A Quantum Field Theory Model of Archimedean Geometry

Anton Gerasimov

ITEP, TCD/HMI, MPIM

June 2010

Based on a series of papers: AG, Dimitry Lebedev and Sergey Oblezin [GLO]

- On q-deformed gl_{ℓ+1}-Whittaker functions I,II,III, Comm. Math. Phys. 294 (2010), 97–119, [math.RT/0803.0145]; Comm. Math. Phys. 294 (2010), 121–143, [math.RT/0803.0970]; [math.RT/0805.3754].
- Archimedean L-factors and Topological Field Theories I, [math.NT/0906.1065].
- Archimedean L-factors and Topological Field Theories II, [hep-th/0909.2016].
- Parabolic Whittaker functions and Topological Field Theories I, [math.AG/0057862].

1. Riemann ζ -function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\rho \in \mathcal{P}} \frac{1}{1 - \rho^{-s}}, \qquad \operatorname{Re}(s) > 1$$

Functional equation (B. Riemann)

$$\zeta^*(s) = \zeta^*(1-s), \qquad \zeta^*(s) = \zeta(s)\pi^{-s/2}\Gamma(\frac{s}{2})$$

Product formula for completed zeta-function

$$\zeta^*(s) = \prod_{p \in \mathcal{P} \cup \infty} \zeta_p(s)$$

$$\zeta_{\infty}(s) = \pi^{-s/2} \Gamma(\frac{s}{2}), \qquad \zeta_{p}(s) = \frac{1}{1 - p^{-s}}, \qquad p \neq \infty$$

2. Meaning of the product formula for $\zeta^*(s)$ after A. Weil

Exponential valuation (norm) $\mid \mid : \mathcal{K}
ightarrow \mathbb{R}_+$

$$\blacktriangleright |x y| = |x| |y|$$

$$\blacktriangleright |x| = 0 \leftrightarrow x = 0$$

► $|x + y| \le |x| + |y|$, Archimedean $|x + y| \le max(|x|, |y|)$ non - Archimedean

Norms for \mathbb{Z} :

▶ non-Archimedean: for each prime p

$$|a|_{p} = p^{-n}$$
 iff $a = p^{n}a_{0}$, $(p, a_{0}) = 1$

► Archimedean:

$$|a|_{\infty} = |a|$$

3. Completions

Each norm map defines a completion of Q:

$$| \mid_{\infty} \longrightarrow \mathbb{Q} \subset \mathbb{R}, \qquad | \mid_{p} \longrightarrow \mathbb{Q} \subset \mathbb{Q}_{p}$$

p-adic numbers:

$$a = a_0 + a_1 p + a_2 p^2 + \cdots \in \mathbb{Z}_p,$$

 $a = p^{-n}(a_0 + a_1 p + a_2 p^2 + \cdots) \in \mathbb{Q}_p$

where $a_i \in \mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$.

4. Rational numbers \mathbb{Q} are rational functions on $\operatorname{Spec}(\mathbb{Z}) = \mathcal{P}$. Adding the Archimedean norm $| \mid_{\infty}$ provides a "compactification" of $\operatorname{Spec}(\mathbb{Z})$

$$\overline{\operatorname{Spec}(\mathbb{Z})} = \mathcal{P} \cup (\infty)$$

Product formula

$$|a|_{\infty}\cdot\prod_{p}|a|_{p}=1,\ a\in\mathbb{Q}$$

is an analog of

$$\prod_{a \in \Sigma} \exp(t \operatorname{Res}_{z=a} d \log f(z)) = 1, \qquad t \in \mathbb{C}$$

for rational functions on a compact surface Σ

5. Reformulation in terms of norms

$$\zeta^*(s) = \prod_{p \in \overline{\operatorname{Spec}(\mathbb{Z})}} \zeta_p(s)$$

where local zeta-functions are given by

$$\zeta_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma(\frac{s}{2}), \qquad \zeta_{\mathbb{Q}_p}(s) = \frac{1}{1 - p^{-s}}, \qquad p \neq \infty$$

Additional part $\pi^{-s/2}\Gamma(\frac{s}{2})$ is related with real numbers.

Interpretation of local *zeta*-functions? Look at a generalization – *L*-functions (ζ -functions with non-trivial coefficients).

6. L-function is given by a product of local factor for each prime p

$$L(s|\{A_{p}\}) = \prod_{p}' L_{p}(s, A_{p}) = \prod_{p}' \det_{V} (1 - A_{p} p^{-s})^{-1},$$

where $A_p \in GL(V)$. Under some conditions on $\{A_p\}$ completed *L*-function

$$\Lambda(s|\{A_p\}, \alpha_{\infty}) = L(s|\{A_p\})L_{\infty}(s, \alpha_{\infty}),$$
$$L_{\infty}(s, \alpha_{\infty}) = \det_{V} \pi^{-\frac{s-\alpha_{\infty}}{2}} \Gamma\left(\frac{s-\alpha_{\infty}}{2}\right), \qquad \alpha_{\infty} \in Mat(V),$$

satisfies a functional equation

$$\Lambda(1-s|\{A_p\},\alpha_{\infty})=\epsilon(s)\Lambda(s|\{A_p\},\alpha_{\infty}),$$

where ϵ -factor is of the form $\epsilon(s) = A B^s$.

7. Arithmetic Langlands duality is an equivalence of two ways to produce the data ($\{A_p\}, \alpha_{\infty}$)

I. Infinite-dimensional irreducible spherical representations of Lie groups $G(\mathbb{A})$ over ring of adeles = characters of spherical Hecke algebras $\mathcal{H}(G(\mathbb{A}), K)$.

II. Homomorphism of the Weil group $W_{\mathbb{Q}} \to {}^{L}G$.

Picking an finite-dimensional representation $\phi : {}^{L}G \to GL(V)$ we obtain $(\{A_{p}\}, \alpha_{\infty})$.

^LG is an extension of the dual group G^{\vee} by $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ $(A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}$ are dual to $A_{\ell}, C_{\ell}, B_{\ell}, D_{\ell})$.

The Weil group $W_{\mathbb{Q}}$ is a version of the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

8. Local data in non-Archimedean case I (Rep. theory)

Representations are realized in a space of functions on $G(\mathbb{Q}_p)/G(\mathbb{Z}_p)$. Commutative Hecke algebra

$$\mathcal{H}_{p} = \mathcal{H}(G(\mathbb{Q}_{p}), G(\mathbb{Z}_{p})) \sim \textit{Fun}(G(\mathbb{Z}_{p}) \setminus G(\mathbb{Q}_{p}) / G(\mathbb{Z}_{p}))$$

of compactly supported $G(\mathbb{Z}_p)$ -biinvariant functions acts from the right. For spherical representations the corresponding representation of \mathcal{H}_p is one-dimensional i.e. is given by a multiplicative character of \mathcal{H}_p .

 \mathcal{H}_p is isomorphic to a representation ring of a dual complex Lie group G^{\vee} . Character of \mathcal{H}_p are parametrized by conjugacy classes $g_p^{(1)}$ in G^{\vee} . Given a homomorphism $\phi: G^{\vee} \to GL(V)$ and a conjugacy class $g_p^{(1)}$ in G^{\vee} we take

$$A_{p} = \phi(g_{p}^{(1)})$$

9. Reformulation

There is a generating function $\mathcal{Q}_p(s)$ of elements of \mathcal{H}_P acting in an irreducible representation \mathcal{V} of $G(\mathbb{Q}_p)$ by multiplication on the corresponding local non-Archimedean *L*-factor

$$\mathcal{Q}_{m{
ho}}(s)\,\Psi = \mathit{L}_{m{
ho}}(s)\,\Psi, \qquad \Psi \in \mathcal{V}$$

In representation theory local non-Archimedean *L*-factors (invariants of representations) naturally arise in an integral form (i.e. as periods) generalizing the identity

$$\frac{1}{1-p^{-s}} = \int_{\mathbb{Q}_p} d\mu_p(x)\psi(x)|x|_p^s$$

where $\psi(x+y)=\psi(x)\psi(y)$ is an additive character.

10. Local data in non-Archimedean case II(Arithmetic)

Homomorphisms of the Weil group $W_{\mathbb{Q}_p} \to {}^L G$. $W_{\mathbb{Q}_p}$ is close to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ and ${}^L G$ is close to dual group G^{\vee} . Naively we should look at "homomorphism" $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to G^{\vee}$.

Consider homomorphisms of the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ factored through the Galois group $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ of the residue field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

 $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ is generated by Frobenius homomorphism $\operatorname{Fr}_p: x \to x^p$.

The image of Fr_p is a conjugacy class $g_p^{(2)}$ in G^{\vee} . Given a representation $\phi: G^{\vee} \to GL(V)$ we take

$$A_{p} = \phi(g_{p}^{(2)}), \qquad L_{p}(s, A_{p}) = \prod_{p}' \det_{V} (1 - A_{p} p^{-s})^{-1},$$

11. General duality relation: Period=Trace

Period representation is characteristic to Representation theory side (Construction I). Local non-Archimedean *L*-factors in this construction are naturally integrals e.g.

$$\frac{1}{1-p^{-s}} = \int_{\mathbb{Q}_p} d\mu_p(x)\psi(x)|x|_p^s$$

Trace representation is characteristic to Arithmetic side (Construction II). Local non-Archimedean *L*-factors in this construction are naturally traces e.g.

$$\frac{1}{\det_V(1-A)} = \mathrm{Tr}_{\oplus \mathcal{S}^* V} A$$

12. Whittaker function

Most clearly the duality *Period*=*Trace* can be seen on the level of Whittaker functions.

Whittaker function is a matrix element of an infinite-dimensional representation $\pi_{\lambda}: G \to End(\mathcal{V})$ of a Lie group G

$$\Psi_\lambda(g) = <\psi_L | \, \pi_\lambda(g) \, | \phi
angle, \qquad g \in G$$

such that

$$\Psi_{\lambda}(ngk) = \chi_{L}(n) \Psi_{\lambda}(g), \qquad n \in N, \quad k \in K$$

K - maximal compact subgroup, N - maximal unipotent subgroup, χ_L - character of N.

13. Properties of Whittaker functions

1. Whittaker function $\Psi_{\lambda}(g)$ reduces to a function $\Psi_{\lambda}(a)$ on a factor $A = N \setminus G / K$ (in split case A is a diagonal subgroup).

2. Irreducibility of the representation $\pi_{\lambda} : G \to End(\mathcal{V})$ leads to a system of difference/differential equations on $\Psi_{\lambda}(g)$

$$\mathcal{H}_{r}\Psi_{\lambda}(a)=c_{r}(\lambda)\Psi_{\lambda}(a)$$

This is a quantum integrable system of Toda type (open Toda chain for $G(\mathbb{R})$).

3. Whittaker functions have integral representations arising from explicit realizations of the pairing in representation $\pi_{\lambda}: \mathcal{G} \to End(\mathcal{V})$ i.e. Whittaker function is naturally a period.

14. Shintani-Casselman-Shalika formula (Whittaker function as a trace)

Whittaker function for $G(\mathbb{Q}_p)$ can be expressed as a character of a finite-dimensional representation of the Langlands dual group G^{\vee} (non-Archimedean Langlands duality on the level of Whittaker functions).

 $G(\mathbb{Q}_p) = GL(\ell + 1, \mathbb{Q}_p)$ and $\mathcal{V}_{\gamma_1, \dots, \gamma_{\ell+1}}$ is a representation induced from a character $\chi^B_{(p^{\gamma_1}, \dots, p^{\gamma_{\ell+1}})}(g) = \prod_{j=1}^{\ell+1} |g_{jj}|^{\gamma_j}$ of the Borel subgroup $B \subset GL(\ell + 1, \mathbb{Q}_p)$.

 $V_{(n_1,n_2,...,n_{\ell+1})}$ is a f.d.i. representation of $GL(\ell+1,\mathbb{C})$ corresponding to a partition $(n_1 \ge n_2 \ge ... \ge n_{\ell+1})$

$$\Psi_{(\gamma_1,\ldots,\gamma_{\ell+1})}(\operatorname{diag}(p^{n_1},\ldots,p^{n_{\ell+1}})) = \operatorname{Tr}_{V_{(n_1,\ldots,n_{\ell+1})}}\operatorname{diag}(p^{\gamma_1},\ldots,p^{\gamma_{\ell+1}})$$

15. Local data in Archimedean case I (Rep. theory)

For Archimedean place the Hecke algebra is usually replaced by the ring of invariant differential operators on $G(\mathbb{R})$. Recently the Archimedean analog $\mathcal{Q}_{\infty}(s)$ of the generating function $\mathcal{Q}_{p}(s)$ of elements of local non-Archimedean Hecke algebra $\mathcal{H}(G, K)$ was constructed [GLO] such that

$$\mathcal{Q}_{\infty}(s) \Psi = \mathcal{L}_{\infty}(s, \alpha_{\infty}) \Psi, \qquad \Psi \in \mathcal{V}$$

where the eigenvalue is the local Archimedean L-factor

$$L_{\infty}(s, \alpha_{\infty}) = \det_{V} \pi^{-\frac{s-\alpha_{\infty}}{2}} \Gamma\left(\frac{s-\alpha_{\infty}}{2}\right),$$

The construction is based on the Baxter operator and is close to the constructions due to M. Gaudin and V. Pasquier.

Thus, all works as in non-Archimedean case.

16. Local data in Archimedean case II (Arithmetic)

The Weil group $W_{\mathbb{R}}$ is generated by \mathbb{C}^* and an element j :

$$jxj^{-1} = \overline{x}, \qquad j^2 = -1 \in \mathbb{C}^*,$$

The datum to construct a local Archimedean *L*-factor is basically a homomorphism $\mathbb{C}^* \to G^{\vee}$.

Weil group is much larger then the Galois group $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \mathbb{Z}_2!!$ \mathbb{C}^* looks like a "missing part" of the Archimedean Galois group e.g. there is a canonical action of \mathbb{C}^* on the complexified cohomology of compact non-singular algebraic varieties over \mathbb{C} providing Hodge decomposition. This action is similar to an action of $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ on the étale cohomology of schemes over $\overline{\mathbb{F}}_p$.

17. Main problem - to understand missing part of Archimedean Galois group

There is a representation of local Archimedean *L*-factors as a period via Euler integral representation of Γ -function

$$\Gamma(s) = \int_{-\infty}^{+\infty} dx \, e^{xs} \, e^{-e^x}$$

What is an Archimedean analog of the representation of local L-factor as a trace?

There is a representation of Archimedean Whittaker functions as a period via realization of matrix element as an integral pairing of functions on *G*-homogeneous spaces.

What is an Archimedean analog of the Shintani-Casselman -Shalika formula?

18. *q*-Interpolation of Archimedean and non-Archimedean constructions

Gamma-functions:

$$\Gamma_q(s,t) = \frac{(q;q)_\infty}{(t^s;q)_\infty}, \qquad (s,q)_\infty := \prod_{n=0}^\infty (1-aq^n), \qquad |q| < 1$$

"Classical" limit:

$$\pi^{-1/2} (\pi^{-1} \ln q)^{(s-1)/2} \Gamma_q(s,t) \to \pi^{-s/2} \Gamma(s/2), \qquad q \to 1, \ t = q^{1/2}$$

i.e. local Archimedean zeta-function.

"p-adic" limit:

$$\Gamma_q(s,t)
ightarrow rac{1}{1-
ho^{-s}}$$
, $q
ightarrow 0$, $t
ightarrow
ho^{-1}$

i.e. local non-Archimedean zeta-function.

19. *q*-deformed Whittaker function

Replace universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ by a quantum deformation $\mathcal{U}_q(\mathfrak{g})$ (or affine Kac-Moody algebra with $q = \exp(2\pi \iota/k + h^{\vee})$). The resulting *q*-deformed Whittaker function $\Psi_{z_1,\ldots,z_{\ell+1}}^{\mathfrak{gl}_{\ell+1}}(p_1,\ldots,p_{\ell+1})$ is a common eigenfunction of a system of mutually commuting *difference* equations

$$\mathcal{H}_2(p_1,\ldots,p_{\ell+1}) = T_1 + \sum_{i=1}^{\ell} (1 - q^{p_{i+1}-p_i+1}) T_{i+1},$$

where $T_i f(p_j) = f(p_j + \delta_{ij})$. The resulting quantum integrable system is *q*-deformed Toda chain.

20. Theorem[GLO] Function given by

$$\Psi_{z_1,\dots,z_{\ell+1}}^{\mathfrak{gl}_{\ell+1}}(p_1,\dots,p_{\ell+1}) = \sum_{p_{k,i}\in\mathcal{P}^{(\ell+1)}} \prod_{k=1}^{\ell+1} z_k^{\sum_{i=1}^k p_{k,i}-\sum_{i=1}^{k-1} p_{k-1,i}}$$

$$\times \frac{\prod_{k=2}^{\ell} \prod_{i=1}^{k-1} (p_{k,i+1} - p_{k,i})_{q}!}{\prod_{k=1}^{\ell} \prod_{i=1}^{k} (p_{k+1,i+1} - p_{k,i})_{q}! (p_{k,i} - p_{k+1,i})_{q}!}$$

for $p_1 \leq \cdots \leq p_{\ell+1}$ and zero otherwise is a solution of the eigenfunction problem for *q*-deformed $\mathfrak{gl}_{\ell+1}$ -Toda chain. Here $(n)_q! = (1-q)...(1-q^n)$ and $\mathcal{P}^{(\ell+1)}$ is a set of Gelfand-Zetlin tableaux with a fixed top raw

$$(p_{\ell+1,1}, \cdots, p_{\ell+1,\ell+1}) := (p_1, \cdots, p_{\ell+1})$$

21. q-version of Shintani-Casselman-Shalika formula

Theorem[GLO] The common eigenfunction of *q*-deformed Toda chain allows the following trace representation:

$$\Psi_{\lambda_1,\ldots,\lambda_{\ell+1}}^{\mathfrak{gl}_{\ell+1}}(p_1,\ldots,p_{\ell+1}) = \operatorname{Tr}_{V_{p_1,\ldots,p_{\ell+1}}} q^d \prod_{i=1}^{\ell+1} q^{\lambda_i E_{i,i}},$$

where $V_{p_1,\ldots,p_{\ell+1}}$ is a $\mathbb{C}^* \times GL(\ell+1,\mathbb{C})$ -module, $E_{i,i}$, $i = 1, \ldots \ell + 1$ are Cartan generators of $\mathfrak{gl}_{\ell+1} = \operatorname{Lie}(GL(\ell+1,\mathbb{C}))$ and d is a generator of $\operatorname{Lie}(\mathbb{C}^*)$.

This *q*-version of SCS formula reduces to the classical non-Archimedean SCS formula for $q \rightarrow 0$ and, in the limit $q \rightarrow 1$, produces a substitute for SCS-formula in the Archimedean case.

Topological Field Theory as a proper framework for Archimedean geometry

Local Archimedean *L*-factors allow two constructions as correlation functions in two-dimensional topological sigma models:

- S¹ × U_{ℓ+1}-equivariant Type A topological linear sigma model on disk D.
- S¹-equivariant Type B topological Landau-Ginzburg model on D with a superpotential W.

23. Local Archimedean Langlands duality=Mirror duality in TFT

Two TFT representations correspond to two types of representations for local *L*-factors:

- In Type A TFT local Archimedean L-factors are given by equivariant symplectic volumes of spaces of holomorphic maps of D into V = C^{ℓ+1} (Arithmetic side).
- ► In Type B TFT local Archimedean L-factors are given by periods of holomorphic forms over middle-dimensional cycles (Representation theory side)

This is an Archimedean analog of "Period=Trace" relation for non-Archimedean case (trace is replaced by its classical limit equivariant volume of the underlying symplectic manifold).

24. Setup

World-sheet: $D = \{z | |z| \le 1\}$ with a flat metric

$$h = \frac{1}{2}(dzd\bar{z} + d\bar{z} dz) = (dr)^2 + r^2(d\sigma)^2, \qquad z = re^{i\sigma}$$

Lie group S^1 acts by rotations on D. **Target space**: $\mathbb{C}^{\ell+1}$ supplied with the Kähler form and the Kähler metric

$$\omega = \frac{\imath}{2} \sum_{j=1}^{\ell+1} d\varphi^j \wedge d\bar{\varphi}^j, \qquad g = \frac{1}{2} \sum_{j=1}^{\ell+1} (d\varphi^j \otimes d\bar{\varphi}^j + d\bar{\varphi}^j \otimes d\varphi^j).$$

Lie group $U_{\ell+1}$ acts on $\mathbb{C}^{\ell+1}$ via standard representation.

25. Type A topological sigma model=Fields+BRST+Action

K and \overline{K} - canonical and anti-canonical bundles on world-sheet. $T_{\mathbb{C}}X = T^{1,0} \oplus T^{0,1}$ - decomposition of the complexified tangent bundle of target space $X = \mathbb{C}^{\ell+1}$.

Commuting fields:

$$\varphi, \overline{\varphi}$$
- describe maps $\Phi: D \to X$.
 F, \overline{F} - sections of $K \otimes \Phi^*(T^{0,1}), \overline{K} \otimes \Phi^*(T^{1,0})$.
Anticommuting fields:

$$\chi, \bar{\chi}$$
 - sections of $\Phi^*(\Pi T^{1,0}), \Phi^*(\Pi T^{0,1})$
 $\psi, \bar{\psi}$ - sections of $K \otimes \Phi^*(\Pi T^{0,1}), \bar{K} \otimes \Phi^*(\Pi T^{1,0})$.
Metrics g and h induce a Hermitian paring \langle, \rangle

$$\langle \chi, \chi \rangle = \sum_{j=1}^{\ell+1} g_{i\bar{j}} \, \bar{\chi}^{\bar{j}} \, \chi^{i}, \qquad \langle F, F \rangle = \sum_{j=1}^{\ell+1} h^{z\bar{z}} g_{i\bar{j}} \bar{F}_{z}^{\bar{j}} F_{\bar{z}}^{i}.$$

26. $S^1 \times U_{\ell+1}$ -equivariant BRST transformations

$$\begin{split} \delta_{G}\varphi &= \chi, \qquad \delta_{G}\chi = -(\imath\Lambda\varphi + \hbar\mathcal{L}_{v_{0}}\varphi) \\ \delta_{G}\psi &= F, \qquad \delta_{G}F = -(\imath\Lambda\psi + \hbar\mathcal{L}_{v_{0}}\psi) \end{split}$$

 Λ - an element of $\mathrm{Lie}(U_{\ell+1})$ $v_0=\frac{\partial}{\partial\sigma}$ is a generator of $\mathrm{Lie}(S^1)$ and $\mathcal{L}_{v_0}=d\,i_{v_0}+i_{v_0}\,d$ is the Lie derivative

Equivariant BRST operator satisfies

 $\delta_G^2 = -(\text{inf. symmetry transformation})$

27. Action functional

$$S_{D} = \int_{D} d^{2}z \,\delta_{G}(\iota \langle \psi, \overline{\partial} \varphi \rangle + \iota \langle \overline{\psi}, \partial \overline{\varphi} \rangle) =$$
$$\iota \int_{D} d^{2}z \,\left(\langle F, \overline{\partial} \varphi \rangle + \langle \overline{F}, \partial \overline{\varphi} \rangle + \langle \overline{\psi}, \partial \overline{\chi} \rangle + \langle \psi, \overline{\partial} \chi \rangle \right),$$

δ_G -invariant observable:

$$\mathcal{O} = \frac{\imath}{\pi} \int_0^{2\pi} d\sigma \left(-\langle \chi(e^{\imath\sigma}), \chi(e^{\imath\sigma}) \rangle + \langle \varphi(e^{\imath\sigma}), (\imath\Lambda + \hbar\mathcal{L}_{\nu_0})\varphi(e^{\imath\sigma}) \rangle \right)$$

28. Theorem A [GLO] In $S^1 \times U_{\ell+1}$ -equivariant Type A topological linear sigma model with the target space $V = \mathbb{C}^{\ell+1}$ one has the following representation for correlation function of $\exp(\mathcal{O})$:

$$\left\langle e^{\mathcal{O}} \right\rangle_{D} = \hbar^{-\frac{\ell+1}{2}} \det_{V} \left(\frac{\pi}{\hbar}\right)^{-\Lambda/\hbar} \Gamma(\Lambda/\hbar),$$

By taking $\hbar = 1$ and changing the variables $\Lambda \rightarrow (s \cdot id - \Lambda)/2$ the correlation function turns into local Archimedean *L*-factor.

Left hand side is an integral over space of symplectic space of holomorphic maps $D \to \mathbb{C}^{\ell+1}$ and is given by inverse infinite-dimensional determinant.

29. Type B topological Landau-Ginzburg theory

Type *B* topological sigma model associated with a pair $(\mathbb{C}^{\ell+1}, W)$, $W \in H^0(\mathbb{C}^{\ell+1}, \mathcal{O})$.

Commuting fields:

$$\phi$$
, $\overline{\phi}$ - describe maps $\Phi: D \to \mathbb{C}^{\ell+1}$
 \overline{G} , G - sections of $\Phi^*(\mathcal{T}^{0,1})$, $K \otimes \overline{K} \otimes \Phi^*(\mathcal{T}^{1,0})$

Anticommuting fields:

 η, θ - sections of $\Phi^*(\Pi T^{0,1})$ ρ - sections of $(K \oplus \overline{K}) \otimes \Phi^*(\Pi T^{1,0})$

30. Real structure

Topological linear sigma model allows a non-standard real structure

$$(\phi^{i})^{\dagger} = \phi^{i}, \qquad (\bar{\phi}^{i})^{\dagger} = -\bar{\phi}^{i}, \qquad (\theta_{i})^{\dagger} = -\theta_{i},$$

 $\bar{\eta}^{i})^{\dagger} = -\bar{\eta}^{i}, \qquad (\rho^{i})^{\dagger} = \rho^{i}, \qquad (G^{i})^{\dagger} = G^{i}, \qquad (\bar{G}^{i})^{\dagger} = -\bar{G}^{i}.$

Remark. This real structure is imposed by the condition on Type *B* topological sigma model to be a mirror dual to the Type *A* topological sigma model discussed previously.

31. S¹-equivariant BRST transformations

$$\begin{split} \delta_{S^1}\phi^i_- &= \eta^i, \qquad \delta_{S^1}\eta^i = \hbar\iota_{v_0}d\phi^i_-, \\ \delta_{S^1}\theta^i &= G^i_-, \qquad \delta_{S^1}G^i_- = \hbar\iota_{v_0}d\theta^i, \\ \delta_{S^1}\rho^i &= -d\phi^i_+ - \hbar\iota_{v_0}G^i_+, \qquad \delta_{S^1}\phi^i_+ = \hbar\iota_{v_0}\rho^i, \qquad \delta_{S^1}G^i_+ = d\rho^i. \end{split}$$

 δ_{S^1} -invariant observable:

$$\mathcal{O} = \prod_{i=1}^{\ell+1} \delta(\phi_-^i(0)) \, \eta^i(0)$$

32. Action functional

$$\begin{split} S &= -\imath \sum_{j=1}^{\ell+1} \int_D \left((d\phi_+^j + \hbar \iota_{v_0} G_+^j) \wedge *d\phi_-^j + \rho^j \wedge *d\eta^j - \theta_j d\rho^j \right. \\ &+ G_+^j G_-^j) + \sum_{i,j=1}^{\ell+1} \int_D d^2 z \sqrt{h} \left(-\frac{\partial^2 W_-(\phi_-)}{\partial \phi_-^i \partial \phi_-^j} \eta^i \theta^j - \imath \frac{\partial W_-(\phi_-)}{\partial \phi_-^i} G_-^j \right) \\ &+ \sum_{i,j=1}^{\ell+1} \int_D \left(-\frac{1}{2} \frac{\partial^2 W_+(\phi_+)}{\partial \phi_+^i \partial \phi_+^j} \rho^i \wedge \rho^j + \frac{\partial W_+(\phi_+)}{\partial \phi_+^i} G_+^j \right) \\ &- \frac{1}{\hbar} \int_{S^1 = \partial D} d\sigma W_+(\phi_+). \end{split}$$

where ${\it W}_+$ and ${\it W}_-$ are arbitrary independent regular functions on $\mathbb{R}^{\ell+1}.$

33. Theorem B [GLO] The correlation function of $\exp O$ in the type *B* topological *S*¹-equivariant Landau-Ginzburg sigma model with

$$W_+(\phi_+) = \sum_{j=1}^{\ell+1} (\lambda_j \phi^j_+ - e^{\phi^j_+}), \qquad W_-(\phi_-) = 0,$$

is given by

$$\langle \mathcal{O}_* \rangle = \int_{\mathbb{R}^{\ell+1}} \prod_{j=1}^{\ell+1} dt^j \ e^{\frac{1}{\hbar} \sum_{j=1}^{\ell+1} (\lambda_j t^j - e^{t^j})} = \prod_{j=1}^{\ell+1} \ \hbar^{\frac{\lambda_j}{\hbar}} \Gamma\left(\frac{\lambda_j}{\hbar}\right).$$

This coincides with the correlation function calculated in Type A TFT. The reason - considered Type A and Type B TFT are mirror dual.

34. Direct derivation of mirror symmetry

Two dual integral representations for Γ -function:

- ► Type A TFT equivariant volume of the space M(D, C) of holomorphic maps D → C (essentially infinite-dimensional)
- ► Type B TFT Euler finite-dimensional integral representation

$$\Gamma(s) = \int_{-\infty}^{+\infty} dx \, e^{xs} \, e^{-e^x}$$

Proof of the mirror symmetry by directly calculating an integrand of the Euler integral representation in Type A TFT.

35. $S^1 \times U(1)$ -equivariant volume of the space of holomorphic maps $\mathcal{M}(D, \mathbb{C})$ (correlation function in Type A TFT):

$$Z(\lambda, \hbar) = \int_{\Pi \mathcal{M}(D, \mathbb{C})} e^{\lambda H_{U(1)} + \hbar H_{S^1} + \Omega}$$

 $S^1 imes U(1)$ -invariant symplectic form on the space $\mathcal{M}(D,\mathbb{C})$:

$$\Omega = \frac{\iota}{4\pi} \int_0^{2\pi} \delta\varphi(\sigma) \wedge \delta\bar{\varphi}(\sigma) \, d\sigma, \qquad \varphi(\sigma) = \varphi(z)|_{\partial D = S^1}$$

Hamiltonian momenta for $S^1 imes U(1)$

$$H_{\mathsf{S}^1} = -\frac{\imath}{4\pi} \int_0^{2\pi} \bar{\varphi}(\sigma) \partial_\sigma \varphi(\sigma) \, d\sigma, \qquad H_{U(1)} = \frac{1}{4\pi} \int_0^{2\pi} |\varphi(\sigma)|^2 \, d\sigma.$$

36. Rewrite the integral as follows:

$$Z(\lambda, \hbar) = \int_{-\infty}^{+\infty} dt \, e^{\lambda t} \, Z_t(\hbar),$$

$$Z_t(\mathbf{h}) = \int_{\mathcal{M}(D,\mathbb{C})} e^{\mathbf{h}H_{S^1}+\Omega} \,\delta(t-H_{U(1)}).$$

 $Z_t(h)$ is an equivariant symplectic volume of $\mathbb{P}\mathcal{M}(D,\mathbb{C})$

$$Z_t(\hbar) = 2\pi \int_{\mathbb{P}\mathcal{M}(D,\mathbb{C})} e^{\hbar \tilde{H}_{S1} + \tilde{\Omega}(t)},$$

To derive the Euler integral representation of Γ -function one shall prove:

$$Z_t(\hbar) \sim e^{e^{-\hbar t}}$$
 ????

37. Duistermaat-Heckman formula

Let (M, Ω) be a 2*N*-dimensional symplectic manifold with the Hamiltonian action of S^1 having only isolated fixed points. Let H_{S^1} be the corresponding momentum. The tangent space $T_{p_k}M$ to a fixed point $p_k \in M^{S^1}$ has a natural action of S^1 . Let v be a generator of Lie (S^1) and let \hat{v} be its action on $T_{p_k}M$

$$\int_{M} e^{\hbar H_{S^1} + \Omega} = \sum_{p_k \in M^{S^1}} \frac{e^{\hbar H_{S^1}(p_k)}}{\det_{T_{p_k}M} \hbar \hat{v}/2\pi}$$

38. Fixed points of S^1 acting on $\mathbb{P}\mathcal{M}(D,\mathbb{C})$ are given in homogeneous coordinates by

$$\varphi^{(n)}(z) = \varphi_n z^n, \qquad \varphi_n \in \mathbb{C}^* \quad n \in \mathbb{Z}_{\geq 0}.$$

The tangent space to $\mathcal{M}(D, \mathbb{C})$ at an S^1 -fixed point $\varphi^{(n)}$ has natural linear coordinates φ_m/φ_n , $m \in \mathbb{Z}_{\geq 0}$, $m \neq n$ where $\varphi(z) = \sum_{k=0}^{\infty} \varphi_k z^k$. Action of Lie (S^1) on the tangent space at the fixed point is given by a multiplication of each φ_m/φ_n on (m-n). The regularized denominator in the right hand side of the Duistermaat-Heckman formula is given by

$$\frac{1}{\left[\prod_{m\in\mathbb{Z}_{\geq 0}, m\neq n}(m-n)\right]}\sim\frac{(-1)^n}{n!}$$

39. Difference of H_{S^1} at two fixed points

$$H_{S^1}(\varphi^{(n)}) - H_{S^1}(\varphi^{(0)}) = nt$$

Formal application of the Duistermaat-Heckman formula gives

$$Z_t(h) \sim \sum_{n=0}^{\infty} (-1)^n \frac{e^{nth}}{n!} = e^{-e^{ht}}$$

This proves mirror symmetry in this particular case (we recover a superpotential of the dual theory by explicitly summing instantons).

40. TFT version of Shintani-Casselman-Shalika formula

Two constructions of Archimedean Whittaker functions as correlation functions:

- ▶ S¹ × G-equivariant Type A topological sigma model on disk D with the target space G/B
- ► S¹-equivariant Type B topological Landau-Ginzburg model on D with a superpotential W on an open part of G[∨]/B[∨]

Quantum integrable systems: realization of eigenfunctions as correlation functions in TFT on a disk D.

Generalization to partial flags G/P, P parabolic subgroup, produces *new* Toda type quantum integrable systems.

41. *q*-deformation via three-dimensional TFT

q-deformation naturally arises in TFT if one considers three-dimensional theories on $S^1 \times D$. This provides *q*-deformed expressions for *L*-factors and Whittaker functions.

Equivariant volumes of symplectic manifolds of holomorphic maps of D upgrade to partition functions of the corresponding quantum mechanical systems (quantization of X is a classical geometry of LX) producing naturally q-versions of Shintani-Casselman-Shalika formulas.

In the limit of shrinking S^1 (such that $q \to 1$) one recovers the Archimedean expressions.

42. Other approaches and related constructions

- P. Vojta: visualization of algebraic numbers using Nevanlinna's theory of holomorphic function value distributions.
- C. Denninger: Archimedean analog of Barsotti-Tate rings, Γ-function as an infinite-dimensional determinant.
- B. Mazur: Arithmetical topology (developed further by Kapranov and Reznikov).
- ► A. Beilinson and V. Drinfeld: relation with geometric Langlands correspondence (also a four-dimensional QFT version due to E. Witten et al).

43. Conclusions

- Archimedean geometry arises as symplectic geometry of the infinite-dimensional spaces of holomorphic maps of two-dimensional disks.
- S¹-equivariant topological sigma model is a way to describe topological sigma model coupled with topological gravity. Thus topological string theory is behind the geometry over ℝ.
- The dichotomy between holomorphic periods and infinite-dimensional symplectic volumes/traces is a guiding principle to construct Archimedean analogs of all standard notions of algebraic geometry.