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We start with YMH-theory, topological twist of 2d N = 2 massive
gauge theory (four supercharges), pure N = 2 with massive adjoint
matter, on Σg and the correspondence of MNS ’97; GS ’07, ’08.

This topological field theory computes the intersection numbers on
the moduli space MH

g of Hitchin equations on Σg:

Fzz̄(A)− [Φz,Φz̄] = 0

∇z(A)Φz̄ = 0; ∇z̄(A)Φz = 0

Symmetries - unitary gauge transformations and U(1) action:

Φz → eiαΦz; Φz̄,→ e−iαΦz̄

Here F (A) is a curvature of unitary connection ∇A (A - gauge
field) and Φ is adjoint valued 1-form; we assume G = U(N).

MH
g is non-compact - intersection theory depends on one

(equivariant) parameter c (regularization). c = 0 or ∞ - special.



The generating function of special, ”chiral ring”, operators Oi:

ZΣg(t) =< e−tiO
i
>=
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n;{i1,...,in}

ti1ti2 ...tin
n!

< Oi1 ...Oin >=

=
∑
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ti1ti2 ...tin
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∫
MH

g

wi1 ∧ ... ∧ win =

=
∑
σ∈BA

D(σ)2−2ge−
PN
i=1 tip

i(σ)

D(σ) = µ(σ)−
1
2

∏
i<j

(σi − σj)(1 +
(σi − σj)2

c2
)

1
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µ(σ) = det||∂
2W (σ)
∂σi∂σj

||

σ ∈ BA : e2πiσj
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k 6=j

σk − σj − ic
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= 1 ⇔ exp
(
∂W (σ)
∂σi

)
= 1

where pi(σ) is i-th order symmetric polynomial of (σ1, ..., σN ).



Φ in Hitchin is a matter field (adjoint), no matter - F (A) = 0.

Adding new matter fields in gauge theory ⇔ corrections to the
right hand side of Hitchin equations ⇔ other Bethe Eq.’s.

Topologically theory ⇔ vacuum sector of Physical Theory. g = 1:

ZΣ1(t) = Tr(−1)F e−βHe−
P
i tiO

i
= Trvace

−
P
i tiO

i

{QA, Q†A} = {QB, Q†B} = 4H

Q2
A = Q2

B = 0; H|vacuum >= 0

Simpler question - QA (QB)-cohomology:

QA(B)|Ψ >= 0; |Ψ >∼ |Ψ > +QA(B)|... >

|vacuum > is a “harmonic” representative in this cohomology.



If |0 > is some vacuum state and operator Oi is in Q-cohomology

{Q,Oi} = 0, Oi ∼ Oi + {Q, ...}

|i >= Oi|0 > is also a vacuum state.

Operator-state correspondence would relate the complete basis for
vacuum states |i > to operators from cohomology Oi.

• These operators are independent of position up to Q-comm.

dOi = {Q, ...}

• They form a commutative ring called (twisted) chiral ring:

OiOj |0 >= ckijOk|0 >; ⇒ OiOj = ckijOk + {Q, ...}

• SUSY vacua form the representation of chiral ring.

Basically, for every N = 2 theory there is a quantum integrable
system (assuming all good conditions - discrete specturm ...).



For YMH this quantum integrable system is (GS ’07, ’08) Yang’s
system of N -particles on S1 with Hamiltonian (xi ∼ xi + 1):

H2 = −
N∑
i=1

∂2

∂xi
2 + c

∑
i 6=j

δ(xi − xj)

This can be written in terms of Dunkle operators Di:

Di = −i ∂
∂xi

+ i
c

2

N∑
j=i+1

(ε(xi − xj) + 1)sij

Commuting Hk’s & spectrum (N -particle sector of NLS):

Hk =
N∑
j=1

Dk
j ; HkΨ(λ) = (

N∑
j=1

λkj )Ψ(λ)

with λ solving Bethe Equations. For each (n1 ≥ n2 ≥ ... ≥ nN ) -
one solution (λ1, ..., λN ); Yang-Yang ’69, using W (λ).

G/G WZW generalization of YMH introduces extra parameter,
level of KM algebra k, in BA - s→ i∞ limit of XXZ.



Gauge theory data:

• Gauge group (for us it will be U(N)), or products for various N ’s

• Supermultiplets (”representations” of super-Poincare algebra)

1. Gauge filed is in Vectormultiplet (Coulomb Branch); also
has complex scalar σ, adjoint representation of gauge group

2. Matter fields (Higgs Branch) form Chiral multiplets - some
representation of gauge group R = ⊕iMi⊗Ri; Ri - irrep.

• Global (unbroken) symmetry group H ⊂ ×i U(Mi)

• Twisted masses m̃i - belong to the complexification of the Lie
algebra of the maximal torus of H

• For each U(1) component of gauge group - tb = θb
2π + irb

These data determines:

• Twisted effective superpotential W̃eff (σ) (holomorphic) as
function of eigenvalues of σ: (σ1, ..., σN ) and all above parameters



General formula for W̃eff (σ) (ρ = 1
2

∑
α∈∆+

α):

W̃eff(σ) =

= −
∑
b

2πitbtrbσ+trR (σ + m̃) (log (σ + m̃)− 1)−2π < ρ, σ >

Chiral ring operators can be chosen to be Ok = trσk and:

ZΣg(t) =
∑
σ∈BA

D(σ)2−2ge−
PN
i=1 tip

i(σ)

where sum is over:

1
2πi

∂W̃eff(σ)
∂σi

= ni

Or equivalently - SUSY vacua (g = 1) correspond to solution of:

exp

(
∂W̃eff(σ)
∂σi

)
= 1

D(σ) is known explicitly - is determined by same data.



For every quantum integrable system, solved by BA, there is a
SUSY gauge theory with 4 supercharges (QA, QB, Q

+
A, Q

+
B) s.t.

a) exact Bethe eigenstates correspond to SUSY vacua

b) ring of commuting Hamiltonians ⇔ (twisted) chiral ring

Converse is also true but it is not always easy to recognize the
quantum integrable system.

SUSY vacuum equations in gauge theory ⇔ Bethe equations

VEVs of chiral ring operators ⇔ eigenvalues = energies

Vacuum Ward Identity ⇔ Baxter equation



• Vacua: “critical” pts of effective twisted superpotential W̃eff (σ)

• Bethe equations: spectrum, critical points of Yang function Y (λ)

• The effective twisted superpotential corresponds to Yang function

W̃eff (σ) = Y (λ)

σi = λi; i = 1, ..., N ; G = U(N)

• VEV of chiral ring operators Ok ⇔ eigenvalues of Hamiltonians:

< λ|Ok|λ >= Ek(λ)

HkΨ(λ) = Ek(λ)Ψ(λ)

W̃ eff (σ) - effective twisted superpotential on Couloumb branch
Y (λ) - Yang’s function as a function of rapidities λi



Details worked out ⇔ gauge theories identified (NS ’09 -1,2):

• XXX spin chain - 2d gauge theory on Σ

• XXZ spin chain - 3d gauge theory on Σ× S1 (Higgs Branch
infinite-dim., H contains translations along S1 - KK: m̃n = n)

• XY Z spin chain - 4d gauge theory on Σ× T 2

• Arbitrary spin group, representation, impurities, limiting models

IN THIS TALK WE FOCUS ON (NS ’09-3)

• Periodic Toda - 4d pure N = 2 theory on Σ×R2
ε

• Elliptic Calogero-Moser - 4d N = 2∗ theory on Σ×R2
ε

For global group H instead of translation along S1 in KK we use
rotation of R2 with angle ε (complexified).



Four-dimensional N = 2 Gauge Theory

Low energy effective theory of U(N), N = 2, gauge theory in 4d is
abelian U(1)N gauge theory. In two derivative approximation it is
described by one function F({a}; Λ), SW ’94, KLTY ’94, AF ’94.

For any given set {a} = (a1, ..., aN ) we expect a vacuum; more
precisely - vacua are labeled by symmetric polynomials of these:

{u} : (u1 =
N∑
i=1

ai; u2 =
N∑
i=1

a2
i , ... uN =

N∑
i=1

aNi )

They correspond to the vacuum expectations of trΦk where Φ is a
complex scalar in the 4d vector multiplet. {u} is called “u” plane.

Once F({a}; Λ) is found the Lagrangian is written by simple rules.

F({a}; Λ) is sum of perturbative Fpert (tree level and 1-loop only
contribute) and non-pertubative F inst terms; Λ counts instantons.



N = 2∗ ⇒ pure N = 2 theory plus massive adjoint matter.
“Mass” m is some complex number.

Instanton counting parameter is q = eiτ ; τ = i/g2 + θ. In N = 2∗

theory τ doesn’t run.

Pure N = 2 theory is a limit when m→∞ - matter decouples.

Λ, instanton counting parameter in this limit is: m2Nq = Λ2N ; Λ
is kept finite when m→∞; q → 0:

Fpert(a; τ,m) =
τ

2

N∑
i=1

a2
i +

3N2m2

2
+

1
4

N∑
i,j=1

[(ai−aj)2log(ai−aj)−

− (ai − aj +m)2log(ai − aj +m)]

Non-perturbative part is of course an infinite sum of the type:

Fnon−pert(a; τ,m) =
∞∑
k=1

qkFk(a;m), q = e2πiτ



Classical Algebraic Integrable System

F({a} : Λ) has nice interpretation in terms of classical ACIS
-pToda, eCM,... (GKMMM ’95, MW ’95, DW ’96, G ’09,...):

• A complex algebraic manifold M of complex dimension 2r

• Everywhere non-degenerate, closed holomorphic (2, 0)-form Ω2,0
C

• A holomorphic map H : M → Cr, fibers Jh = H−1(h) are
(polarized) abelian varieties (complex tori), {Hi, Hj}Ω2,0

C
= 0

Polarization is a Kahler form ω whose restriction on each fiber is
integral class: [w] ∈ H2(Jh, Z) ∩H1,1(Jh)

Using the polarization introduce A and B-cycles ( < Ai, B
j >= δji ,

bases in H1(Jh, Z)) define “action variables” on base via periods:



ai =
∫
Ai

ΘC , aiD =
∫
Bi

ΘC , ΩC = dΘC

In real case, Cr ↔ Rr, fibers are real tori T r, exactly r real
periods - usual action variables; angular variables - r angles of tori.

Since we get twice as many as the (complex) dimension of the
base these variables must be related. Locally:

aiD =
∂F(a)
∂ai

⇒ θ =
∑
i

aiDdai = dF(a)

The base can be supplied with the Rigid Special Geometry
structure - locally a Lagrangian submanifold (holomorphic) in C2r.

There is a notion of prepotential in Gauge Theory and in ACIS.

• For every 4d N = 2 gauge theory there is ACIS with same F(a).

Important ACIS’s - pToda and eCM, particular cases of more
general ACIS - Hitchin integrable systems.



N = 2∗ and Elliptic Calogero-Moser

U(N) 4d N = 2∗ theory has prepotential F(a1, ..., aN ; τ,m)
which comes from Elliptic Calogero-Moser (eCM) ACIS.

eCM - N particles q1, q2, ..., qN on the circle of circumference β ,
qi ∼ qi + β , which interact with the pair-wise potential:

H2 =
N∑
i=1

p2
i + U(q); U(q) = m2

∑
i<j

P(qi − qj)

P(x) =
∑
n∈Z

1
sinh2(x+ nβ)

= u0(x) +
∞∑
k=1

qkun(x)

q = e−2β; u0 =
1

sinh2x
=
∑
k

ne−kx; uk(x) = 4
∑
d|k

d(edx+e−dx)

In order to describe Poisson commuting Hi’s - introduce the Lax
operator on phase space T ∗(C×)N with Ω2,0

C =
∑

i dpi ∧ dqi:



Φij(z|p, q) = piδij +m
Θ(z + qi − qj)Θ

′
(0)

Θ(qi − qj)Θ(z)
(1− δij)

Θ(x) = −
∑

k=Z+ 1
2

(−1)kq
k2

2 e2kx; q = e2πiτ ; τ =
iβ

π

Invariants of matrix Φ(z), coefficients of the polynomial
det(x− Φ(z)), give Hi’s. For example trΦ(z)2 = H2 − P(z).

Spectral curve: Ch ⊂ C × C× is defined as zero locus of
characteristic polynomial: det(x− Φ(z)) = 0.

H−1(h) is given by the product C × Jh . The C-factor
corresponds to the center-of-mass mode

∑
i qi , while the compact

factor Jh = Jac(C̄h) is the Jacobian of the compactied curve Ch .

ai, a
i
D are periods of differential λ = 1

2πxdz ⇒ F(a)

Note: periods of Θ =
∑

i pidqi are same as periods of λ.



Quantization ⇔ Deformation of SYM

Now we are going to do two things:

1) Quantize integrable system - Planck constant we denote by ε

2) ε-deform 4d N = 2 gauge theory - s.t. vacua ⇔ eigenstates

1. Suppose we choose aDi as action variables - BS (we also need to
choose half-dimensiona submanifold, real slice):

aDi = ε× ni =
∂F(a)
∂ai

⇒ ∂Y (a)
∂ai

= ni s.t. Y (a) =
F(a)
ε

This semi-classical picture it is very suggestive to lead to the exact
formula in the form of Bethe equation with some Y (a; ε):

∂Y (a; ε)
∂ai

= ni

Semiclassical formula suggests to look for quantization when:

Y (a; ε) =
F(a) +O(ε)

ε



2. We need to ε-deform the original 4d N = 2∗ theory in such way
that the effective low energy theory becomes two-dimensional.

• 4d N = 2∗ theory has continues spectrum of vacua - “u”-plane.

• ε-deformed theory - must have four supercharges and discrete
spectrum of vacua given by critical points of W̃ (a; ε) = Y (a; ε)

Thus the residue of a single pole in ε for W̃ (a; ε) should be given
by 4d superpotential F(a).

In fact we know such theory - 4d gauge theory on R2 ×R2
ε .

N = 2 gauge theory on R2 ×R2
ε is a deformation of N = 2 theory

on R2 ×R2 with one, equivariant, parameter ε which corresponds
to the rotation of second R2 around its origin.



• Denote corresponding vector field V = ε(x2∂3 − x3∂2).

• z1 = x0 + ix1, z2 = x2 + ix3. ε rotates z2 by a phase.

L =
1
g2

0

(−1
2
trF ? F + Tr(DAφ− iV F ) ? (DAφ̄− iV̄ F )+

+
1
2
Tr([φ, φ̄] + iVDAφ̄− iV̄DAφ)2 +

θ0

2π
TrF ∧ F + fermions

Only 2d (first R2) super-Poincare invariance is unbroken, four Q’s.

Φ(z1, z̄1; z2, z̄2) =
∑
l;l̄

Φl;l̄(z1, z̄1)zl2z̄
l̄
2e
−(|z1|2+|z2|2)

All fields with non-zero l, l̄ are massive (+ usual massive fields)
and can be integrated out.



These are date for our theory in 2d on R2 at the origin of
transverse R2

ε . Instead of shift symmetry along T 2 for KK we have
rotation symmetry in transverse R2

ε ..

R2 can be replaced by any 2d manifold Σ, for example R× S1.

Effective theory is 2d and is abelian, U(1)N , N = 2 gauge theory
on Σ = R× S1 with exactly computable twisted effective
superpotential and vacuum equation:

W̃ eff ({a}; τ,m, ε); V acua⇔ 1
2πi

∂W̃ eff

∂ai
= ni

Twisted effective superpotential: One could rotate both R2’s:
R4 ⇒ R2

ε1 ×R
2
ε2 .

This deformation gives effectively 0-dimensional theory with action:

A({a}; τ,m, ε1, ε2) = −logZ({a}; τ,m, ε1, ε2)

where Z({a}; τ,m, ε1, ε2) is full partition function.



Z({a}; q,m, ε1, ε2) = Zpert({a}; τ,m, ε1, ε2)Zinst({a}; q,m, ε1, ε2)

Zinst is an expansion in the powers of q where n-th order term is
an integral over moduli space Mn of instanton number n.

(ε1, ε2) were introduced, MNS ’97, to regularize these integrals
over Mn since Mn is non-compact. We can take the formula from
MNS ’97-’98, LNS ’97-’98, N ’02 for Zinst:

∞∑
k=0

qk

k!

∫
Rk

∏
1≤I<J≤k

R+(φIJ)
R−(φIJ)

k∏
I=1

Q(φI)
ε (m+ ε1)(m+ ε2)
ε1ε2m(m+ ε)

dφI
2πi

ε = ε1 + ε2; φIJ = φI − φJ

R+(x) = x2(x2 − ε2)(x2 − (m+ ε1)2)(x2 − (m+ ε2)2)

R−(x) = (x2 − ε21)(x2 − ε22)(x2 −m2)(x2 − (m+ ε)2)

Q(x) =
P (x−m)P (x+m+ ε)

P (x)P (x+ ε)
; P (x) =

N∏
l=1

(x− al)



• According LNS ’98 (ε1, ε2) correspond to Qε1,ε2 = Q+ εµJ
µ →

can test SW prepotential directly from instanton calculus.

• UV Lagrangian in Ω-background - N ’02, interpreted in terms of
boundary conditions/branes in NW ’10

Z({a}; τ,m, ε1, ε2) defines many important things, among others:

• Prepotential for theory with ε1 = ε2 = 0 - N ’02

F({a}; τ,m) = lim
ε1,ε2→0

ε1ε2logZ({a}; τ,m, ε1, ε2)

• Superpotential W̃ eff (ε) for the theory with ε2 = 0 - NS ’09-3:

W̃ eff ({a}; τ,m, ε) = lim
ε2→0

ε2logZ({a}; τ,m, ε1 = ε, ε2)

and importantly W̃ eff ({a}; τ,m, ε) = F({a};τ,m)
ε + ....



What is exactly the eCM quantization problem for which this W̃ eff

gives the Yang’s function and SUSY vacua - the exact spectrum?

• For eCM replace pi = ε ∂
∂qi

, and qi,m
2, ε - complex

• Write the eigenvalue problem for all Hamiltonians, parametrize
eigenvalues E1, ..., EN in terms of a1, ..., aN - e. g. for H2:

[
ε2

2

N∑
i=1

∂2

∂qi
2 +m(m+ ε)

∑
i<j

P(qi − qj ;β)]Ψ(q) = E2(a)Ψ(q)

ε = −i~, m = i~ν ⇒ m(m+ ε) = −~2ν(ν − 1)

• Look for solutions in affine Weyl chamber with asympthotics at
(qi − qj)→ 0 of Ψ→ (qi − qj)ν , and extend outside this domain
by symmetry condition with respect to shift in β.



• Spectrum is discrete and is determined by our superpotential:

∂W̃ eff ({a}; q,m, ε)
∂ai

= ni; E2(a) = q
d

dq
W̃ eff ({a}; q,m, ε)

Checked in q-expansion for eCM knowing W̃ eff for N = 2∗.

In the limit when eCM becomes pToda (thus for pure N = 2
theory) - one can borrow the Bethe Ansatz solution from Gu ’81, S
’85, GP ’92, KL ’99 and make more precise comparison.

NS ’09-3 gave a precise identification of variables of gauge theory
with that of KL ’99 for which W̃ eff ({a}; q,m, ε) gives Bethe
equation and Yang-Yang function for pToda - very recently
checked exactly in KT ’10.

Most effective description of W̃ eff ({a}; q,m, ε) given in NS ’09-3
is through TBA-like construction :



W̃ eff = W̃ eff
pert + W̃ eff

inst. Perturbative part leads to Bethe Equation:

1 = exp(
∂W̃ eff

pert

∂ai
) = e

πiτai
ε

∏
j 6=i

S(ai − aj)

S(x) =
Γ
(−m+x

ε

)
Γ
(−m−x

ε

) Γ
(
1− x

ε

)
Γ
(
1 + x

ε

)
Non-perturbative part is determined through integral equation:

χ(x) =
∫
C

dy G0(x− y)log
(

1− qe−χ(y)Q(y)
)

G0(x) = ∂x log
(x+ ε)(x+m)(x−m− ε)
(x− ε)(x−m)(x+m+ ε)

On solutions of this equation evaluate the functional:

W̃ eff
inst =

∫
C

dx
[
−χ(x)

2
log
(

1− qQ(x)e−χ(x)
)

+ Li2
(
qQ(x)e−χ(x)

)]


