approach.

Plan:

- brief review of the topological defects in the rational CFT (work with J.-B. Zuber);
- the Liouville case;
- the crossing relation for the 4-point functions modified by defects and the

Wilson-'t Hooft loop operator duality

Solutions of the commutation relations in RCFT:

linear combinations

$$X_x = \sum_{J=(j,\overline{j};\alpha,\alpha')} \frac{\Psi_x^{(j,\overline{j};\alpha,\alpha')}}{\sqrt{S_{1j}S_{1\overline{j}}}} P^{(j,\overline{j};\alpha,\alpha')}$$

of projectors, intertwiners of pairs of subspaces of \mathcal{H}_{phys}

$$(\mathcal{V}_{j} \otimes \overline{\mathcal{V}_{j}})^{(\alpha')} \to (\mathcal{V}_{j} \otimes \overline{\mathcal{V}_{j}})^{(\alpha)}, \qquad j, \overline{j} \in \mathcal{I}, \ \alpha, \alpha' = 1, 2, \dots, Z_{j\overline{j}}$$
$$P^{(j,\overline{j};\alpha,\alpha')}P^{(k,\overline{k};\beta,\beta')} = \delta_{jk}\delta_{\overline{j}\overline{k}}\delta_{\alpha'\beta} P^{(j,\overline{j};\alpha,\beta')}$$

 Ψ_x^J - unitary matrix (complete set of defects), S_{ij} - modular matrix $\tau \to -1/\tau$, $J = (j, \overline{j}, \alpha, \alpha') \in \tilde{\mathcal{E}}$ (play the role of "exponents") \leftrightarrow set of defects $\tilde{\mathcal{V}} \ni x$ same cardinality $|\tilde{\mathcal{E}}| = \sum_{l, \overline{l}} Z_{l\overline{l}}^2 = |\tilde{\mathcal{V}}|$,

Partition function on a torus in the presence of topological defects

• the multiplicity of local fields $Z_{l\bar{l}} \rightarrow \widetilde{V}_{lk; x_1, x_2, \dots, x_{n-1}} x_n$ - all required to be non-negative integers (multiplicities of "defect fields"), depending on all the inserted defects,

e.g. two defects - part. function computed in two ways, analogous to the derivation of cylinder partition functions

$$Z_{y|x} = \operatorname{tr}_{\mathcal{H}_{P}}(X_{y}^{+}X_{x} \ \tilde{q}^{L_{0}-c/24} \ \tilde{q}^{\bar{L}_{0}-c/24})$$
$$= \sum_{i,k\in\mathcal{I}} \widetilde{V}_{ik^{*};x}^{y} \ \chi_{i}(q) \ \chi_{k}^{*}(q) \ .$$

The two expressions - related by modular transformation S

$$\Rightarrow \widetilde{V}_{ik;x}{}^{y} = \sum_{j,\overline{j},\alpha,\alpha'} \frac{S_{ij}}{S_{1j}} \frac{S_{k\overline{j}}}{S_{1\overline{j}}} \Psi_{x}^{(j,\overline{j};\alpha,\alpha')} \Psi_{y}^{(j,\overline{j};\alpha,\alpha')*}, \qquad \widetilde{V}_{ik^{*};1}{}^{1} = Z_{ik}$$

$$\Rightarrow \widetilde{V}_{ii'}\widetilde{V}_{jj'} = \sum_{k,k'} \mathcal{N}_{ij}{}^k \mathcal{N}_{i'j'}{}^{k'} \widetilde{V}_{kk'}$$

 \Rightarrow classification of defects in RCFT - reduces to the classification of the non-negative integer valued matrix reps (nimreps) of the product of Verlinde algebras

$$\mathcal{N}_{ij}{}^{k} = \sum_{\ell \in \mathcal{I}} \frac{S_{il}}{S_{1l}} S_{jl} S_{kl}^{*}$$

problem - analogous to the classification of conf. boundary conditions - **nimreps** $(n_j)_a^b$

To consider many defects - exploit

Fusion algebra of defects

$$X_x \ X_y = \sum_z \ \widetilde{N}_{xy}^z \ X_z$$

multiplicities $\widetilde{N}_{xy}{}^z = \widetilde{V}_{11;xy}{}^z$ - the identity character contribution to the partition function with 3 defects; $\widetilde{N}_{xy}{}^z$ - strc consts of associative (but non-commutative algebra if some $Z_{j\bar{j}} > 1$) (Ocneanu graph algebra) ; given \widetilde{N} , sufficient $\widetilde{V}_{ij;1}{}^y$

$$\widetilde{V}_{ij;x}{}^{z} = \sum_{y} \widetilde{N}_{xy}{}^{z} \widetilde{V}_{ij;1}{}^{y}$$

On a cylinder - both defects and boundaries

$$X_x|a> = \sum_c \tilde{n}_{ax}{}^c|c>$$

i.e., the defects map conformal boundary conditions to conformal boundary conditions,

$$\tilde{n}_{ax}{}^{c} = \sum_{l,\alpha,\beta} \psi_{a}^{(l,\alpha)} \frac{\Psi_{x}^{(l,l;\alpha,\beta)}}{\sqrt{S_{1l}S_{1\bar{l}}}} \psi_{c}^{(l,\beta)*}, \ \tilde{n}_{x}\tilde{n}_{y} = \sum \tilde{N}_{xy}{}^{z}\tilde{n}_{z}$$

 ψ - unitary matrix diagonalising Cardy multiplicity $n_{ja}{}^{b} = \sum_{l,\alpha} \psi_{a}^{(l,\alpha)} \frac{S_{jl}}{S_{1l}} \psi_{b}^{(l,\alpha)*}$.

• the set of multiplicities $\{N_j, n_j, \tilde{N}_x, \tilde{n}_x\}$ - determines the combinatorial data of (Ocneanu) quantum symmetry of the RCFT.

(see [Fuchs, Fröhlich, Schweigert, Runkel] for exhaustive study of topological defects)

• simplest example - a theory described by a diagonal mod invariant, i.e., with scalars only, in which all these constants coincide.

Diagonal case: $Z_{j\overline{j}} = \delta_{j\overline{j}}$

the set of defects $\tilde{\mathcal{V}}$ (and the set of boundaries) identical to the set of reps \mathcal{I} of the chiral algebra, all multiplicities coincide with Verlinde fusion multiplicity \mathcal{N} , $\Psi = S = \psi$,

$$X_x = \sum_j \frac{S_{xj}}{S_{1j}} P^{(j,j)}$$

$$\widetilde{V}_{ij} = \mathcal{N}_i \mathcal{N}_j, \quad \widetilde{V}_{ij;1}{}^y = \mathcal{N}_{ij}{}^y$$

Comment:

The effect of inserting a diagonal defect operator - equivalently described by a chiral operator X_x^I ($P^{(j,j)} \rightarrow P^{(j)}$ - the operator $\sum_k |j,k\rangle < j,k|$ corresponding to the Ishibashi state)

• the twisted partition function with a defect can be interpreted alternatively in terms of chiral operators, associated with the two cycles of the torus

$$\begin{aligned} \widehat{X}_x(a)\chi_j(-1/\tau) &= \mathsf{Tr}_j X_x^I \widetilde{q}^{L_0-c/24} = \frac{S_{xj}}{S_{1j}} \,\chi_j(-1/\tau) \\ \\ \widehat{X}_x(b)\chi_k(\tau) &= \sum_p \mathcal{N}_{kx}{}^p \chi_p(\tau) \end{aligned}$$

i.e., these chiral operators act as the Verlinde operators associated with the two cycles

• In WZW theories (integrable reps of KM algebra \hat{g}) - the chiral topological defects X_x

- provide the quantisation of the classical Wilson loops operator [Gaberdiel-Bachas]

$$W_x =: \operatorname{Tr}_x e^{-\frac{i}{k} \oint_C J(z) dz}:$$

 $J(z) = J^a(z)t^a$ - holomorphic current generating the affine algebra \hat{g} ;

identified [Alekseev, Monnier] with "generalised Casimir operators", central elements in completion of the universal enveloping algebra of the affine KM algebra \hat{q} - constructed by [Kac];

eigenvalues $W_x|j\rangle = \frac{S_{xj}}{S_{1j}}|j\rangle$, $|j\rangle \in \mathcal{V}_j$ coincide with characters of finite dim irrep x of G

• This comment - to make contact with the chiral interpretation of other work - defects (even diagonal) - will be treated here as 2d operators.

Liouville CFT - (non-rational) Virasoro theory with central charge c > 25

$$c = 1 + 6Q^2$$
, $Q = \frac{1}{b} + b$, $b - real$

$$S = \frac{1}{4\pi} \int d^2x \sqrt{\hat{g}} (\hat{g}^{ab} \partial_a \phi \partial_b \phi + Q \phi \hat{R} + 4\pi \mu e^{2b\phi})$$

 $V_{\alpha}(x) = e^{2\alpha\phi(x)}, \ \triangle(\alpha) = a(Q - \alpha), \text{ continuous spectrum } \alpha \in \frac{Q}{2} + i\mathbb{R}^+$

basic strc consts known:

3-point bulk [DO, ZZ, T], quantum -6j -symbols (fusing matrix) [PT],
2-point, 3-point boundary, bulk-boundary [FZZ,ZZ, PT, H]

[actually - analogously to the diagonal rational CFT - all consts in the boundary theory are related to the basic consts of the chiral Liouville theory - add the modular matrix $S_{\alpha\beta}(p)$ of 1-point chiral correlators on the torus.] Two types of defects [Sarkissian]

$$X_x = \int d\alpha \frac{S_{x\alpha}}{S_{0\alpha}} P^{(\alpha,\alpha)}, \qquad \alpha \in \frac{Q}{2} + i\mathcal{R}^+$$

"FZZ or ZZ type" modular matrices (two types of boundaries)

(up to overall coeff, not changing the eigenvalue ratios)

• continuous rep $x \in \frac{Q}{2} + i\mathcal{R}^+$,

$$\widehat{S}_{x\alpha} = 2\cos\pi(2x-Q)(2\alpha-Q)$$

• degenerate Vir rep $x = x_{j,j'} = -jb - j'/b$, $2j, 2j' \in \mathbb{Z}_{\geq 0}$ $S_{x_{j,j'\alpha}} = -4\sin\pi(2j+1)b(2\alpha-Q)\sin\frac{\pi(2j'+1)}{b}(2\alpha-Q)$ $= \hat{S}_{j,j'\alpha} - \hat{S}_{-1-j,j'\alpha}$

denominator $S_{0\alpha} = S_{x_{0,0}\alpha}$

• physical correlators - different representations in different regions of the complex coordinates - correspond to different sewings of the Riemann surface by pairs of pants.

For the 4-point function - sphere with 4 punctures; s - and t- channel, valid for small moduli z (the anharmonic ratio)

$$G_4 = \int d\alpha \, CC |\mathcal{G}_{\alpha}(\tilde{z})|^2 = \int d\gamma \, C'C' |\mathcal{G}_{\gamma}(z)|^2$$

• blocks $\mathcal{G}_{\alpha}(\tilde{z}), \mathcal{G}_{\gamma}(z)$ - basis for the given pants decomposition; multivalued, under analytic continuation - transform by braiding B/ fusing F matrices.

• The full 2d correlators satisfy the crossing symmetry (locality)

r

$$\int CC F F^* = C'C'$$

• Correlators in the presence of defects

$$G_4 = \langle 0 | \Phi_{a_4}(x_4) \Phi_{a_3}(x_3) X_x \Phi_{a_2}(x_2) \Phi_{a_1}(x_1) X_x^+ | 0$$

$$=\int d\mu(eta) rac{S_{xeta}}{S_{0eta}} rac{S_{x0}}{S_{00}} |\mathcal{G}_{eta}(a_4,a_3,a_2,a_1;\widetilde{z})|^2$$

measure - accounts for a proper gauge choice

• for $\tilde{z} = \frac{z_{12}z_{34}}{z_{23}z_{14}} \rightarrow 0$ the defect diagonalizes and contributes by its eigenvalue $\langle \beta | X_x | \beta' \rangle = \frac{S_{x\beta}}{S_{0\beta}} \langle \beta | \beta' \rangle$

while in the t -channel $z = \frac{1}{\tilde{z}} \to 0$ the defect acts nontrivially in the OPE $G_4 = \langle 0 | \Phi_{a_3}(x_3) X_x \Phi_{a_2}(x_2) \Phi_{a_1}(x_1) X_x^+ \Phi_{a_4}(x_4) | 0 \rangle$

$$= d_x \int d\mu(\gamma) d\mu(\delta) A_{\gamma,\delta}^{(x)} \mathcal{G}_{\gamma}(a_3, a_2, a_1, a_4; z) \mathcal{G}_{\delta}^*(a_3, a_2, a_1, a_4; z)$$

one has to compute the composition of the left and right braiding (fusing) transformations, modified by the defect eigenvalue

$$A_{\gamma,\delta}^{(x)} = \int d\mu(\beta) \frac{S_{x\beta}}{S_{0\beta}} F_{\beta\gamma} \begin{bmatrix} a_4 a_1 \\ a_3^* a_2 \end{bmatrix} F_{\beta\delta}^* \begin{bmatrix} a_4 a_1 \\ a_3^* a_2 \end{bmatrix}, \qquad A_{\gamma,\delta}^{(0)} = d_\gamma \,\delta(\gamma - \delta)$$

• Computed combining two basic identities in CFT:

• pentagon identity for the fusing matrix $\int FFF = FF$

• Moore-Seiberg torus identity - a relation (from the modular group of 2-point chiral correlators on the torus) involving the mod. matrix $S_{ij}(p)$ of 1-point chiral correlators \Rightarrow two equations

- explicit expression for $S_{\alpha\beta}(p)$ in terms of braiding/ fusing matrix elements F

- a "Verlinde like" formula

$$\int d\beta \, \mathcal{F}_{\alpha_1 \alpha_2}{}^\beta(p) \, \frac{S_{\beta x}}{S_{0x}} = \frac{S_{\alpha_1 x}(p)}{S_{0x}} \frac{S_{\alpha_2 x}(p^*)}{S_{0x}}$$

 $\mathcal{F}_{\alpha_1\alpha_2}{}^{\beta}(p)$ - expressed in terms of $F \Rightarrow$ reproduces Verlinde fusion multiplicity for the identity operator p = 0

$$A_{\gamma,\delta}^{(x)} = \int d\mu(y) B_{\gamma,\delta}^{(x)}(y)$$

explicitly

$$B_{\gamma,\delta}^{(x)}(y) \sim F_{\alpha_3^* y^*} \begin{bmatrix} \gamma^* \ \delta \\ \alpha_2 \alpha_2 \end{bmatrix} \frac{S_{\alpha_2 x}(y^*)}{S_{0x}} \frac{e^{i\pi \triangle(y)}}{d_y} \frac{S_{\alpha_1 x}(y)}{S_{0x}} F_{\alpha_4^* y} \begin{bmatrix} \gamma \ \delta^* \\ \alpha_1 \alpha_1 \end{bmatrix}$$

• the range of y can be read from the various multiplicities involved in F and S and is dictated by the general relation

$$\widetilde{V}_{\gamma\delta^*;x}{}^x = \sum_y \mathcal{N}_{xy}{}^x \, \widetilde{V}_{\gamma\delta^*;1}{}^y = \sum_y \mathcal{N}_{xx^*}{}^y \, \mathcal{N}_{\gamma y}{}^\delta$$

for a degenerate defect x - the rep y is degenerate, determined by the $sl(2) \times sl(2)$ fusion rules $\mathcal{N}_{xx^*}^y$,

e.g., for x = -jb the defect y takes the (integer spin) values y = -kb, k = 0, 1, ..., 2j.

Then $\mathcal{N}_{\gamma y}{}^{\delta}$ describes the fusion of a denerate with a generic representation i.e., the possible combinations (γ, δ) with $\delta = \gamma + \Gamma_y$ -shifted by the weights of the (finite) weight diagram of y.

• It follows that the spectrum of the OPE of two scalar fileds with the inserted defect X_x is described by the defect ("disorder") fields ${}^{(y)}\Phi_{(\gamma,\delta)}$; Ex.: for x = -b/2 there appear 4 such fields

$$^{0)}\Phi_{(\gamma,\gamma)}, \ ^{(-b)}\Phi_{(\gamma,\gamma)}, \ ^{(-b)}\Phi_{(\gamma,\gamma-b)}, \ ^{(-b)}\Phi_{(\gamma,\gamma+b)}$$

• For a FZZ type defect the fusion multiplicities are given by integrals of densities and the spectrum of the resulting defect fields is continuous.

This explicit duality relation (and a similar computation for the 1-point scalar correlator on the torus - extending the twisted partition function) \Rightarrow directly related to the problem in [AGGTV], [DGOT] - on the Liouville realisation of the expectation values of the Wilson - 't Hooft loop operators in $\mathcal{N} = 2$ supersymmetric 4d theory.

• It concerns the particular degenerate defects x = -jb or x = -j'/b, for which the defect eigenvalue takes the form of a character of finite dim irrep

$$\frac{S_{x\alpha}}{S_{0\alpha}} = \frac{\sin(2j+1)\phi}{\sin\phi}, \ \phi = \pi b(2\beta - Q)$$

According to the AGT correspondence this allows to identify the s - channel of the correlator - in which the defect diagonalises - with the expectation value of 4d generalised

supersymmetric Wilson loop operator, computed on S^4 (for b = 1) by [Pestun] - in which the same classical character appears under the integral, times $|Z_{\text{Nekrasov}}|^2$.

Then the explicitly computed dual, t- channel of the defect correlator gives automatically the expectation value of the dual loop operator - to be identified with the expectation value of the 4d 't Hooft loop.

• thus the contribution of defect (disorder) fields ${}^{y}\Phi_{(\gamma,\delta)}$ describes the the expectation value of the generalised 't Hooft loop operator in the Liouville setting.

This reproduces the results of [AGGTV, DGOT] in which both loop operators were identified with chiral Verlinde operators - inserting the identity contribution of a pair of degenerate fields, then moving one of them along the curve, etc. The example of the simplest degenerate case x = -b/2 is worked out; [AGGTV] gives also a kind of a sketch of the duality of the two proposed Liouville correlators.

• Here - general explicit formula in terms of F and S(y).

• The idea of 2d defect interpretation has been also independently proposed in the recent work [Drukker-Gaiotto-Gomis] - gives further generalisations to Toda theories. .

Main conclusion:

The notion of topological defects appears relevant also in the study of the dualities matching the 4d loop operators

The same computation - in the rational non-diagonal ADE cases:

• take the identity contribution $\gamma = \delta \rightarrow y = 0$ in the r.h.s. of the duality relation,

⇒ formula for the relative (to the diagonal A_{h-1} of the same Coxeter number) OPE coeffs d_{IJ}^{K} of local spin operators $\Phi_{(J;\alpha)}, J = (j, \overline{j}), \alpha = 1, ..., Z_{j\overline{j}}$ [V.P.-Zuber]

$$\sum_{k,\bar{k},\gamma,\gamma'} d_{(I^*;\alpha)(J^*;\beta)} {}^{(K^*;\gamma)} d_{(I;\alpha')(J;\beta')} {}^{(K;\gamma')} \frac{\Psi_x^{(K;\gamma,\gamma')}}{\Psi_x^{(1)}} = \frac{\Psi_x^{(I;\alpha,\alpha')}}{\Psi_x^{(1)}} \frac{\Psi_x^{(J;\beta,\beta')}}{\Psi_x^{(1)}} \qquad (*)$$

inverting by $\Psi \rightarrow$ sum over the set $\mathcal{V} \ni x$ of defects - universal formula for the product of OPE coeffs; generalises to any RCFT. Interpretation - strc constants of generalised Pasquier algebra

(*) generalises the (linear) formula for the scalar OPE coeffs in terms of the eigenvectors ψ_a^j of the ADE Cartan matrices - coincides with the structure constants of Pasquier algebra - introduced in the context of lattice ADE models with similar interpretation (and later rederived in the boundary CFT)

.... discussed with Claude Itzykson in my first visit to Saclay 1994