SUSY Gauge Theories and Quantum Many Body Systems

Samson L. Shatashvili

Trinity College, Dublin & IHES, Bures-Sur-Yvette & CERN

- N. Nekrasov, S. Sh. '09-1, '09-2, '09-3
- A. Gerasimov, S. Sh. '07, '08;
- A. Losev, N. Nekrasov, S. Sh. '97, '98, '99
- G. Moore, N. Nekrasov, S. Sh. '95, '97, '98

We start with YMH-theory, topological twist of 2d $\mathcal{N} = 2$ massive gauge theory (four supercharges), pure $\mathcal{N} = 2$ with massive adjoint matter, on Σ_q and the correspondence of MNS '97; GS '07, '08.

This topological field theory computes the intersection numbers on the moduli space \mathcal{M}_{q}^{H} of Hitchin equations on Σ_{g} :

 $F_{z\bar{z}}(A) - [\Phi_z, \Phi_{\bar{z}}] = 0$

 $\nabla_z(A)\Phi_{\bar{z}}=0; \quad \nabla_{\bar{z}}(A)\Phi_z=0$

Symmetries - unitary gauge transformations and U(1) action:

$$\Phi_z \to e^{i\alpha} \Phi_z; \qquad \Phi_{\bar{z}}, \to e^{-i\alpha} \Phi_{\bar{z}}$$

Here F(A) is a curvature of unitary connection ∇_A (A - gauge field) and Φ is adjoint valued 1-form; we assume G = U(N). \mathcal{M}_g^H is non-compact - intersection theory depends on one (equivariant) parameter c (regularization). c = 0 or ∞ - special. The generating function of special, "chiral ring", operators O^i :

$$Z_{\Sigma_g}(t) = \langle e^{-t_i O^i} \rangle = \sum_{\substack{n;\{i_1,\dots,i_n\}}} \frac{t_{i_1} t_{i_2} \dots t_{i_n}}{n!} \langle O^{i_1} \dots O^{i_n} \rangle =$$

$$= \sum_{\substack{n;\{i_1,\dots,i_n\}}} \frac{t_{i_1} t_{i_2} \dots t_{i_n}}{n!} \int_{\mathcal{M}_g^H} w_{i_1} \wedge \dots \wedge w_{i_n} =$$

$$= \sum_{\sigma \in BA} D(\sigma)^{2-2g} e^{-\sum_{i=1}^N t_i p^i(\sigma)}$$

$$D(\sigma) = \mu(\sigma)^{-\frac{1}{2}} \prod_{i < j} (\sigma_i - \sigma_j) (1 + \frac{(\sigma_i - \sigma_j)^2}{c^2})^{\frac{1}{2}}$$

$$\mu(\sigma) = det || \frac{\partial^2 W(\sigma)}{\partial \sigma_i \partial \sigma_j} ||$$

$$\sigma \in BA : \qquad e^{2\pi i \sigma_j} \prod_{k \neq j} \frac{\sigma_k - \sigma_j - ic}{\sigma_k - \sigma_j + ic} = 1 \quad \Leftrightarrow \quad \exp\left(\frac{\partial W(\sigma)}{\partial \sigma^i}\right) = 1$$

where $p^{i}(\sigma)$ is *i*-th order symmetric polynomial of $(\sigma_{1},...,\sigma_{N})$.

 Φ in Hitchin is a matter field (adjoint), no matter - F(A) = 0.

Adding new matter fields in gauge theory \Leftrightarrow corrections to the right hand side of Hitchin equations \Leftrightarrow other Bethe Eq.'s.

Topologically theory \Leftrightarrow vacuum sector of Physical Theory. g = 1:

$$Z_{\Sigma_1}(t) = Tr(-1)^F e^{-\beta H} e^{-\sum_i t_i O^i} = Tr_{vac} e^{-\sum_i t_i O^i}$$

$$\{Q_A, Q_A^{\dagger}\} = \{Q_B, Q_B^{\dagger}\} = 4H$$

 $Q_A^2 = Q_B^2 = 0; \qquad H|vacuum\rangle = 0$

Simpler question - Q_A (Q_B)-cohomology:

$$Q_{A(B)}|\Psi >= 0; \quad |\Psi > |\Psi > +Q_{A(B)}|...>$$

vacuum > is a "harmonic" representative in this cohomology.

If $|0\rangle$ is some vacuum state and operator O_i is in Q-cohomology

 $\{Q, O_i\} = 0, \qquad O_i \sim O_i + \{Q, ...\}$

 $|i\rangle = O_i|0\rangle$ is also a vacuum state.

Operator-state correspondence would relate the complete basis for vacuum states $|i\rangle$ to operators from cohomology O_i .

• These operators are independent of position up to Q-comm.

 $dO_i = \{Q, \ldots\}$

• They form a commutative ring called (twisted) chiral ring:

 $O_i O_j |0> = c_{ij}^k O_k |0>; \Rightarrow O_i O_j = c_{ij}^k O_k + \{Q, ...\}$

SUSY vacua form the representation of chiral ring.

Basically, for every $\mathcal{N} = 2$ theory there is a quantum integrable system (assuming all good conditions - discrete specturm ...).

For YMH this quantum integrable system is (GS '07, '08) Yang's system of *N*-particles on S^1 with Hamiltonian $(x_i \sim x_i + 1)$:

$$H_2 = -\sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + c \sum_{i \neq j} \delta(x_i - x_j)$$

This can be written in terms of Dunkle operators D_i :

$$D_i = -i\frac{\partial}{\partial x_i} + i\frac{c}{2}\sum_{j=i+1}^N (\epsilon(x_i - x_j) + 1)s_{ij}$$

Commuting H_k 's & spectrum (*N*-particle sector of *NLS*):

$$H_k = \sum_{j=1}^N D_j^k; \qquad H_k \Psi(\lambda) = (\sum_{j=1}^N \lambda_j^k) \Psi(\lambda)$$

with λ solving Bethe Equations. For each $(n_1 \ge n_2 \ge ... \ge n_N)$ - one solution $(\lambda_1, ..., \lambda_N)$; Yang-Yang '69, using $W(\lambda)$.

G/G WZW generalization of YMH introduces extra parameter, level of KM algebra k, in BA - $s \rightarrow i\infty$ limit of XXZ.

Gauge theory data:

- Gauge group (for us it will be U(N)), or products for various N's
- Supermultiplets ("representations" of super-Poincare algebra)

1. Gauge filed is in Vectormultiplet (Coulomb Branch); also has complex scalar σ , adjoint representation of gauge group

2. Matter fields (Higgs Branch) form Chiral multiplets - some representation of gauge group $R = \bigoplus_{i} M_i \otimes R_i$; R_i - irrep.

- Global (unbroken) symmetry group $H \subset imes_{\mathbf{i}} U(M_{\mathbf{i}})$
- Twisted masses \tilde{m}_i belong to the complexification of the Lie algebra of the maximal torus of H
- For each U(1) component of gauge group $t_b = rac{ heta_b}{2\pi} + ir_b$

These data determines:

• Twisted effective superpotential $\tilde{\mathcal{W}}^{eff}(\sigma)$ (holomorphic) as function of eigenvalues of σ : $(\sigma_1, ..., \sigma_N)$ and all above parameters

General formula for $\tilde{\mathcal{W}}^{eff}(\sigma)$ $(\rho = \frac{1}{2} \sum_{\alpha \in \Delta_+} \alpha)$: $\tilde{\mathcal{W}}^{\text{eff}}(\sigma) =$

$$= -\sum_{\mathbf{b}} 2\pi i t_{\mathbf{b}} t r_{\mathbf{b}} \sigma + t r_{R} \left(\sigma + \tilde{\mathbf{m}} \right) \left(\log \left(\sigma + \tilde{\mathbf{m}} \right) - 1 \right) - 2\pi < \rho, \sigma >$$

Chiral ring operators can be chosen to be $O^k = tr\sigma^k$ and:

$$Z_{\Sigma_g}(t) = \sum_{\sigma \in BA} D(\sigma)^{2-2g} e^{-\sum_{i=1}^N t_i p^i(\sigma)}$$

where sum is over:

$$\frac{1}{2\pi i}\frac{\partial \tilde{\mathcal{W}}^{\text{eff}}(\sigma)}{\partial \sigma^{i}} = n_{i}$$

Or equivalently - SUSY vacua (g = 1) correspond to solution of:

$$\exp\left(\frac{\partial \tilde{\mathcal{W}}^{\text{eff}}(\sigma)}{\partial \sigma^i}\right) = 1$$

 $D(\sigma)$ is known explicitly - is determined by same data.

For every quantum integrable system, solved by BA, there is a SUSY gauge theory with 4 supercharges (Q_A, Q_B, Q_A^+, Q_B^+) s.t.

a) exact Bethe eigenstates correspond to SUSY vacua

b) ring of commuting Hamiltonians \Leftrightarrow (twisted) chiral ring

Converse is also true but it is not always easy to recognize the quantum integrable system.

SUSY vacuum equations in gauge theory \Leftrightarrow Bethe equations

VEVs of chiral ring operators \Leftrightarrow eigenvalues = energies

Vacuum Ward Identity \Leftrightarrow Baxter equation

- Vacua: "critical" pts of effective twisted superpotential $\tilde{\mathcal{W}}^{eff}(\sigma)$
- Bethe equations: spectrum, critical points of Yang function $Y(\lambda)$
- The effective twisted superpotential corresponds to Yang function

$$\tilde{\mathcal{W}}^{eff}(\sigma) = Y(\lambda)$$

$$\sigma_i = \lambda_i; \quad i = 1, ..., N; \quad G = U(N)$$

• VEV of chiral ring operators $O_k \Leftrightarrow$ eigenvalues of Hamiltonians:

$$\langle \lambda | O_k | \lambda \rangle = E_k(\lambda)$$

 $H_k\Psi(\lambda) = E_k(\lambda)\Psi(\lambda)$

 $\tilde{W}^{eff}(\sigma)$ - effective twisted superpotential on Couloumb branch $Y(\lambda)$ - Yang's function as a function of rapidities λ_i

Details worked out \Leftrightarrow gauge theories identified (NS '09 -1,2):

• XXX spin chain - 2d gauge theory on Σ

• XXZ spin chain - 3d gauge theory on $\Sigma \times S^1$ (Higgs Branch infinite-dim., H contains translations along S^1 - KK: $\tilde{m}_n = n$)

- XYZ spin chain 4d gauge theory on $\Sigma imes T^2$
- Arbitrary spin group, representation, impurities, limiting models

IN THIS TALK WE FOCUS ON (NS '09-3)

- Periodic Toda 4d pure $\mathcal{N} = 2$ theory on $\Sigma \times R_{\epsilon}^2$
- Elliptic Calogero-Moser 4d $\mathcal{N} = 2^*$ theory on $\Sigma \times R_{\epsilon}^2$

For global group H instead of translation along S^1 in KK we use rotation of \mathbb{R}^2 with angle ϵ (complexified).

Four-dimensional $\mathcal{N} = 2$ Gauge Theory

Low energy effective theory of U(N), $\mathcal{N} = 2$, gauge theory in 4d is abelian $U(1)^N$ gauge theory. In two derivative approximation it is described by one function $\mathcal{F}(\{a\};\Lambda)$, SW '94, KLTY '94, AF '94.

For any given set $\{a\} = (a_1, ..., a_N)$ we expect a vacuum; more precisely - vacua are labeled by symmetric polynomials of these:

$$\{u\}: \quad (u_1 = \sum_{i=1}^N a_i; \quad u_2 = \sum_{i=1}^N a_i^2, \quad \dots \quad u_N = \sum_{i=1}^N a_i^N)$$

They correspond to the vacuum expectations of $tr\Phi^k$ where Φ is a complex scalar in the 4d vector multiplet. $\{u\}$ is called "u" plane.

Once $\mathcal{F}(\{a\}; \Lambda)$ is found the Lagrangian is written by simple rules.

 $\mathcal{F}(\{a\};\Lambda)$ is sum of perturbative \mathcal{F}^{pert} (tree level and 1-loop only contribute) and non-pertubative \mathcal{F}^{inst} terms; Λ counts instantons.

 $\mathcal{N} = 2^* \Rightarrow$ pure $\mathcal{N} = 2$ theory plus massive adjoint matter. "Mass" *m* is some complex number.

Instanton counting parameter is $q = e^{i\tau}$; $\tau = i/g^2 + \theta$. In $\mathcal{N} = 2^*$ theory τ doesn't run.

Pure $\mathcal{N} = 2$ theory is a limit when $m \to \infty$ - matter decouples.

 Λ , instanton counting parameter in this limit is: $m^{2N}q = \Lambda^{2N}$; Λ is kept finite when $m \to \infty$; $q \to 0$:

$$\mathcal{F}^{pert}(a;\tau,m) = \frac{\tau}{2} \sum_{i=1}^{N} a_i^2 + \frac{3N^2m^2}{2} + \frac{1}{4} \sum_{i,j=1}^{N} [(a_i - a_j)^2 log(a_i - a_j) - (a_i - a_j + m)^2 log(a_i - a_j + m)]$$

Non-perturbative part is of course an infinite sum of the type:

$$\mathcal{F}^{non-pert}(a;\tau,m) = \sum_{k=1}^{\infty} q^k \mathcal{F}_k(a;m), \quad q = e^{2\pi i \tau}$$

Classical Algebraic Integrable System

 $\mathcal{F}(\{a\}:\Lambda)$ has nice interpretation in terms of classical ACIS -pToda, eCM,... (GKMMM '95, MW '95, DW '96, G '09,...):

- A complex algebraic manifold M of complex dimension 2r
- Everywhere non-degenerate, closed holomorphic (2, 0)-form $\Omega_C^{2,0}$

• A holomorphic map $H: M \to C^r$, fibers $J_h = H^{-1}(h)$ are (polarized) abelian varieties (complex tori), $\{H_i, H_j\}_{\Omega_c^{2,0}} = 0$

Polarization is a Kahler form ω whose restriction on each fiber is integral class: $[w] \in H^2(J_h, Z) \cap H^{1,1}(J_h)$

Using the polarization introduce A and B-cycles ($\langle A_i, B^j \rangle = \delta_i^j$, bases in $H_1(J_h, Z)$) define "action variables" on base via periods:

$$a_i = \int_{A_i} \Theta_C, \qquad a_D^i = \int_{B^i} \Theta_C, \qquad \Omega_C = d\Theta_C$$

In real case, $C^r \leftrightarrow R^r$, fibers are real tori T^r , exactly r real periods - usual action variables; angular variables - r angles of tori.

Since we get twice as many as the (complex) dimension of the base these variables must be related. Locally:

$$a_D^i = \frac{\partial \mathcal{F}(a)}{\partial a^i} \quad \Rightarrow \quad \theta = \sum_i a_D^i da_i = d\mathcal{F}(a)$$

The base can be supplied with the Rigid Special Geometry structure - locally a Lagrangian submanifold (holomorphic) in C^{2r} .

There is a notion of prepotential in Gauge Theory and in ACIS.

• For every 4d $\mathcal{N} = 2$ gauge theory there is ACIS with same $\mathcal{F}(a)$.

Important ACIS's - pToda and eCM, particular cases of more general ACIS - Hitchin integrable systems.

$\mathcal{N} = 2^*$ and Elliptic Calogero-Moser

U(N) 4d $\mathcal{N} = 2^*$ theory has prepotential $\mathcal{F}(a_1, ..., a_N; \tau, m)$ which comes from Elliptic Calogero-Moser (eCM) ACIS.

eCM - N particles $q_1, q_2, ..., q_N$ on the circle of circumference β , $q_i \sim q_i + \beta$, which interact with the pair-wise potential:

$$H_2 = \sum_{i=1}^{N} p_i^2 + U(q); \qquad U(q) = m^2 \sum_{i < j} \mathcal{P}(q_i - q_j)$$

$$\mathcal{P}(x) = \sum_{n \in \mathbb{Z}} \frac{1}{\sinh^2(x + n\beta)} = u_0(x) + \sum_{k=1}^{\infty} q^k u_n(x)$$
$$q = e^{-2\beta}; \quad u_0 = \frac{1}{\sinh^2 x} = \sum_k n e^{-kx}; \quad u_k(x) = 4 \sum_{d|k} d(e^{dx} + e^{-dx})$$

In order to describe Poisson commuting H_i 's - introduce the Lax operator on phase space $T^*(C^{\times})^N$ with $\Omega_C^{2,0} = \sum_i dp_i \wedge dq_i$:

$$\Phi_{ij}(z|p,q) = p_i \delta_{ij} + m \frac{\Theta(z+q_i-q_j)\Theta'(0)}{\Theta(q_i-q_j)\Theta(z)} (1-\delta_{ij})$$

$$\Theta(x) = -\sum_{k=Z+\frac{1}{2}} (-1)^k q^{\frac{k^2}{2}} e^{2kx}; \quad q = e^{2\pi i\tau}; \quad \tau = \frac{i\beta}{\pi}$$

Invariants of matrix $\Phi(z)$, coefficients of the polynomial $\det(x - \Phi(z))$, give H_i 's. For example $tr\Phi(z)^2 = H_2 - \mathcal{P}(z)$.

Spectral curve: $C_h \subset C \times C^{\times}$ is defined as zero locus of characteristic polynomial: $det(x - \Phi(z)) = 0$.

 $H^{-1}(h)$ is given by the product $C\times J_h$. The C-factor corresponds to the center-of-mass mode $\sum_i q_i$, while the compact factor $J_h=Jac(\bar{C}_h)$ is the Jacobian of the compactied curve C_h .

 a_i, a_D^i are periods of differential $\lambda = \frac{1}{2\pi} x dz \Rightarrow \mathcal{F}(a)$

Note: periods of $\Theta = \sum_{i} p_i dq_i$ are same as periods of λ .

Quantization \Leftrightarrow Deformation of SYM

Now we are going to do two things:

1) Quantize integrable system - Planck constant we denote by ϵ

2) ϵ -deform 4d $\mathcal{N} = 2$ gauge theory - s.t. vacua \Leftrightarrow eigenstates

1. Suppose we choose a_i^D as action variables - BS (we also need to choose half-dimensiona submanifold, real slice):

$$a_i^D = \epsilon \times n_i = \frac{\partial \mathcal{F}(a)}{\partial a_i} \quad \Rightarrow \quad \frac{\partial Y(a)}{\partial a_i} = n_i \quad s.t. \quad Y(a) = \frac{\mathcal{F}(a)}{\epsilon}$$

This semi-classical picture it is very suggestive to lead to the exact formula in the form of Bethe equation with some $Y(a; \epsilon)$:

$$\frac{\partial Y(a;\epsilon)}{\partial a_i} = n_i$$

Semiclassical formula suggests to look for quantization when:

$$Y(a;\epsilon) = \frac{\mathcal{F}(a) + O(\epsilon)}{\epsilon}$$

2. We need to ϵ -deform the original 4d $\mathcal{N} = 2^*$ theory in such way that the effective low energy theory becomes two-dimensional.

• 4d $\mathcal{N}=2^*$ theory has continues spectrum of vacua - "u"-plane.

• ϵ -deformed theory - must have four supercharges and discrete spectrum of vacua given by critical points of $\tilde{W}(a;\epsilon) = Y(a;\epsilon)$

Thus the residue of a single pole in ϵ for $\tilde{W}(a;\epsilon)$ should be given by 4d superpotential $\mathcal{F}(a)$.

In fact we know such theory - 4d gauge theory on $R^2 \times R_{\epsilon}^2$.

 $\mathcal{N} = 2$ gauge theory on $\mathbb{R}^2 \times \mathbb{R}^2_{\epsilon}$ is a deformation of $\mathcal{N} = 2$ theory on $\mathbb{R}^2 \times \mathbb{R}^2$ with one, equivariant, parameter ϵ which corresponds to the rotation of second \mathbb{R}^2 around its origin.

- Denote corresponding vector field $V = \epsilon (x^2 \partial_3 x^3 \partial_2)$.
- $z_1 = x_0 + ix_1, z_2 = x_2 + ix_3$. ϵ rotates z_2 by a phase.

$$L = \frac{1}{g_0^2} \left(-\frac{1}{2} trF \star F + Tr(D_A\phi - i_V F) \star (D_A\bar{\phi} - i_{\bar{V}}F) + \frac{1}{2} Tr([\phi,\bar{\phi}] + i_V D_A\bar{\phi} - i_{\bar{V}}D_A\phi)^2 + \frac{\theta_0}{2\pi} TrF \wedge F + fermions$$

Only 2d (first R^2) super-Poincare invariance is unbroken, four Q's.

$$\Phi(z_1, \bar{z}_1; z_2, \bar{z}_2) = \sum_{l; \bar{l}} \Phi_{l; \bar{l}}(z_1, \bar{z}_1) z_2^l \bar{z}_2^{\bar{l}} e^{-(|z_1|^2 + |z_2|^2)}$$

All fields with non-zero l, \bar{l} are massive (+ usual massive fields) and can be integrated out.

These are date for our theory in 2d on R^2 at the origin of transverse R_{ϵ}^2 . Instead of shift symmetry along T^2 for KK we have rotation symmetry in transverse R_{ϵ}^2 .

 R^2 can be replaced by any 2d manifold Σ , for example $R imes S^1$.

Effective theory is 2d and is abelian, $U(1)^N$, $\mathcal{N} = 2$ gauge theory on $\Sigma = R \times S^1$ with exactly computable twisted effective superpotential and vacuum equation:

$$ilde{W}^{eff}(\{a\}; au, m, \epsilon); \quad Vacua \Leftrightarrow \quad rac{1}{2\pi i} rac{\partial ilde{W}^{ ext{eff}}}{\partial a^i} = n_i$$

Twisted effective superpotential: One could rotate both R^2 's: $R^4 \Rightarrow R^2_{\epsilon_1} \times R^2_{\epsilon_2}$.

This deformation gives effectively 0-dimensional theory with action:

$$\mathcal{A}(\{a\};\tau,m,\epsilon_1,\epsilon_2) = -\log Z(\{a\};\tau,m,\epsilon_1,\epsilon_2)$$

where $Z(\{a\}; \tau, m, \epsilon_1, \epsilon_2)$ is full partition function.

 $Z(\{a\}; q, m, \epsilon_1, \epsilon_2) = Z^{pert}(\{a\}; \tau, m, \epsilon_1, \epsilon_2) Z^{inst}(\{a\}; q, m, \epsilon_1, \epsilon_2)$

 Z^{inst} is an expansion in the powers of q where n-th order term is an integral over moduli space \mathcal{M}_n of instanton number n.

 (ϵ_1, ϵ_2) were introduced, MNS '97, to regularize these integrals over \mathcal{M}_n since \mathcal{M}_n is non-compact. We can take the formula from MNS '97-'98, LNS '97-'98, N '02 for Z^{inst} :

$$\sum_{k=0}^{\infty} \frac{q^k}{k!} \int_{R^k} \prod_{1 \le I < J \le k} \frac{R_+(\phi_{IJ})}{R_-(\phi_{IJ})} \prod_{I=1}^k Q(\phi_I) \frac{\epsilon (m+\epsilon_1)(m+\epsilon_2)}{\epsilon_1 \epsilon_2 m(m+\epsilon)} \frac{\mathrm{d}\phi_I}{2\pi i}$$

$$\epsilon = \epsilon_1 + \epsilon_2; \quad \phi_{IJ} = \phi_I - \phi_J$$

$$R_+(x) = x^2 (x^2 - \epsilon^2) (x^2 - (m+\epsilon_1)^2) (x^2 - (m+\epsilon_2)^2)$$

$$R_-(x) = (x^2 - \epsilon_1^2) (x^2 - \epsilon_2^2) (x^2 - m^2) (x^2 - (m+\epsilon)^2)$$

$$Q(x) = \frac{P(x-m)P(x+m+\epsilon)}{P(x)P(x+\epsilon)}; \quad P(x) = \prod_{I=1}^N (x-a_I)$$

• According LNS '98 (ϵ_1, ϵ_2) correspond to $Q_{\epsilon_1, \epsilon_2} = Q + \epsilon_\mu J^\mu \rightarrow$ can test *SW* prepotential directly from instanton calculus.

 \bullet UV Lagrangian in $\Omega\text{-}background$ - N '02, interpreted in terms of boundary conditions/branes in NW '10

 $Z(\{a\}; \tau, m, \epsilon_1, \epsilon_2)$ defines many important things, among others:

• Prepotential for theory with $\epsilon_1 = \epsilon_2 = 0$ - N '02

$$\mathcal{F}(\{a\};\tau,m) = \lim_{\epsilon_1,\epsilon_2 \to 0} \epsilon_1 \epsilon_2 \log Z(\{a\};\tau,m,\epsilon_1,\epsilon_2)$$

• Superpotential $\tilde{W}^{eff}(\epsilon)$ for the theory with $\epsilon_2 = 0$ - NS '09-3:

$$\tilde{W}^{eff}(\{a\};\tau,m,\epsilon) = \lim_{\epsilon_2 \to 0} \epsilon_2 log Z(\{a\};\tau,m,\epsilon_1 = \epsilon,\epsilon_2)$$

and importantly $\tilde{W}^{eff}(\{a\};\tau,m,\epsilon)=rac{\mathcal{F}(\{a\};\tau,m)}{\epsilon}+....$

What is exactly the eCM quantization problem for which this \tilde{W}^{eff} gives the Yang's function and SUSY vacua - the exact spectrum?

• For eCM replace
$$p_i = \epsilon rac{\partial}{\partial q_i}$$
, and q_i, m^2, ϵ - complex

• Write the eigenvalue problem for all Hamiltonians, parametrize eigenvalues $E_1, ..., E_N$ in terms of $a_1, ..., a_N$ - e. g. for H_2 :

$$\left[\frac{\epsilon^2}{2}\sum_{i=1}^N \frac{\partial^2}{\partial q_i^2} + m(m+\epsilon)\sum_{i< j} \mathcal{P}(q_i - q_j;\beta)\right]\Psi(q) = E_2(a)\Psi(q)$$

 $\epsilon = -i\hbar, \quad m = i\hbar\nu \quad \Rightarrow \quad m(m+\epsilon) = -\hbar^2\nu(\nu-1)$

• Look for solutions in affine Weyl chamber with asympthotics at $(q_i - q_j) \rightarrow 0$ of $\Psi \rightarrow (q_i - q_j)^{\nu}$, and extend outside this domain by symmetry condition with respect to shift in β .

• Spectrum is discrete and is determined by our superpotential:

$$\frac{\partial W^{eff}(\{a\};q,m,\epsilon)}{\partial a_i} = n_i; \quad E_2(a) = q \frac{d}{dq} \tilde{W}^{eff}(\{a\};q,m,\epsilon)$$

Checked in q-expansion for eCM knowing \tilde{W}^{eff} for $\mathcal{N} = 2^*$.

In the limit when eCM becomes pToda (thus for pure $\mathcal{N} = 2$ theory) - one can borrow the Bethe Ansatz solution from Gu '81, S '85, GP '92, KL '99 and make more precise comparison.

NS '09-3 gave a precise identification of variables of gauge theory with that of KL '99 for which $\tilde{W}^{eff}(\{a\};q,m,\epsilon)$ gives Bethe equation and Yang-Yang function for pToda - very recently checked exactly in KT '10.

Most effective description of $\tilde{W}^{eff}(\{a\};q,m,\epsilon)$ given in NS '09-3 is through TBA-like construction :

 $\tilde{W}^{eff} = \tilde{W}^{eff}_{pert} + \tilde{W}^{eff}_{inst}$. Perturbative part leads to Bethe Equation:

$$1 = \exp(\frac{\partial \tilde{W}_{\text{pert}}^{eff}}{\partial a_i}) = e^{\frac{\pi i \tau a_i}{\epsilon}} \prod_{j \neq i} S(a_i - a_j)$$
$$S(x) = \frac{\Gamma\left(\frac{-m+x}{\epsilon}\right)}{\Gamma\left(\frac{-m-x}{\epsilon}\right)} \frac{\Gamma\left(1 - \frac{x}{\epsilon}\right)}{\Gamma\left(1 + \frac{x}{\epsilon}\right)}$$

Non-perturbative part is determined through integral equation:

$$\chi(x) = \int_{\mathcal{C}} dy \, G_0(x-y) \log\left(1 - q e^{-\chi(y)} Q(y)\right)$$
$$G_0(x) = \partial_x \log \frac{(x+\epsilon)(x+m)(x-m-\epsilon)}{(x-\epsilon)(x-m)(x+m+\epsilon)}$$

On solutions of this equation evaluate the functional:

$$\tilde{W}_{inst}^{eff} = \int_{\mathcal{C}} \mathrm{d}x \, \left[-\frac{\chi(x)}{2} \log\left(1 - qQ(x)e^{-\chi(x)}\right) + \mathrm{Li}_2\left(qQ(x)e^{-\chi(x)}\right) \right]$$