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© Generalized Heisenberg spin chains

© New combinatorics and the completeness problem

© New combinatorics and and the eigenvalue problem
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@ Choose a Lie algebra g, V(w) and {W1(z1), ..., Wn(2n)}: representations of U, (g)
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Generalized Inhomogeneous Heisenberg Spin chain
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@ Choose a Lie algebra g, V(w) and {W1(z1), ..., Wn(2n)}: representations of U,(g).

@ An R-matrix Rw,,v(w/z:) encodes the Boltzmann weights AND satisfies the
Yang-Baxter equation.
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@ Choose a Lie algebra g, V(w) and {W1(z1), ..., Wn(2n)}: representations of U,(g).

@ An R-matrix Rw,,v(w/z:) encodes the Boltzmann weights AND satisfies the
Yang-Baxter equation.

@ Define a transfer matrix Ty (w) = Tracev ][ [Rw,,v.
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@ Choose a Lie algebra g, V(w) and {W1(z1), ..., Wn(2n)}: representations of U,(g).

@ An R-matrix Rw,,v(w/z:) encodes the Boltzmann weights AND satisfies the
Yang-Baxter equation.

@ Define a transfer matrix Ty (w) = Tracev ][ [Rw,,v.

@ YBE = [Tv(w), Ty/(w')] = 0 for any choice of representations. = The
inhomogeneous, generalized Heisenberg spin chain is integrable.
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Fact: The Bethe ansatz “works well” when V, W; are special (KR-modules)
[Kulish-Reshetikhin, Kirillov,...].
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Fact: The Bethe ansatz “works well” when V, W; are special (KR-modules)
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Solvability and combinatorics

Fact: The Bethe ansatz “works well” when V, W; are special (KR-modules)
[Kulish-Reshetikhin, Kirillov,...].

Example: If g = A, KR modules in the limit ¢ — 1 are evaluation modules ~ V (kw;)

Algebraic-combinatorial structures of this model:

Q The completeness problem ~ Hilbert space of Ty (w).

Q Eigenvalue problem ~ The fusion relation for Ty (w).
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Solvability and combinatorics

Fact: The Bethe ansatz “works well” when V, W; are special (KR-modules)
[Kulish-Reshetikhin, Kirillov,...].

Example: If g = A, KR modules in the limit ¢ — 1 are evaluation modules ~ V (kw;)

Algebraic-combinatorial structures of this model:

Q The completeness problem ~ Hilbert space of Ty (w).
Do we have enough Bethe vectors to span H ~ W1 @ -+ @ Wn?
Recursion relation: The Q-system

Q Eigenvalue problem ~ The fusion relation for Ty (w).
If we know the eigenvalues of Ty for the fundamental representations V = V (w;),
we can compute them for all others.
Recursion relation: The T-system

The recursion relations are discrete integrable systems, solvable using an auxiliary
statistical model.
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Do the Bethe vectors form a basis for the Hilbert space?
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Do the Bethe vectors form a basis for the Hilbert space?

HeWi® - @ Wy

We should have d) = dim Hoqu(g)(VA, J() Bethe vectors in each “sector” X a
dominant highest weight.
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Do the Bethe vectors form a basis for the Hilbert space?
HeoeWi1®@- - Wy

We should have dy = dim Homy, (4)(Vx, H) Bethe vectors in each “sector” X a
dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe
vectors in the sector A:

M)\,n = Z/ (p ilm)
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The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

HeeWi@---@ Wy

We should have d, = dim Hoqu(g)(h, J() Bethe vectors in each “sector” A a
dominant highest weight.

There is a combinatorial formula for the number of Bethe

)

m

vectors in the sector A:

on={nk: 1<i<r;k €Zy} parametrizes the reps {W;}.
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The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

HeWi® - @ Wy

We should have d, = dim Hoqu(g)(VA, J() Bethe vectors in each “sector” A a
dominant highest weight.

There is a combinatorial formula for the number of Bethe

)

m

vectors in the sector A:

on={nk: 1<i<r;k €Zy} parametrizes the reps {W;}.
@ p = {pir} are called "vacancy numbers”, functions of Cartan matrix, m,n.
@ m are non-negative integers {m; ;} with 1 <1 <r.

@ The sum is restricted by “zero weight condition” and positivity of vacancy numbers.
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for any simple Lie algebra g.

Mxn =dx

If the characters of W; satisfy the Q-system recursion relation, then
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If the characters of W; satisfy the Q-system recursion relation, then

Mxn =dx
for any simple Lie algebra g.

The @Q-system recursion relation for A, is

where

Qint1Qi—1 = Qi — Qit1,kQi—1,k, 1<i<n,
@ Qo = Qri1,5 = 1 by convention;

k>1,
@ Boundary conditions: Q;,0 =1 and Q;,1 = charV (w;) = characters of the
fundamental representations.
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Drop the boundary condition Q; o = 1 and renormalize z; 5 = (—1)'/2/Q; 1
2
Tik+1%ik—1 = Tj,k + Tit1,kTi—1,k,

B fe = @iy = 1l

kezZ,1<i<r
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2
Tik+1Tik—1 = Tik T Tit1,kTi—1,k,

B fe = @iy = 1l

kezZ,1<i<r
@ Discrete dynamical system for r functions x; of the discrete time parameter k.
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Drop the boundary condition Q; o = 1 and renormalize z; 5 = (—1)'/2/Q; 1
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Tok =Trp1k =1, kK€Z,1<i<r

@ This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each
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Drop the boundary condition Q; o = 1 and renormalize z; 5 = (—1)'/2/Q; 1

2,
Tik+1Tik—1 = Tjk + Tit1,kTi—1,ks L0,k = Tr+1,k = 1,

keZ,1<i<r J
@ Discrete dynamical system for r functions x; of the discrete time parameter k.

@ This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each
(i, k), it is called a mutation.

C

For any Cartan matrix C' of a simple Lie algebra g, the associated QQ-system equations
are mutations in a cluster algebra with trivial coefficients, and exchange matrix
B— (C’t -C -Ct

0
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@-system as an integrable discrete dynamical system
Drop the boundary condition Q;,0 = 1 and renormalize z; 1, = (—l)W2J Qik:
85 P\ Pl = l'sz + Tit1,kTi1,k, Tok =Tr+1,k=1, k€Z 1<i<r J

@ Discrete dynamical system for r functions x; of the discrete time parameter k.
@ This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each
(i, k), it is called a mutation.

Theorem (K.07)

For any Cartan matrix C' of a simple Lie algebra g, the associated QQ-system equations
are mutations in a cluster algebra with trivial coefficients, and exchange matrix

C/vl,ic 702
5= (72 %)

i
Theorem (Di-Francesco,K.)
The system is integrable, solvable, solutions are partition functions of paths on a
weighted graph.
- i

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 7/20



@ “Clusters” of r variables (z1(t)
node t of a regular r-tree.

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by
commutative variables:
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node t of a regular r-tree.

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by
commutative variables:
@ “Clusters” of r variables (z1(t)

., xr(t)) and an exchange matrix B live on each
@ Edges connected to each node are labeled 1, ..., 7.

!
v
a
it
v

«0O)>» «F»r « o>



What are cluster algebras?

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by
commutative variables:

@ “Clusters” of r variables (z1(t),...,z~(t)) and an exchange matrix B live on each
node t of a regular r-tree.

@ Edges connected to each node are labeled 1, ..., 7

@ If an edge labeled i connects node t with node ' then the clusters are related by a
rational expression:

t) =[] “++ng I () = ().
J
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Theorem (Fomin, Zelevinsky)

The cluster variables x;(t) at any node t are Laurent polynomials of (x1(t'), ..., zr(t"))
for any t,t.
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A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by
commutative variables:

@ “Clusters” of r variables (z1(t),...,z~(t)) and an exchange matrix B live on each
node t of a regular r-tree.

@ Edges connected to each node are labeled 1, ..., 7

@ If an edge labeled i connects node t with node ' then the clusters are related by a
rational expression:

t) =[] “++ng I () = ().
J
]

Theorem (Fomin, Zelevinsky)
The cluster variables x;(t) at any node t are Laurent polynomials of (x1(t'), ..., zr(t"))

for any t,t.

Conjecture

These polynomials have positive coefficients.

i
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Our system has more structure than a cluster algebra: It is integrable

@ The system has r integrals of the motion (functions of z; 5 which are independent of
of k.

. o 1 1 i
Example: For A, C,, =C = T1k—1%q ), + T1RTy g T Ty Ty g 1S independent
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The Q-system is an integrable sub-cluster algebra

Our system has more structure than a cluster algebra: It is integrable

@ The system has r integrals of the motion (functions of x; ; which are independent of
k).

Example: For A, Cr, =C = xl,k,w;i + xl,kx;i_l + xf_iw;i_l is independent
of k.

@ The @Q-system is solvable: z1; satisfied a linear recursion relation with constant
coefficients.

Example: For A1, z1 5 — Cz1 1 + 1, k42 = 0.

Solutions z1,x are partition functions of weighted paths on a graph; for A, with
r > 1, x; 1 are P.F. of families of i non-intersecting paths on this graph.
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The Q-system is an integrable sub-cluster algebra

Our system has more structure than a cluster algebra: It is integrable

@ The system has r integrals of the motion (functions of x; ; which are independent of
Example: For A, Cr, =C = xl,k,lx;i + -Tl,k%_,i_l + rfiw;i_l is independent
of k.

@ The @Q-system is solvable: z1; satisfied a linear recursion relation with constant
coefficients.
Example: For A1, L1,k — Cl‘l,k_‘_l + X1, k42 = 0.
Solutions z1,x are partition functions of weighted paths on a graph; for A, with
r > 1, x; 1 are P.F. of families of i non-intersecting paths on this graph.

@ The weights are positive so this proves positivity of the solutions (conjectured for
cluster algebra).
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For Ay,
Solution to linear recursion relation is

2
T1,k+1T1,k—1 = T1 5 + L.

Dt =1

Z1,0
U1
k20 l_tl—ytzys
—1 —1,—1 —1
Y1 =T1,1%10, Y2 =T11T1,00 Y3 = L1,171,0-
The generating function on weighted paths from node 1 to itself on the graph:
(4)
1 tys
(3)
1 tyz
(2)
1 ty1
@
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Example: The solution for the A; Q-system as path PF

For Al,
2
T1,k+1T1,k—1 = X7 ) + 1.

Solution to linear recursion relation is

Zm ok — 21,0
Wt = —

P
k=0 l_tl—tyg

—1 —-1_—1 —1
Yr =T1,1T1 0, Y2 =7T11%1,0, Y3 = T1,171,0.

The generating function on weighted paths from node 1 to itself on the graph:
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Y1 Y3 Y2r+1
G, = < ) < ) < ) < )
.. Y2y
Y2 Ya Y —¥

@ 7 1=Partition function of paths on G, from node 1 to itself;
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Solution of the ()-system for A,

Y2r+1

QL Q000

@ Zy,1=Partition function of paths on G, from node 1 to itself;

@ Nontrivial weights going from right to left:

xZ; i — .
i/241,0%i/2—1,1 i even;
T;i/2,0%i/2,1
Yi =Yio =
Z(; T .
(i+1)/2,1%(i—-1)/2,0 i odd,
T(i4+1)/2,0T(i—1)/2,1
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Solution of the ()-system for A,

@ Zy,1=Partition function of paths on G, from node 1 to itself;
@ Nontrivial weights going from right to left:

Li/2+41,0%i/2—1,1

i even;
T;i/2,0%i/2,1

Yi = Yi,0 =

T(i+1)/2,1T(i—1)/2,0 i 0dd7
T(i4+1)/2,0T(i—1)/2,1

Theorem (Di Francesco, K.)

@ Conserved quantities: C; = partition function of i hard particles on the medial
graph of G, independent under simultaneous translation the blue labels in y; 0.
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Solution of the ()-system for A,

Y1 Y3
G, = ‘ } ‘ }
Y2 Ya .. Y21

@ Zy,1=Partition function of paths on G, from node 1 to itself;

Y2r+1

@ Nontrivial weights going from right to left:

Li/2+41,0%i/2—1,1

i even;
T;i/2,0%i/2,1

Yi = Yi,0 =

T(i+1)/2,1T(i—1)/2,0 i 0dd7
T(i4+1)/2,0T(i—1)/2,1

Theorem (Di Francesco, K.)

@ Conserved quantities: C; = partition function of i hard particles on the medial
graph of G, independent under simultaneous translation the blue labels in y; 0.

a o o 1 5
@ Linear recursion relation: Z;io(_l)Jijl,kfj =0.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 11/ 20



Solution of the ()-system for A,

eNeNeNeNe

@ Zy,1=Partition function of paths on G, from node 1 to itself;
@ Nontrivial weights going from right to left:

Li/2+41,0%i/2—1,1

i even;
T;i/2,0%i/2,1
Yi = Yi,0 =
T, T .
(i+1)/2,1%(i—-1)/2,0 i odd,

T(i4+1)/2,0T(i—1)/2,1

Theorem (Di Francesco, K.)

@ Conserved quantities: C; = partition function of i hard particles on the medial
graph of G, independent under simultaneous translation the blue labels in y; o
o Linear recursion relation: 3"} (=1)7Cjz; _; = 0.

=0
o = (14 y1Z1,1)[k] (homogeneous component in y; of degree k).

xq

®

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 11/ 20



Example

For A, we have the following paths contributing to z1,3 on the graph G»

....................................................................................

yr

4
Y

2
Y1

23 = (1+31211)B] =11 211[2] = 1 (yF + 20192 + Y3 + Ysy2 + yay2).

1,0
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@ Valid choices of initial data for the Q-system x; g 11Zik—1 = T + Tit1,kTi—1,k
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@ Valid choices of initial data for the Q-system ; 4 1%i k-1 = T} + Tit1,kTiz1,k
5
1 eel
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@ Valid choices of initial data for the Q-system ; 4 1%i k-1 = T} + Tit1,kTiz1,k
5
1 eel

——-

T4,0 > T4,2
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“Mutating” between choices of initial conditions

@ Valid choices of initial data for the Q-system z; x+1Zi k-1 = mfk + Tip1,kTio1,k
5

Ta,0 > T4,2
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“Mutating” between choices of initial conditions

@ Valid choices of initial data for the Q-system z; x+1Zi k-1 = mfk + Tip1,kTio1,k
5 5

Ta,0 > T4,2

@ Have the form xm = {@i,m,, Tijm,+1: 1 <i<r}, |mi—mip1]| < 1. Choice of
initial conditions represented by m = (m1, ..., m,) (Motzkin path).
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“Mutating” between choices of initial conditions

@ Valid choices of initial data for the Q-system z; x+1Zi k-1 = mfk + Tip1,kTio1,k
5 5

Ta,0 > T4,2

g

@ Have the form xm = {@i,m,, Tijm,+1: 1 <i<r}, |mi—mip1]| < 1. Choice of
initial conditions represented by m = (m1, ..., m,) (Motzkin path).

@ Weights y;(m) = y;(xm) given by recursion: If m’ = m + ¢; then y;(m’) = y;(m)
except for:

Yai—1 = Y2i—1 + Y2

yéi = y2i+1y2i/yéi—1
Yait1 = Y2ir1y2i—1/Y2i—1
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“Mutating” between choices of initial conditions

@ Valid choices of initial data for the Q-system z; x+1Zi k-1 = mfk + Tip1,kTio1,k
5 5

Ta,0 > T4,2

g

@ Have the form xm = {@i,m,, Tijm,+1: 1 <i<r}, |mi—mip1]| < 1. Choice of
initial conditions represented by m = (m1, ..., m,) (Motzkin path).

@ Weights y;(m) = y;(xm) given by recursion: If m’ = m + ¢; then y;(m’) = y;(m)
except for:

Yai—1 = Y2i—1 + Y2

! /
i = Y2i+1Y2i [ Y2i— . :
Y2i = Y2it1y i/Y2i-1 , Mutation of weights.
Y2i41 = Y2it1Y2i—1/Y2i—1
! ! .
Y2i42 = :l/2;1+2,7/27,—1/?/2,;71 if mi =mi—1 = miy1.
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22i = y2i (Y2ip1) ™!

—m;

Z2i-1 = Y2i—1 .

Y2i,
0

_y2i/y2i+1’

Mig1 —m; = —1

mit1 —m; =1

m; — mi+1 = 0.

«O»r «F» B

a



220 = Y2i(Y2i+1)™

i+1— Mg

—y2i/y2it1, Mit1 —m; = —1

22i-1 = Y2i—1 + §  Y2i, mit1 —m; =1
0

Paths on the graph G, with weights z; give x1  as a function of data xm:

mg; — Mi+1 = 0
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—y2i/y2i+1,

22i = y2i(Y2ip1) T 22i—1 = Y2i—1 + { Y24, mir1 —m; =1

0 mg; — Mi41 = 0

Paths on the graph G, with weights z; give x1  as a function of data xm:

Mit1 —m; = —1

As a function of Xm = (Zs,m;, Ti,m;+1), the variables 1 are given by the homogeneous
component of degree k in y;'s in the partition function of paths from vertex 1 to itself on
the graph G, with weights z;:

PLEIL _ (14 gy am) s (1))

o = = E z wace
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Itzykson Meeting June 2010 14 /20



220 = Y2i(Y2i+1)™

i1y

—Y2i/Y2i41, Mig1 —m; = —1
22i-1 = Y2i—1 + §  Y2i, Mit1 —m; =1
0
Paths on the graph G, with weights z; give z1  as a function of data xm:

mg; — Mi41 = 0

As a function of Xm = (Zs,m;, Ti,m;+1), the variables 1 are given by the homogeneous
component of degree k in y;'s in the partition function of paths from vertex 1 to itself on
the graph G, with weights z;:

L1,my

T — (14 g1 (m) Z1,a ({2 (m) [
Proof of positivity of z; 1 follows from LGV.

=} (=)
~ RinatKedem (UIUC)  ltzykson Meeting 2010
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T g k+1T5 j0—1 = Tijr1,6 T 51,0 — Tigr,56 51,5,k
k> 0.

@ Satisfied by the transfer matrices T; ; , = Tv: auxiliary space V = Vi, () (j ~
spectral parameter) if we impose initial conditions: T; ;o = 1 and consider only
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T g k+1T5 j0—1 = Tijr1,6 T 51,0 — Tigr,56 51,5,k
k> 0.

@ Satisfied by the transfer matrices T; ; , = Tv: auxiliary space V = Vi, () (j ~
spectral parameter) if we impose initial conditions: T; ;o = 1 and consider only

@ Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].
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The T-system for A,

Tije+1Ti50—1 = Tijrr ki -1+ Tig1,5,6Ti—1,5,k

& Satisfied by the transfer matrices T} j, = Ty auxiliary space V = Vi, (5) (4 ~
spectral parameter) if we impose initial conditions: T; ;o = 1 and consider only
k>0.

@ Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].

@ Renormalize to have positive coefficients as for ()-system and relax the initial
conditions, consider k € Z.
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The T-system for A,

Tije+1Ti -1 = Tijrr,kTi-1,6 + Tiv1,6Ti-1,5,k

& Satisfied by the transfer matrices T} j, = Ty auxiliary space V = Vi, (5) (4 ~
spectral parameter) if we impose initial conditions: T; ;o = 1 and consider only
k>0.

@ Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].

@ Renormalize to have positive coefficients as for ()-system and relax the initial
conditions, consider k € Z.

@ This is also a cluster algebra mutation, and T; ; ; are cluster variables in an
appropriate cluster algebra.
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@ Define an algebra generated by (mildly noncommutative) invertible generators:
'H‘f,i,dil defined by the action on V = span{|j) : j € Z}:

Tikli+k+i)y =T klj—k—1),

dj) =15 =1).
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@ Define an algebra generated by (mildly noncommutative) invertible generators
'H‘f,i,dﬂ defined by the action on V = span{|j) : j € Z}:

Tiklj+k+1)=Tijkli—k—1i), dj)=1-1).
@ The T-system equations are obtained as matrix elements of
with

1 1
Tik+1T;  Tik—1 = Tig + Tig1,6T; 1 Tiz1,,

To.k =d2k’ Trirh — 2kt

«O0>» «F>» «E» <« > ae



The T-system as a non-commutative ()-system

@ Define an algebra generated by (mildly noncommutative) invertible generators:
T;‘f;,dil defined by the action on V = span{|j) : j € Z}:

Tiklj +k+i) =Tijkli —k—1), dj)=1j—1).
@ The T-system equations are obtained as matrix elements of
Ti k1T Tik—1 = Tk + Tigr 6 T; g Tic1,k,

with
To s = J2* Tri1p = d2(k+r+1).

@ This is an example of a non-commutative ()-system equation.
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Y Y. Yori1
G, = ‘ , ‘ ,
Yo Yy =z Y

27" P ; 1
@ Zi,1= paths from node 1 to itself on G, with non-commutative weights Y;.
Weighted paths respect non-commutative ordering!
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Y Y. Yori1
G, = ‘ , ‘ ,
Yo Yy =z Y

27" P ; 1
@ Zi,1= paths from node 1 to itself on G, with non-commutative weights Y;.
Weighted paths respect non-commutative ordering!

@ Nontrivial weights

Yoi = T;}d *Tig11T; gd° Ti1,0d®> |, Yai1 =Ty gd *TinT;y 1d°Tio1,0d”
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@ Zi,1= paths from node 1 to itself on G, with non-commutative weights Y;.
Weighted paths respect non-commutative ordering!

@ Nontrivial weights

Yoi = T;}d *Tig11T; gd° Ti1,0d®> |, Yai1 =Ty gd *TinT;y 1d°Tio1,0d”
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Solution of the T-system for A,

@ Z1,1= paths from node 1 to itself on GG, with non-commutative weights Y;.
Weighted paths respect non-commutative ordering!

@ Nontrivial weights

Yo = T;1d *Tiy11T; gd’Tim1,0d”  ,Yaio1 = T;gd *Ti 1 T;ty 1d*Ti—1,0d”.

Theorem (Di Francesco, K.)

o Conserved quantities: C; = partition function of i hard particles on the medial graph of Gr.
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Solution of the T-system for A,

2'r+1

~Q Q000

@ Z1,1= paths from node 1 to itself on GG, with non-commutative weights Y;.
Weighted paths respect non-commutative ordering!

@ Nontrivial weights

Yo = T;1d *Tiy11T; gd’Tim1,0d”  ,Yaio1 = T;gd *Ti 1 T;ty 1d*Ti—1,0d”.

Theorem (Di Francesco, K.)

o Conserved quantities: C; = partition function of i hard particles on the medial graph of Gr.

s Linear recursion relation: Z”’l( 1)7C;Ty j—j = 0.

° Tl,kTié = (1+ Z1,1Y1)[k] (homogeneous component in'Y; of degree k).
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Example of non-commutative partition function

For A, we have the following paths contributing to Ti 3 on the graph G»

Ys

Y 4
Y3

Yo
Y.

T1,3Ti(l) =1+ Z1aY1)[3] = Z1,1[2)Y1 = (YT + Y2Y1 + V1Yo + Y3 + Y3Va2 + Y4 Vo) Y;.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 18 /20



@ There are many choices of initial conditions for the T-system: We limit ourselves to
those described by Motzkin paths m = (mu, ..., m,.). (d*-invariant).
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@ There are many choices of initial conditions for the T-system: We limit ourselves to
those described by Motzkin paths m = (mu, ..., m,.). (d*-invariant).

@ The variable Tl,k+m1T1_,in1 as a function of T, the mutated data, is given by path
partition function on G, with new weights Z;

_Y;,:]_-’_IYQ'I:7
Zoi = (Yoip1) ™1 ™Yoy, Zioi—1 = Yo;—1+< Yo,

0

mip1 —m; = —1
miy1 —m; =1
m; — Mi41 = 0.
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partition function on G, with new weights Z;
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Mutations of non-commutative weights

@ There are many choices of initial conditions for the T-system: We limit ourselves to
those described by Motzkin paths m = (m, ..., m..). (d*-invariant).

@ The variable Tl,k+mT1_,in1 as a function of T, the mutated data, is given by path
partition function on G, with new weights Z,

-1
_Y2i+1Y2i7 mi+1 — MMy = —1

Zai = (Yaip1) ™1 ™Yoy, Zai—1 = Ya2;—1+< Yo, miy1 —m; =1
O mi; — Myi+1 = O.

where Y; are given by the recursion: If m’ = m + ¢; then Y;(m’) = Y;(m) except
for:

hi1 = Yoi_1 + Yo
Yhi = Yaip1 Yoi(Yh_y) ™"
Yoir1 = Yaiy1Yoi1(Yh 1) ™"
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Mutations of non-commutative weights

@ There are many choices of initial conditions for the T-system: We limit ourselves to
those described by Motzkin paths m = (m, ..., m..). (d*-invariant).

@ The variable ']I‘17k+m1'11‘1_jn1 as a function of T, the mutated data, is given by path
partition function on G, with new weights Z,

-1
_Y2i+1Y2i7 mi+1 — MMy = —1

Zai = (Yaip1) ™1 ™Yoy, Zai—1 = Ya2;—1+< Yo, miy1 —m; =1
O mi; — Myi+1 = O.

where Y; are given by the recursion: If m’ = m + ¢; then Y;(m’) = Y;(m) except
for:

9i—1 = Yo;—1 + Yo,
Yo; = Yaiy1Yai (Y1)
Yois1 = Yaiy1 Yoi1(Yh )"
Y;z+2 = Y22+2Y2271(Y{2i/,1)71 If m; = Mi—1 = Mi41.

Mutation of weights.
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functions.

@ Integrability allows us to explicitly solve for the variables in terms of path partition
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@ Integrability allows us to explicitly solve for the variables in terms of path partition
functions.

@ Non-commutative versions generalize: For example, the g-commuting Q-system is
the quantum cluster algebra [Berenstein and Zelevinsky].
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Conclusion

@ Integrability allows us to explicitly solve for the variables in terms of path partition
functions.

@ Non-commutative versions generalize: For example, the g-commuting @Q-system is
the quantum cluster algebra [Berenstein and Zelevinsky].

@ Associated Y-systems can also be described in terms of cluster algebras: Periodicity
conjecture of Zamolodchikov can be proved this way [Keller]. (No explicit solution
with this method yet).

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 20 / 20



Conclusion

@ Integrability allows us to explicitly solve for the variables in terms of path partition
functions.

@ Non-commutative versions generalize: For example, the g-commuting @Q-system is
the quantum cluster algebra [Berenstein and Zelevinsky].

@ Associated Y-systems can also be described in terms of cluster algebras: Periodicity
conjecture of Zamolodchikov can be proved this way [Keller]. (No explicit solution
with this method yet).

@ Rank 2 completely non-commutative case related to the “wall crossing formulas” of
Kontsevich and Soibelman.
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