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and MACDONALD BASES
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How to compute with functions of several variables?
Computers usually treat functions of xi, x2, X3, ... as functions of x; with
coefficients in xo, X3, . . ., and this not very illuminating to use only functions of
1 variable recursively. Fortunately, the classical groups, specially the
symmetric group come to the rescousse*.
For example Alfred Young generalized the decomposition of a function of two
variables into its symmetric part and antisymmetric part to any number of
variables.
Essentially, his theory uses no more than the relations

~1+s 1-s

(1+S)(173):0 & 1 T+T

where sy is the simple transposition exchanging x1, X2,

+ the Yang-Baxter relations
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Take the group algebra of &3, and a spectral vector [0, «, « + 5] = [a, b, c];
write the permutohedron, labelling the vertices with the permutations of the
spectral vector, and the edges with simple transpositions + shifts

S1 +(ly
Ve
[bac]

_1
a+3

[bca]
Si + 13 AN

So +

[abc]

[cbha]

1
S2+ 5 [abcad]
1 1
[acb] S1+Q// Sz + 7
S +”lﬂ [pacd] [abdc]
[cab] 33+-1,\ S+t
st [padc]

The differences of exchanged spectral values give the parameter to add to
simple transpositions.
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These Yang-Baxter graphs can be interpreted as describing matrices of
representations satisfying

My (c)Ma(a + B)M (5) = Ma(D)My ((or + ) Ma()

or idempotents, or bases of representations of the symmetric group, or ...

But one can have much more by replacing simple transpositions by other
operators.
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Isaac Newton (1643-1727)

For every pair x;, x;. 1, Newton defines an operator on polynomials (a divided
difference) :

fo fo = f(...,X/,X/+1,...)—f(...,X,‘+1,X,‘,...)
: Xi — Xi+1

These operators satisfy the braid relations, together with 92 = 0.



46 Approaches to finite differences [, 1,§3]

vel semper decrescant: Hoc modo per bisectionem procedi potest usg dum®
differenti@ quartz minores sint quam 32.61

Possent aliz hujusmodi regule tradi sed mallem rem omnem una regula
gencrali complecti et ostendere quomodo series quavis in loco imperato inter-
calari®? possit. Exponatur series per lineas Ap, By, Cr, Ds, Et, Fv, Gw &c ad
lineam AG - perpendiculariter
erectas & intervalla terminorum v w

¥
per partes linez illiusAAB, BC, .o
— |
CD, DE &c% Fac ABB: . , |
—D_ g » { |
Tbvfb &e. Ttem  § l | H | -
4B 4 D * 7
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¢ & & 4 &
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¢ & &
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IBF ?;1;, =1 [&c] et sic in sequentibus usq; ad ad finem operis,
dividendo semper differentias primas per intervalla terminorum quorum sunt
differentiz, secundas per dimidium duorum intervallorum quibus respondent,
tertias per tertiam partem trium & sic porrd pergendo usq dum in ultimo loco
differentia satis exigua sit.®9 Hoc peracto capiantur tum terminorum tum
differentiarum prime 4, b, ¢, 4, ¢, f, g &c. Sit differentiarum illarum numerus
7,89 locus quem intercalare oportet x, terminus intercalaris 2y, et regrediendo
ab ultima differentia puta g et ab ultimo terminoril ex quibus differentia illa
gXGx _ {[;xe: quxii rxDx

* &c. Tunc

colligebatur puta G, fac f+ eI d. priy B S e
b—%gfzt A——%‘:v,‘“) pergendo semper juxta tenorem progressionis

reg[ule applicari possint?]” (the



(1,1, §3] Approaches to finite differences 47

always decrease in 2 regular way. In this manner 2 bisection procedure may be
employed until® the foyarth differences prove to be less than 32,69

Ofher rules of this kind might be presented, but I would prefer to embrace
everything in one single general ruie and show how any serics vou wish may be
intercalated®® in any place commanded. Let the series be exhibited by the lines
Ap, Bg, Cr, Ds, Et, Fu, Gu, ... raised

at right angles to the line AG, and the - by R 7t [:':] ;3 __é:“
intervals of the terms by the parts AB, [ by bk b by
BC, CD, DE ... of that line.®® Make 4 & 4 G 3
4-B_; Bl g, Bl g 4 4 & %

4B "~ ’v TBC T "® CD e a I

<. i —b b,—b A L

vy likewise b;Acg = ¢y, —gﬁ = ¢, &
ba—by . inext I 2=d s P A . ) -ﬁmherdl—dg—e

1CE e RO T gBE T CE T E ~ %
dy—dy

& —2, : : 5,
B fgy .3 then % &Fa = fiy ... and so onin sequel till the work is finished,

dividing always first differences by the intervals of the terms whose differences
they are, second ones by half of the two corresponding intervals, third ones by
a third of the three corresponding and so forth until the difference in the final
place beslight enough. 80 When thisis accomplished, take the leading quantities
both of the terms and the differences, A, by, 3, thy 011 15 o and let those
Jifferences be # in number,® the place it is required to intercalate call x, the
term to be interealated xy; then, going backwards from the last difference, say
gy, and from the last of the terms, say G, from which that difference was gathered,

G E
make +g1><‘x=p, e,+px-%:q, dl—-qx—}iisf, cl—ran—x—ss,

n—2 -3




Since 9; commutes with multiplication with functions symmetrical in x;, X1, it
is characterized by the two values

18/:0 & x,é),-:1.

Easy to generalize to operators T; commuting with Sym(x;, x;11) and
satisfying the braid relations :

1Ti=—t" & XuTi=-1x
In terms of divided differences :

T = 8,‘(fX,' — t71X,'+1) —t!

The operators T; generate the Hecke algebra and can be used to build a
linear basis of the space of polynomials in x1, ..., x,, the basis of
non-symmetric non-homogeneous Macdonald polynomials, {M, : v € N"},
depending on two parameters t, g. These polynomials are eigenfunctions of
some operators, and can be characterized by vanishing properties.
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What is the problem ?

math-ph/0703015: Quantum Knizhnik-Zamolodchikov Equation, Totally
Symmetric Self-Complementary Plane Partitions and Alternating Sign
Matrices Authors: P. Di Francesco, P. Zinn-Justin

cond-mat/0608160 : On polynomials interpolating between the stationary
state of a O(n) model and a Q.H.E. ground state Authors: M. Kasatani, V.
Pasquier

0710.5362 : Factorised solutions of Temperley-Lieb gKZ equations on a
segment Authors: Jan de Gier, Pavel Pyatov

math-ph/0603009 : Sum rules for the ground states of the O(1) loop model on
a cylinder and the XXZ spin chain Authors: P. Di Francesco, P. Zinn-Justin,
J.-B. Zuber

math.QA/0507364 : Incompressible representations of the
Birman-Wenzl-Murakami algebra Authors: V. Pasquier

g-alg/9508002 : Scattering matrices and affine Hecke algebras Authors:
Vincent Pasquier

math-ph/0410061 : Around the Razumov-Stroganov conjecture: proof of a
multi-parameter sum rule Authors: P. Di Francesco, P. Zinn-Justin
cond-mat/0101385 : The quantum symmetric XXZ chain at A = —15,
alternating-sign matrices and plane partitions Authors: M.T. Batchelor, J. de
Gier, B. Nienhuis
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In short, | would say. All the above problems involve a finite representation of
the Hecke algebra Hsp,, corresponding to the partitions 2" or [n, n], that one
can study using the operators

Tw =T+ 0
,'(U).: "+t2117_1

starting from the polynomial (product of t-Vandermonde)

H (tzi — zi41 /1) H (tzi — zip1 /1)

1<i<j<n n<i<j<2n
but also, from simply the monomial

z1...zn
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The basis of this space can be indexed in many equivalent ways :

bbbaaa

0
| l
bbabaa |:|
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Some other ways of representing the basis
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Input: a Yang-Baxter graph, an initial spectral vector, an initial polynomial.
Output: a space of polynomials with explicit basis, that one indexes by the
operators creating them. One can read the action of the Hecke algebra on the

space.
[210321]
1 T5(3)
[213021]
[231021] [213201]
T4(2)\, / T2(2)
[231201]
Yang — Baxter
graph

T5(3)

T2(2)

<=

T3(3)

N

T3(3)[Ta(2)

T2(2)
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T2(7)|Te(6)|To(B) 4 | 3 | 2

Te(6)|T7(5)|Ts(4)| 3 2

T5(5)|Ts(4)| 3 2

T4(4)|T5(3)] 2

T3(3) 2

2

Example of a construction using a Yang-Baxter graph : Generation of the
Macdonald polynomials, corresponding to partitions contained in the
staircase.
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T7(5)|Ts(4)]Ts(2) T7(3)|Ts(2)| o (1)
To(4)| T7(3)|Ts(1) T3(3)|T7(2)| Ts(1)
T5(3)(T6(2) T5(2)(Ts(1)
Ta(2)(T5(1) T4(2)(T5(1)
T3(1) T3(1)

Kazhdan — Lusztig Di Francesco — Zinn Justin
basis basis
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The usual basis link pattern basis is the Kazhdan-Lusztig basis which has
many interesting properties. In particular, the sum of all the elements of the
basis, specializing all the variables to 1, gives the number of ASM or TSSCPP,
and there are various statistics which refine this number.

All the different bases contain as a starting point the product of
t-Vandermonde :

H (tzi — zjo1 /1) H (tzi — zip1 /1)

1<i<j<n n<i<j<2n

which is the Macdonald polynomial of index [n-1,...,0,n—1,...,0] for
q=1.
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Generalisation by putting different parameters in successive rows:

T7(7+U6)Tg(6+U6)T9(5+U6) 4+U6 3+U5 2+U6

Te(6+us)\T7(5+us)|Te(4+us) 3+us | 2+us

Ts(5+ug)|Te(4+us)| 3+us | 2+Uq

Ta(4+us)\T5(3+us)| 2+us

T3(3+wp) 2+us

2+U4
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Integral expression

Let A be a partition contained in the staircase, a; = \; + i. Let

i 1 2n 1
oi(w) = H H -
oy W= 2Zm bl tw—t-1zy,
Then the deformed Macdonald polynomial My (uy, ..., Un; Z1, ..., Z25) is equal
to
é)VV1 é)VVn
Ai(z1,...,20n) o P o A(Wp, ..., wy)Ap(wy, ..., Wpy)X

n
1 fumttyy  pun—1 7,
m w .
HE[] [Um + 1] ( th — t—1zam ) ¢am( m)
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Of special interest is the last Macdonald polynomial, of index the staircase
partition p = [n-1,...,1].
Theorem.
M/)(U1,...,Un;Z1,...,Zg,7) = ZC)\KL)\
A<p
sum over all the K-L basis, with explicit coefficients which are monomials of
degree at most 1 in each variable y; = — t=7—.
For n = 3, for example, the expansion in terms of the K-L basis is

|+ y1|:|:|+ yzH+ y1y2|:|+ Y2
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There remains the problem of specializing the polynomials in

z1 = --- = Zop = 1 to obtain informations concernings TSSCPP’s or ASM’s.
But constant terms of the type to examine are related to a fundamental scalar
product on polynomials in x1, ..., Xp :

(fvg): CT (H1 X,‘Xj_1f(X1,...,Xn)g(Xn1,...,X1_1))

i<j

compatible with divided differences, Schubert polynomials, Demazure
characters, Grothendieck polynomials.

To be explicit on an example : Di Francesco and Zinn-Justin give a formula
(Formula 2.7) for the number of TSSCPP according to the heights of the
vertical steps.

X — X)) (1 4+ tx) yr 1+ toxi
N(fo,...,th—1) = CTx (H(/ 1B(X‘X‘ i) H 0/ 2,+2)
" i=1

i<j ’
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One shows that N(1, ..., t,—1) is equal to a sum of Schubert polynomials.
Since Schubert polynomials can be interpreted in terms of Young tableaux,
the final statement is that the constant term is equal to the sum of all staircase
skew Young tableaux (inner shape made of columns of even length)
statisfying a flag condition

flag I
{lo,..., I}
{t07 ceey ts}
{to,..., ta} |®
{to,..., 13} |.®
{t07t1’t2} [ ] [ ] [}
{t07t1} [} [ ] [}
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For example, for n =3

N(to, t1, 1)

_ EZ _+> t2 t1 +_ ﬁ —F [ ] %_ [

) t0| Io | K |t | fo Io | K o | Iy o | 1

which is, when specializing &, = 1, the enumeration of the ASM of order 3
according to the positions of top and bottom 1’s, or of TSSCPP’s according to
the last two steps.
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