SUSY Gauge Theories
and
Quantum Many Body Systems

Samson L. Shatashvili
Trinity College, Dublin & IHES, Bures-Sur-Yvette & CERN

£ @

N. Nekrasov, S. Sh. - '09-1, '09-2, '09-3

A. Gerasimov, S. Sh. - '07, '08;

A. Losev, N. Nekrasov, S. Sh. - '97, '98, '99
G. Moore, N. Nekrasov, S. Sh. - '95, '97, '98




We start with Y M H-theory, topological twist of 2d A/ = 2 massive
gauge theory (four supercharges), pure ' = 2 with massive adjoint
matter, on X, and the correspondence of MNS '97; GS 07, '08.

This topological field theory computes the intersection numbers on
the moduli space /\/lf of Hitchin equations on ¥:

F.z(A) — [®.,®:] =0

V.(A)®:=0; Vz(A4)®,=0

Symmetries - unitary gauge transformations and U(1) action:
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Here F'(A) is a curvature of unitary connection V4 (A - gauge
field) and @ is adjoint valued 1-form; we assume G' = U(N).

/\/lH is non-compact - intersection theory depends on one
(equwarlant) parameter ¢ (regularization). ¢ = 0 or co - special.



The generating function of special, " chiral ring”, operators O':
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where p’(c) is i-th order symmetric polynomial of (o1, ...,0n).



® in Hitchin is a matter field (adjoint), no matter - F'(A) = 0.

Adding new matter fields in gauge theory < corrections to the
right hand side of Hitchin equations < other Bethe Eq.’s.

Topologically theory < vacuum sector of Physical Theory. g = 1:

ZEl (t) = TT‘(*l)Fe_ﬁHe_ >, tOf _ Trygce™ >, 00

{Qa, Q1) = {Qp, QL) = 4H

Q4 = Q% =0; H|vacuum >=0

Simpler question - 4 (Q)g)-cohomology:
QA(B)|‘1] >=0; |¥ >~ |\I/>+QA(B)|... >

vacuum > is a “harmonic” representative in this cohomology.



If |0 > is some vacuum state and operator O; is in ()-cohomology
li >= 0;|0 > is also a vacuum state.

Operator-state correspondence would relate the complete basis for
vacuum states |i > to operators from cohomology O;.

e These operators are independent of position up to (Q-comm.
dO; ={Q, ...}
e They form a commutative ring called (twisted) chiral ring:
Oi0j|0 >= CZOHO >, = OZO] = CZOk: + {Q, }

e SUSY vacua form the representation of chiral ring.

Basically, for every A/ = 2 theory there is a quantum integrable
system (assuming all good conditions - discrete specturm ...).



For Y M H this quantum integrable system is (GS '07, '08) Yang's
system of N-particles on S' with Hamiltonian (x; ~ x; + 1):
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This can be written in terms of Dunkle operators D;:
9 N
D= =i -+ zjzi;l(f(xi —xj) + 1)sy;

Commuting H}'s & spectrum (N-particle sector of NLS):

N N
H,=> D HIMN) =0 A)wn
j=1 j=1
with \ solving Bethe Equations. For each (ny > no > ... > ny) -
one solution (A1, ..., Ax); Yang-Yang '69, using W (\).

G /G W ZW generalization of Y M H introduces extra parameter,
level of KM algebra &, in BA - s — ioo limit of XXZ.



Gauge theory data:
e Gauge group (for us it will be U(V)), or products for various N's
e Supermultiplets (" representations” of super-Poincare algebra)

1. Gauge filed is in Vectormultiplet (Coulomb Branch); also
has complex scalar o, adjoint representation of gauge group

2. Matter fields (Higgs Branch) form Chiral multiplets - some
representation of gauge group R = @; M;®R;; R; - irrep.

e Global (unbroken) symmetry group H C x; U (M)

e Twisted masses m; - belong to the complexification of the Lie
algebra of the maximal torus of H

e For each U(1) component of gauge group - t, = 29—7’; +irp
These data determines:

o Twisted effective superpotential W/ () (holomorphic) as
function of eigenvalues of o: (071,...,0x) and all above parameters



General formula for W/ (0) (p = %Z%A+ a):
Wwett(o) =

=— Z27ritbtrba+tr3 (0 +m) (log(c+m)—1)—271 < p,0 >
b

Chiral ring operators can be chosen to be OF = trg" and:

Zs,(t) = 3 D(o)? e Xk ')
ceEBA
where sum is over:

1 oWt (o)
o Hot
Or equivalently - SUSY vacua (¢ = 1) correspond to solution of:

A reff
- (fwgw) 1

D(o) is known explicitly - is determined by same data.



For every quantum integrable system, solved by BA, there is a
SUSY gauge theory with 4 supercharges (Q4,Qp, Q. Q%) s-t.

a) exact Bethe eigenstates correspond to SUSY vacua
b) ring of commuting Hamiltonians < (twisted) chiral ring

Converse is also true but it is not always easy to recognize the
quantum integrable system.

SUSY vacuum equations in gauge theory < Bethe equations
VEVs of chiral ring operators < eigenvalues = energies

Vacuum Ward Identity < Baxter equation



e Vacua: “critical” pts of effective twisted superpotential W¢// (o)
e Bethe equations: spectrum, critical points of Yang function Y (\)

e The effective twisted superpotential corresponds to Yang function

Wl (o) = Y ())

o;=XN; i=1,..,N; G=U(N)

e VEV of chiral ring operators O < eigenvalues of Hamiltonians:

| < MO\ >= Ep(V)]

HpW(A) = Ee(\)¥(A)

Well (o) - effective twisted superpotential on Couloumb branch
Y (A) - Yang's function as a function of rapidities \;



Details worked out < gauge theories identified (NS '09 -1,2):
e X X X spin chain - 2d gauge theory on ¥

e X X7 spin chain - 3d gauge theory on ¥ x S! (Higgs Branch
infinite-dim., H contains translations along S! - KK: 7, = n)

e XY Z spin chain - 4d gauge theory on 3 x T2
e Arbitrary spin group, representation, impurities, limiting models
IN THIS TALK WE FOCUS ON (NS '09-3)

e Periodic Toda - 4d pure A/ = 2 theory on ¥ x R?

e Elliptic Calogero-Moser - 4d N = 2* theory on ¥ x R?

For global group H instead of translation along S' in KK we use
rotation of R? with angle ¢ (complexified).



Four-dimensional A/ = 2 Gauge Theory

Low energy effective theory of U(N), N = 2, gauge theory in 4d is
abelian U(1)" gauge theory. In two derivative approximation it is
described by one function F({a}; A), SW '94, KLTY '94, AF '94.

For any given set {a} = (a1, ...,an) we expect a vacuum; more
precisely - vacua are labeled by symmetric polynomials of these:

N N N
{u} : (u1:Zai; UQZZG?7 UN:ZC%N)
i=1 i=1 i=1

They correspond to the vacuum expectations of tr®* where ® is a
complex scalar in the 4d vector multiplet. {u} is called “u" plane.

Once F({a};A) is found the Lagrangian is written by simple rules.

F({a}; A) is sum of perturbative F7¢"! (tree level and 1-loop only
contribute) and non-pertubative 75" terms; A counts instantons.



N = 2* = pure N = 2 theory plus massive adjoint matter.
“Mass” m is some complex number.

Instanton counting parameter is ¢ = ¢;7 =i/g> + 0. In N = 2*
theory 7 doesn't run.

Pure N = 2 theory is a limit when m — oo - matter decouples.

A, instanton counting parameter in this limit is: m?Vq = A%V; A
is kept finite when m — oo;q — O:

N 3N m?2 N
FPert(a;1,m) Z 24 + - Z log( i—aj)—
1,5=1
—(a; —a; + m) log(a; — aj +m)]

Non-perturbative part is of course an infinite sum of the type:

Fnon— pert CL T, m § :q fk a m q:e2mf



Classical Algebraic Integrable System

F({a} : A) has nice interpretation in terms of classical ACIS
-pToda, eCM,... (GKMMM '95, MW '95, DW '96, G '09,...):

e A complex algebraic manifold M of complex dimension 27
e Everywhere non-degenerate, closed holomorphic (2, 0)-form Q%lo

e A holomorphic map H : M — C", fibers J,, = H'(h) are
(polarized) abelian varieties (complex tori), {Hi,Hj}Q%o =0

Polarization is a Kahler form w whose restriction on each fiber is
integral class: [w] € H*(Jy,, Z) 0 HYY(Jy,)

Using the polarization introduce A and B-cycles ( < A;, B/ >= (5f
bases in Hy(J),, Z)) define “action variables” on base via periods:



ai:/ Oc, ar = [ Oc, Qe = dO¢
A; B

In real case, C" < R", fibers are real tori 7", exactly r real
periods - usual action variables; angular variables - r angles of tori.

Since we get twice as many as the (complex) dimension of the
base these variables must be related. Locally:

0F (a) i
5ai 0= ; apda; = dF(a)

iy =
The base can be supplied with the Rigid Special Geometry
structure - locally a Lagrangian submanifold (holomorphic) in C?".
There is a notion of prepotential in Gauge Theory and in ACIS.
e For every 4d N' = 2 gauge theory there is ACIS with same F(a).

Important ACIS's - pToda and eCM, particular cases of more
general ACIS - Hitchin integrable systems.



N = 2* and Elliptic Calogero-Moser

U(N) 4d N' = 2* theory has prepotential F(ay, ...,an;T,m)
which comes from Elliptic Calogero-Moser (eCM) ACIS.

eCM - N particles ¢1, q2, ..., qn on the circle of circumference (3,
¢ ~ q; + 8, which interact with the pair-wise potential:
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In order to describe Poisson commuting H;'s - introduce the Lax
operator on phase space 77 (C*)" with Q%O =, dp; N dg;:



®ij(zlp, q) = pidij + m@(g;;i%_qgg(@z)m) (1= dy5)

2 ) ;
o) =~ 3 (gt g=er o=
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Invariants of matrix ®(z), coefficients of the polynomial
det(z — ®(2)), give H;'s. For example tr®(z)? = Hy — P(z).
Spectral curve: C;, C C' x C* is defined as zero locus of
characteristic polynomial: det(z — ®(z)) = 0.

H~(h) is given by the product C' x .J, . The C-factor
corresponds to thg center-of-mass mode ) . ¢; , while the compact
factor J, = Jac(C}) is the Jacobian of the compactied curve C}, .

a;, a’, are periods of differential A\ = 5-2zdz = F(a)

Note: periods of © = ). p;dg; are same as periods of \.



Quantization < Deformation of SYM

Now we are going to do two things:
1) Quantize integrable system - Planck constant we denote by ¢

2) e-deform 4d N = 2 gauge theory - s.t. vacua <> eigenstates

1. Suppose we choose a” as action variables - BS (we also need to

i
choose half-dimensiona submanifold, real slice):

0F(a Y (a Fl(a
aP =exn; = aéi) = aéi):ni st. Y(a) = i)
This semi-classical picture it is very suggestive to lead to the exact
formula in the form of Bethe equation with some Y (a;€):

Y (ase)
—_— =N
3@1- !
Semiclassical formula suggests to look for quantization when:
F(a)+ O(e)

€

Y(ase) =



2. We need to e-deform the original 4d N' = 2* theory in such way
that the effective low energy theory becomes two-dimensional.

e 4d N = 2* theory has continues spectrum of vacua - “u”-plane.

e c-deformed theory - must have four supercharges and discrete
spectrum of vacua given by critical points of W (a;€) = Y (a;¢€)

Thus the residue of a single pole in ¢ for W (a; ¢) should be given
by 4d superpotential F(a).

In fact we know such theory - 4d gauge theory on R? x R2,

N = 2 gauge theory on R? x R? is a deformation of A/ = 2 theory
on R? x R? with one, equivariant, parameter ¢ which corresponds
to the rotation of second R? around its origin.



e Denote corresponding vector field V' = e(220; — 2°05).

® 21 = xo+1ir1, 29 = Ty + ix3. € rotates zo by a phase.
1 1 ) - .
L= 7(—§t7’F*F—|—TT‘(DA¢—ZvF)*(DA(Z)— Z“/F)-F
90

1 - - 0
+ iTT([(b’ @) +ivDad — iy Dad)* + 2—OT7’F A F + fermions
77

Only 2d (first R?) super-Poincare invariance is unbroken, four Q's.
— — _ ] _ 2 2
D(z1, 215 22, 22) = Z@l;;(zl,zl)zézée (17 +221)
Il

All fields with non-zero [, are massive (4 usual massive fields)
and can be integrated out.



These are date for our theory in 2d on R? at the origin of
transverse RR2. Instead of shift symmetry along 7% for KK we have
rotation symmetry in transverse R2..

R? can be replaced by any 2d manifold 3, for example R x S'.

Effective theory is 2d and is abelian, U(1)", A/ = 2 gauge theory
on ¥ = R x S with exactly computable twisted effective
superpotential and vacuum equation:

1 owet

Weff({a}QTam,G); Vacua < 31 B =n,

Twisted effective superpotential: One could rotate both R?'s:
R*= R? x RZ.

This deformation gives effectively O-dimensional theory with action:
A({a’}7 T, M, €1, 62) = —ZOQZ({G}, T, M, €1, 62)

where Z({a};T,m,e1,¢€2) is full partition function.



Z({a}a q,m,e€q, 62) - Zpe?“t({a}; T,m,e€q, 62)27;71575({@}; q,m,e€q, 62)
Z™st is an expansion in the powers of ¢ where n-th order term is

an integral over moduli space M,, of instanton number n.

(€1, €2) were introduced, MNS '97, to regularize these integrals
over M,, since M,, is non-compact. We can take the formula from
MNS '97-'98, LNS '97-'98, N '02 for Z™st:

Ri(¢ +e1)(m+e2) do
Zk;l/R +IJHQ (m+e1)(m+ e) dor

1<I<I<k (b[] €1€2 m(m + 6) 271
€ =€+ €2; ¢IJ =¢1r—¢J
Ri(z) = 2*(@® = &) (2 — (m+ 1)) (2® — (m + &2)?)
R_(z) = (2* — §)(2? — &)(a® = m?)(2® — (m + ¢)?)
P(x —m)P(x+m+e) _N
P(l’)P($+6) ) P(‘T)_H(‘T*al)

J1—1

Qr) =




e According LNS '98 (1, €2) correspond to Q¢ e, = Q +€,J" —
can test ST prepotential directly from instanton calculus.

e UV Lagrangian in Q-background - N '02, interpreted in terms of
boundary conditions/branes in NW '10

Z({a};T,m, €1, €r) defines many important things, among others:
e Prepotential for theory with e; = e =0 - N '02

F{a};m,m) = 611220 e1ealogZ({a};,m, €1, €2)

e Superpotential 1W¢//(¢) for the theory with e; = 0 - NS '09-3:

Weff({a};T, m,e) = lim0 ealogZ({a}; T, m,e1 = €, €2)
€0—

and importantly W'/ ({a};7,m,€) = M + ...



What is exactly the eCM quantization problem for which this T¢//
gives the Yang's function and SUSY vacua - the exact spectrum?

0 2
e For eCM replace p; = €9g and ¢;, m*, € - complex

e Write the eigenvalue problem for all Hamiltonians, parametrize
eigenvalues Fy, ..., B in terms of ay,...,an - e. g. for Hs:

62 0?

Ezan +m(m+€) > Pla — q;; 8)¥(q) = Ea(a)¥(q)
=1 L 1<J
e=—ih, m=ilv = m(m+e)=—-Rv(v-1)

e Look for solutions in affine Weyl chamber with asympthotics at
(gi —q;j) — 0 of ¥ — (¢; — ¢;)”, and extend outside this domain
by symmetry condition with respect to shift in .



e Spectrum is discrete and is determined by our superpotential:

oWwell ({a}; q,m, €) d -
I $) ) — .- — M/eff .
da, g3 E2(a) qdq ({a}aQamae)

Checked in g-expansion for eCM knowing We/f for N = 2%,

In the limit when eCM becomes pToda (thus for pure ' = 2
theory) - one can borrow the Bethe Ansatz solution from Gu '81, S
'85, GP '92, KL '99 and make more precise comparison.

NS '09-3 gave a precise identification of variables of gauge theory
with that of KL '99 for which W¢//({a}; g, m, ¢) gives Bethe
equation and Yang-Yang function for pToda - very recently
checked exactly in KT '10.

Most effective description of W“ff({a}; q,m,€) given in NS '09-3
is through TBA-like construction :



welf = wels 4 Wfff Perturbative part leads to Bethe Equation:

pert nst"

owelr
1= exp(ﬁert = H S(a; — aj)
J#i

D (=25) 1 (1 2)
M (=) T (1 2)

Non-perturbative part is determined through integral equation:

S(z) =

x@) = [ ayGote =)oz (1 - 2 VQ(w))

(x+e)(z+m)(x—m—e¢)
(x —€)(x —m)(x+m+e)
On solutions of this equation evaluate the functional:

Wikt = /c da [X(;”) log (1 - gQ(w)e ™)) + Lip (qQ(az)e—Xm)]

Go(z) = 0, log




