Positivity proofs and integrable models

Rinat Kedem

University of Illinois

Itzykson Meeting June 2010

E

< = > < = > < = > < = >

2 New combinatorics and the completeness problem

3 New combinatorics and and the eigenvalue problem

Э

5900

Generalized Inhomogeneous Heisenberg Spin chain

• Choose a Lie algebra \mathfrak{g} , V(w) and $\{W_1(z_1), ..., W_N(z_N)\}$: representations of $U_q(\widehat{g})$.

< 口 > < 同

- Choose a Lie algebra \mathfrak{g} , V(w) and $\{W_1(z_1), ..., W_N(z_N)\}$: representations of $U_q(\widehat{\mathfrak{g}})$.
- An *R*-matrix $R_{W_i,V}(w/z_i)$ encodes the Boltzmann weights AND satisfies the Yang-Baxter equation.

naa

- Choose a Lie algebra \mathfrak{g} , V(w) and $\{W_1(z_1), ..., W_N(z_N)\}$: representations of $U_q(\widehat{g})$.
- An *R*-matrix $R_{W_i,V}(w/z_i)$ encodes the Boltzmann weights AND satisfies the Yang-Baxter equation.
- Define a transfer matrix $T_V(w) = \text{Trace}_V \prod R_{W_i,V}$.

- Choose a Lie algebra \mathfrak{g} , V(w) and $\{W_1(z_1), ..., W_N(z_N)\}$: representations of $U_q(\widehat{g})$.
- An R-matrix $R_{W_i,V}(w/z_i)$ encodes the Boltzmann weights AND satisfies the Yang-Baxter equation.
- Define a transfer matrix $T_V(w) = \text{Trace}_V \prod R_{W_i,V}$.
- YBE \implies $[T_V(w), T_{V'}(w')] = 0$ for any choice of representations. \implies The inhomogeneous, generalized Heisenberg spin chain is integrable.

Fact: The Bethe ansatz "works well" when V, W_i are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

596

(日) (종) (종) (종) (종)

Fact: The Bethe ansatz "works well" when V, W_i are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g} = A_r$, KR modules in the limit $q \to 1$ are evaluation modules $\sim V(k\omega_i)$

5900

Fact: The Bethe ansatz "works well" when V, W_i are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g} = A_r$, KR modules in the limit $q \to 1$ are evaluation modules $\sim V(k\omega_i)$

Algebraic-combinatorial structures of this model:

Fact: The Bethe ansatz "works well" when V, W_i are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g} = A_r$, KR modules in the limit $q \to 1$ are evaluation modules $\sim V(k\omega_i)$

Algebraic-combinatorial structures of this model:

- The completeness problem ~ Hilbert space of $T_V(w)$.
- **2** Eigenvalue problem \sim The fusion relation for $T_V(w)$.

Fact: The Bethe ansatz "works well" when V, W_i are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g} = A_r$, KR modules in the limit $q \to 1$ are evaluation modules $\sim V(k\omega_i)$

Algebraic-combinatorial structures of this model:

- The completeness problem ~ Hilbert space of $T_V(w)$. Do we have enough Bethe vectors to span $\mathcal{H} \sim W_1 \otimes \cdots \otimes W_N$?
- **2** Eigenvalue problem \sim The fusion relation for $T_V(w)$.

Fact: The Bethe ansatz "works well" when V, W_i are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g} = A_r$, KR modules in the limit $q \to 1$ are evaluation modules $\sim V(k\omega_i)$

Algebraic-combinatorial structures of this model:

- The completeness problem ~ Hilbert space of $T_V(w)$. Do we have enough Bethe vectors to span $\mathcal{H} \sim W_1 \otimes \cdots \otimes W_N$?
- **②** Eigenvalue problem ~ The fusion relation for $T_V(w)$. If we know the eigenvalues of T_V for the fundamental representations $V = V(\omega_i)$, we can compute them for all others.

Fact: The Bethe ansatz "works well" when V, W_i are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g} = A_r$, KR modules in the limit $q \to 1$ are evaluation modules $\sim V(k\omega_i)$

Algebraic-combinatorial structures of this model:

• The completeness problem ~ Hilbert space of $T_V(w)$. Do we have enough Bethe vectors to span $\mathcal{H} \sim W_1 \otimes \cdots \otimes W_N$? Recursion relation: The *Q*-system

② Eigenvalue problem ~ The fusion relation for $T_V(w)$. If we know the eigenvalues of T_V for the fundamental representations $V = V(\omega_i)$, we can compute them for all others.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Fact: The Bethe ansatz "works well" when V, W_i are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g} = A_r$, KR modules in the limit $q \to 1$ are evaluation modules $\sim V(k\omega_i)$

Algebraic-combinatorial structures of this model:

- The completeness problem ~ Hilbert space of $T_V(w)$. Do we have enough Bethe vectors to span $\mathcal{H} \sim W_1 \otimes \cdots \otimes W_N$? Recursion relation: The *Q*-system
- Solution Eigenvalue problem ~ The fusion relation for $T_V(w)$. If we know the eigenvalues of T_V for the fundamental representations $V = V(\omega_i)$, we can compute them for all others. Recursion relation: The *T*-system

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Fact: The Bethe ansatz "works well" when V, W_i are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g} = A_r$, KR modules in the limit $q \to 1$ are evaluation modules $\sim V(k\omega_i)$

Algebraic-combinatorial structures of this model:

- The completeness problem ~ Hilbert space of $T_V(w)$. Do we have enough Bethe vectors to span $\mathcal{H} \sim W_1 \otimes \cdots \otimes W_N$? Recursion relation: The Q-system
- Eigenvalue problem ~ The fusion relation for $T_V(w)$. If we know the eigenvalues of T_V for the fundamental representations $V = V(\omega_i)$, we can compute them for all others. Recursion relation: The *T*-system

The recursion relations are discrete integrable systems, solvable using an auxiliary statistical model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

E • 9 € (~

The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

 $\mathcal{H} \simeq W_1 \otimes \cdots \otimes W_N$

ヨー わへで

*ロト *部ト *注ト *注ト

 $\mathcal{H} \simeq W_1 \otimes \cdots \otimes W_N$

We should have $d_{\lambda} = \dim \operatorname{Hom}_{U_q(\mathfrak{g})}(V_{\lambda}, \mathfrak{H})$ Bethe vectors in each "sector" λ a dominant highest weight.

イロト 不得 トイヨト イヨト 二日

 $\mathcal{H} \simeq W_1 \otimes \cdots \otimes W_N$

We should have $d_{\lambda} = \dim \operatorname{Hom}_{U_q(\mathfrak{g})}(V_{\lambda}, \mathfrak{H})$ Bethe vectors in each "sector" λ a dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$M_{\lambda,\mathbf{n}} = \sum_{\mathbf{m}}' \begin{pmatrix} \mathbf{p} + \mathbf{m} \\ \mathbf{m} \end{pmatrix}$$

SQA

 $\mathcal{H} \simeq W_1 \otimes \cdots \otimes W_N$

We should have $d_{\lambda} = \dim \operatorname{Hom}_{U_q(\mathfrak{g})}(V_{\lambda}, \mathcal{H})$ Bethe vectors in each "sector" λ a dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$M_{\lambda,\mathbf{n}} = \sum_{\mathbf{m}}' \begin{pmatrix} \mathbf{p} + \mathbf{m} \\ \mathbf{m} \end{pmatrix}$$

• $\mathbf{n} = \{n_{i,k}: 1 \le i \le r; k \in \mathbb{Z}_+\}$ parametrizes the reps $\{W_j\}$.

SQA

イロト 不得 トイヨト イヨト 二日

 $\mathcal{H} \simeq W_1 \otimes \cdots \otimes W_N$

We should have $d_{\lambda} = \dim \operatorname{Hom}_{U_q(\mathfrak{g})}(V_{\lambda}, \mathcal{H})$ Bethe vectors in each "sector" λ a dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$M_{\lambda,\mathbf{n}} = \sum_{\mathbf{m}}' \begin{pmatrix} \mathbf{p} + \mathbf{m} \\ \mathbf{m} \end{pmatrix}$$

• $\mathbf{n} = \{n_{i,k} : 1 \le i \le r; k \in \mathbb{Z}_+\}$ parametrizes the reps $\{W_j\}$. • $\mathbf{p} = \{p_{i,k}\}$ are called "vacancy numbers", functions of Cartan matrix, \mathbf{m}, \mathbf{n} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

 $\mathcal{H} \simeq W_1 \otimes \cdots \otimes W_N$

We should have $d_{\lambda} = \dim \operatorname{Hom}_{U_q(\mathfrak{g})}(V_{\lambda}, \mathcal{H})$ Bethe vectors in each "sector" λ a dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$M_{\lambda,\mathbf{n}} = \sum_{\mathbf{m}}' \begin{pmatrix} \mathbf{p} + \mathbf{m} \\ \mathbf{m} \end{pmatrix}$$

• $\mathbf{n} = \{n_{i,k} : 1 \le i \le r; k \in \mathbb{Z}_+\}$ parametrizes the reps $\{W_j\}$.

• $\mathbf{p} = \{p_{i,k}\}$ are called "vacancy numbers", functions of Cartan matrix, \mathbf{m}, \mathbf{n} .

• **m** are non-negative integers $\{m_{i,k}\}$ with $1 \le i \le r$.

 $\mathcal{H} \simeq W_1 \otimes \cdots \otimes W_N$

We should have $d_{\lambda} = \dim \operatorname{Hom}_{U_q(\mathfrak{g})}(V_{\lambda}, \mathcal{H})$ Bethe vectors in each "sector" λ a dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$M_{\lambda,\mathbf{n}} = \sum_{\mathbf{m}}' \begin{pmatrix} \mathbf{p} + \mathbf{m} \\ \mathbf{m} \end{pmatrix}$$

• $\mathbf{n} = \{n_{i,k} : 1 \le i \le r; k \in \mathbb{Z}_+\}$ parametrizes the reps $\{W_j\}$.

• $\mathbf{p} = \{p_{i,k}\}$ are called "vacancy numbers", functions of Cartan matrix, \mathbf{m}, \mathbf{n} .

- m are non-negative integers $\{m_{i,k}\}$ with $1 \le i \le r$.
- The sum is restricted by "zero weight condition" and positivity of vacancy numbers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Theorem (Hatayama et al 1999 + Di-Francesco-K. 2007)

If the characters of W_i satisfy the Q-system recursion relation, then

$$M_{\lambda,\mathbf{n}} = d_{\lambda}$$

for any simple Lie algebra g.

э

- A - E - N

5900

(日)

Theorem (Hatayama et al 1999 + Di-Francesco-K. 2007)

If the characters of W_i satisfy the Q-system recursion relation, then

$$M_{\lambda,\mathbf{n}} = d_{\lambda}$$

for any simple Lie algebra g.

The Q-system recursion relation for A_r is

$$Q_{i,k+1}Q_{i,k-1} = Q_{i,k}^2 - Q_{i+1,k}Q_{i-1,k}, \qquad 1 \le i \le r, \quad k \ge 1,$$

where

- $Q_{0,k} = Q_{r+1,k} = 1$ by convention;
- Boundary conditions: $Q_{i,0} = 1$ and $Q_{i,1} = charV(\omega_i) = characters$ of the fundamental representations.

nar

Drop the boundary condition $Q_{i,0} = 1$ and renormalize $x_{i,k} = (-1)^{\lfloor i/2 \rfloor} Q_{i,k}$:

 $x_{i,k+1}x_{i,k-1} = x_{i,k}^2 + x_{i+1,k}x_{i-1,k}, \quad x_{0,k} = x_{r+1,k} = 1, \quad k \in \mathbb{Z}, 1 \le i \le r$

SQC

・ロト ・ 同ト ・ ヨト ・ ヨト

Drop the boundary condition $Q_{i,0} = 1$ and renormalize $x_{i,k} = (-1)^{\lfloor i/2 \rfloor} Q_{i,k}$:

$$x_{i,k+1}x_{i,k-1} = x_{i,k}^2 + x_{i+1,k}x_{i-1,k}, \quad x_{0,k} = x_{r+1,k} = 1, \quad k \in \mathbb{Z}, 1 \le i \le r$$

• Discrete dynamical system for r functions x_i of the discrete time parameter k.

SQR

(日)

Drop the boundary condition $Q_{i,0} = 1$ and renormalize $x_{i,k} = (-1)^{\lfloor i/2 \rfloor} Q_{i,k}$:

 $x_{i,k+1}x_{i,k-1} = x_{i,k}^2 + x_{i+1,k}x_{i-1,k}, \quad x_{0,k} = x_{r+1,k} = 1, \quad k \in \mathbb{Z}, 1 \le i \le r$

- Discrete dynamical system for r functions x_i of the discrete time parameter k.
- This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each (i, k), it is called a **mutation**.

(日) (同) (三) (三)

Drop the boundary condition $Q_{i,0} = 1$ and renormalize $x_{i,k} = (-1)^{\lfloor i/2 \rfloor} Q_{i,k}$:

 $x_{i,k+1}x_{i,k-1} = x_{i,k}^2 + x_{i+1,k}x_{i-1,k}, \quad x_{0,k} = x_{r+1,k} = 1, \quad k \in \mathbb{Z}, 1 \le i \le r$

- Discrete dynamical system for r functions x_i of the discrete time parameter k.
- This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each (i, k), it is called a **mutation**.

Theorem (K.07)

For any Cartan matrix C of a simple Lie algebra \mathfrak{g} , the associated Q-system equations are mutations in a cluster algebra with trivial coefficients, and exchange matrix $B = \begin{pmatrix} C^t - C & -C^t \\ C & 0 \end{pmatrix}.$

Drop the boundary condition $Q_{i,0} = 1$ and renormalize $x_{i,k} = (-1)^{\lfloor i/2 \rfloor} Q_{i,k}$:

 $x_{i,k+1}x_{i,k-1} = x_{i,k}^2 + x_{i+1,k}x_{i-1,k}, \quad x_{0,k} = x_{r+1,k} = 1, \quad k \in \mathbb{Z}, 1 \le i \le r$

- Discrete dynamical system for r functions x_i of the discrete time parameter k.
- This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each (i, k), it is called a **mutation**.

Theorem (K.07)

For any Cartan matrix C of a simple Lie algebra g, the associated Q-system equations are mutations in a cluster algebra with trivial coefficients, and exchange matrix $B = \begin{pmatrix} C^t - C & -C^t \\ C & 0 \end{pmatrix}.$

Theorem (Di-Francesco,K.)

The system is integrable, solvable, solutions are partition functions of paths on a weighted graph.

Rinat Kedem (UIUC)

Itzykson Meeting 2010

Itzykson Meeting June 2010 7 / 20

3

SQA

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

• "Clusters" of r variables $(x_1(t), ..., x_r(t))$ and an exchange matrix B live on each node t of a regular r-tree.

= nar

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $(x_1(t), ..., x_r(t))$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled 1, ..., r.

= nar

(日) (同) (三) (三)

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $(x_1(t), ..., x_r(t))$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled 1, ..., r.
- If an edge labeled *i* connects node *t* with node *t'* then the clusters are related by a rational expression:

$$x_i(t')x_i(t) = \prod_j x_j(t)^{[B_{ji}]_+} + \prod_j x_j(t)^{[-B_{ji}]_+}, \qquad x_{j\neq i}(t') = x_j(t).$$

500

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $(x_1(t), ..., x_r(t))$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled 1, ..., r.
- If an edge labeled *i* connects node *t* with node *t'* then the clusters are related by a rational expression:

$$x_i(t')x_i(t) = \prod_j x_j(t)^{[B_{ji}]_+} + \prod_j x_j(t)^{[-B_{ji}]_+}, \qquad x_{j\neq i}(t') = x_j(t).$$

• The exchange matrix B also "mutates".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $(x_1(t), ..., x_r(t))$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled 1, ..., r.
- If an edge labeled *i* connects node *t* with node *t'* then the clusters are related by a rational expression:

$$x_i(t')x_i(t) = \prod_j x_j(t)^{[B_{ji}]_+} + \prod_j x_j(t)^{[-B_{ji}]_+}, \qquad x_{j\neq i}(t') = x_j(t).$$

• The exchange matrix B also "mutates".

Theorem (Fomin, Zelevinsky)

The cluster variables $x_i(t)$ at any node t are Laurent polynomials of $(x_1(t'), ..., x_r(t'))$ for any t, t'.

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $(x_1(t), ..., x_r(t))$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled 1, ..., r.
- If an edge labeled *i* connects node *t* with node *t'* then the clusters are related by a rational expression:

$$x_i(t')x_i(t) = \prod_j x_j(t)^{[B_{ji}]_+} + \prod_j x_j(t)^{[-B_{ji}]_+}, \qquad x_{j\neq i}(t') = x_j(t).$$

• The exchange matrix B also "mutates".

Theorem (Fomin, Zelevinsky)

The cluster variables $x_i(t)$ at any node t are Laurent polynomials of $(x_1(t'), ..., x_r(t'))$ for any t, t'.

Conjecture

These polynomials have positive coefficients.

Rinat Kedem (UIUC)
Our system has more structure than a cluster algebra: It is integrable

• The system has r integrals of the motion (functions of $x_{i,k}$ which are independent of k).

Example: For A_1 , $C_k = C = x_{1,k-1}x_{1,k}^{-1} + x_{1,k}x_{1,k-1}^{-1} + x_{1,k}^{-1}x_{1,k-1}^{-1}$ is independent of k.

nar

(日)

Our system has more structure than a cluster algebra: It is integrable

• The system has r integrals of the motion (functions of $x_{i,k}$ which are independent of k).

Example: For A_1 , $C_k = C = x_{1,k-1}x_{1,k}^{-1} + x_{1,k}x_{1,k-1}^{-1} + x_{1,k}^{-1}x_{1,k-1}^{-1}$ is independent of k.

• The Q-system is solvable: $x_{1,k}$ satisfied a linear recursion relation with constant coefficients.

Example: For A_1 , $x_{1,k} - Cx_{1,k+1} + x_{1,k+2} = 0$.

Solutions $x_{1,k}$ are partition functions of weighted paths on a graph; for A_r with r > 1, $x_{i,k}$ are P.F. of families of *i* non-intersecting paths on this graph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Our system has more structure than a cluster algebra: It is integrable

• The system has r integrals of the motion (functions of $x_{i,k}$ which are independent of k).

Example: For A_1 , $C_k = C = x_{1,k-1}x_{1,k}^{-1} + x_{1,k}x_{1,k-1}^{-1} + x_{1,k}^{-1}x_{1,k-1}^{-1}$ is independent of k.

• The Q-system is solvable: $x_{1,k}$ satisfied a linear recursion relation with constant coefficients.

Example: For A_1 , $x_{1,k} - Cx_{1,k+1} + x_{1,k+2} = 0$.

Solutions $x_{1,k}$ are partition functions of weighted paths on a graph; for A_r with r > 1, $x_{i,k}$ are P.F. of families of i non-intersecting paths on this graph.

• The weights are positive so this proves positivity of the solutions (conjectured for cluster algebra).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Example: The solution for the A_1 Q-system as path PF

For A_1 ,

$$x_{1,k+1}x_{1,k-1} = x_{1,k}^2 + 1.$$

Solution to linear recursion relation is

$$\sum_{k \ge 0} x_{1,k} t^k = \frac{x_{1,0}}{1 - t \frac{y_1}{1 - t \frac{y_2}{1 - t \frac{y_2}{1 - t y_3}}}}$$
$$y_1 = x_{1,1} x_{1,0}^{-1}, \quad y_2 = x_{1,1}^{-1} x_{1,0}^{-1}, \quad y_3 = x_{1,1}^{-1} x_{1,0}.$$

The generating function on weighted paths from node 1 to itself on the graph:

< □ ▶ < 🗇 ▶

SQA

Example: The solution for the A_1 Q-system as path PF

For A_1 ,

$$x_{1,k+1}x_{1,k-1} = x_{1,k}^2 + 1.$$

Solution to linear recursion relation is

$$\sum_{k \ge 0} x_{1,k} t^k = \frac{x_{1,0}}{1 - t \frac{y_1}{1 - t \frac{y_2}{1 - t \frac{y_2}{1 - t \frac{y_2}{1 - t \frac{y_2}{1 - t \frac{y_3}{1 - t \frac$$

The generating function on weighted paths from node 1 to itself on the graph:

Example: The solution for the A_1 Q-system as path PF

For A_1 ,

$$x_{1,k+1}x_{1,k-1} = x_{1,k}^2 + 1.$$

Solution to linear recursion relation is

$$\sum_{k \ge 0} x_{1,k} t^k = \frac{x_{1,0}}{1 - t \frac{y_1}{1 - t \frac{y_2}{1 - t \frac{y_2}{1 - t \frac{y_2}{1 - t \frac{y_2}{1 - t \frac{y_3}{1 - t \frac$$

The generating function on weighted paths from node 1 to itself on the graph:

• $Z_{1,1}$ =Partition function of paths on G_r from node 1 to itself;

DQC

Image: A matrix

- $Z_{1,1}$ =Partition function of paths on G_r from node 1 to itself;
- Nontrivial weights going from right to left:

$$y_i = y_{i,0} = \begin{cases} \frac{\frac{x_{i/2+1,0}x_{i/2-1,1}}{x_{i/2,0}x_{i/2,1}} & i \text{ even}; \\ \\ \frac{x_{(i+1)/2,1}x_{(i-1)/2,0}}{x_{(i+1)/2,0}x_{(i-1)/2,1}} & i \text{ odd}, \end{cases}$$

< 口 > < 同

- $Z_{1,1}$ =Partition function of paths on G_r from node 1 to itself;
- Nontrivial weights going from right to left:

$$y_i = y_{i,0} = \begin{cases} \frac{\frac{x_{i/2+1,0}x_{i/2-1,1}}{x_{i/2,0}x_{i/2,1}} & i \text{ even}; \\ \\ \frac{x_{(i+1)/2,1}x_{(i-1)/2,0}}{x_{(i+1)/2,0}x_{(i-1)/2,1}} & i \text{ odd}, \end{cases}$$

< 口 > < 同

- $Z_{1,1}$ =Partition function of paths on G_r from node 1 to itself;
- Nontrivial weights going from right to left:

$$y_i = y_{i,0} = \begin{cases} \frac{\frac{x_{i/2+1,0}x_{i/2-1,1}}{x_{i/2,0}x_{i/2,1}} & i \text{ even}_i \\ \\ \frac{x_{(i+1)/2,1}x_{(i-1)/2,0}}{x_{(i+1)/2,0}x_{(i-1)/2,1}} & i \text{ odd}, \end{cases}$$

Theorem (Di Francesco, K.)

• Conserved quantities: C_i = partition function of *i* hard particles on the medial graph of G_r , independent under simultaneous translation the blue labels in $y_{i,0}$.

- $Z_{1,1}$ =Partition function of paths on G_r from node 1 to itself;
- Nontrivial weights going from right to left:

$$y_i = y_{i,0} = \begin{cases} \frac{\frac{x_{i/2+1,0}x_{i/2-1,1}}{x_{i/2,0}x_{i/2,1}} & i \text{ even}_i \\ \\ \frac{x_{(i+1)/2,1}x_{(i-1)/2,0}}{x_{(i+1)/2,0}x_{(i-1)/2,1}} & i \text{ odd}, \end{cases}$$

Theorem (Di Francesco, K.)

- Conserved quantities: C_i = partition function of *i* hard particles on the medial graph of G_r , independent under simultaneous translation the blue labels in $y_{i,0}$.
- Linear recursion relation: $\sum_{j=0}^{r+1} (-1)^j C_j x_{1,k-j} = 0.$

- $Z_{1,1}$ =Partition function of paths on G_r from node 1 to itself;
- Nontrivial weights going from right to left:

$$y_i = y_{i,0} = \begin{cases} \frac{x_{i/2+1,0}x_{i/2-1,1}}{x_{i/2,0}x_{i/2,1}} & i \text{ even}; \\ \\ \frac{x_{(i+1)/2,1}x_{(i-1)/2,0}}{x_{(i+1)/2,0}x_{(i-1)/2,1}} & i \text{ odd}, \end{cases}$$

Theorem (Di Francesco, K.)

- Conserved quantities: C_i = partition function of *i* hard particles on the medial graph of G_r , independent under simultaneous translation the blue labels in $y_{i,0}$.
- Linear recursion relation: $\sum_{j=0}^{r+1} (-1)^j C_j x_{1,k-j} = 0.$
- $\frac{x_{1,k}}{x_{1,0}} = (1 + y_1 Z_{1,1})[k]$ (homogeneous component in y_i of degree k).

Example

For A_2 we have the following paths contributing to $x_{1,3}$ on the graph G_2

 $\frac{x_{1,3}}{x_{1,0}} = (1 + y_1 Z_{1,1})[3] = y_1 Z_{1,1}[2] = y_1 (y_1^2 + 2y_1 y_2 + y_2^2 + y_3 y_2 + y_4 y_2).$

< 口 > < 同

SQA

• Valid choices of initial data for the Q-system $x_{i,k+1}x_{i,k-1} = x_{i,k}^2 + x_{i+1,k}x_{i-1,k}$

3

990

• Valid choices of initial data for the Q-system $x_{i,k+1}x_{i,k-1} = x_{i,k}^2 + x_{i+1,k}x_{i-1,k}$

3

990

• Valid choices of initial data for the Q-system $x_{i,k+1}x_{i,k-1} = x_{i,k}^2 + x_{i+1,k}x_{i-1,k}$

900

• Valid choices of initial data for the Q-system $x_{i,k+1}x_{i,k-1} = x_{i,k}^2 + x_{i+1,k}x_{i-1,k}$

 $x_{4,0} \mapsto x_{4,2}$

< 口 > < 同

5900

DQC

• Have the form $\mathbf{x_m} = \{x_{i,m_i}, x_{i,m_i+1}: 1 \le i \le r\}, |m_i - m_{i+1}| \le 1$. Choice of initial conditions represented by $\mathbf{m} = (m_1, ..., m_r)$ (Motzkin path).

- Have the form $\mathbf{x_m} = \{x_{i,m_i}, x_{i,m_i+1}: 1 \le i \le r\}, |m_i m_{i+1}| \le 1$. Choice of initial conditions represented by $\mathbf{m} = (m_1, ..., m_r)$ (Motzkin path).
- Weights $y_i(\mathbf{m}) = y_i(\mathbf{x}_{\mathbf{m}})$ given by recursion: If $\mathbf{m}' = \mathbf{m} + \varepsilon_i$ then $y_j(\mathbf{m}') = y_j(\mathbf{m})$ except for:

$$\begin{aligned} y'_{2i-1} &= y_{2i-1} + y_{2i} \\ y'_{2i} &= y_{2i+1}y_{2i}/y'_{2i-1} \\ y'_{2i+1} &= y_{2i+1}y_{2i-1}/y'_{2i-1} \end{aligned}$$

- Have the form $\mathbf{x_m} = \{x_{i,m_i}, x_{i,m_i+1}: 1 \le i \le r\}, |m_i m_{i+1}| \le 1$. Choice of initial conditions represented by $\mathbf{m} = (m_1, ..., m_r)$ (Motzkin path).
- Weights $y_i(\mathbf{m}) = y_i(\mathbf{x}_{\mathbf{m}})$ given by recursion: If $\mathbf{m}' = \mathbf{m} + \varepsilon_i$ then $y_j(\mathbf{m}') = y_j(\mathbf{m})$ except for:

$$\begin{aligned} y'_{2i-1} &= y_{2i-1} + y_{2i} \\ y'_{2i} &= y_{2i+1}y_{2i}/y'_{2i-1} \\ y'_{2i+1} &= y_{2i+1}y_{2i-1}/y'_{2i-1} \end{aligned}$$

- Have the form $\mathbf{x_m} = \{x_{i,m_i}, x_{i,m_i+1}: 1 \le i \le r\}, |m_i m_{i+1}| \le 1$. Choice of initial conditions represented by $\mathbf{m} = (m_1, ..., m_r)$ (Motzkin path).
- Weights $y_i(\mathbf{m}) = y_i(\mathbf{x}_{\mathbf{m}})$ given by recursion: If $\mathbf{m}' = \mathbf{m} + \varepsilon_i$ then $y_j(\mathbf{m}') = y_j(\mathbf{m})$ except for:

$$\begin{aligned} &y'_{2i-1} = y_{2i-1} + y_{2i} \\ &y'_{2i} = y_{2i+1}y_{2i}/y'_{2i-1} \\ &y'_{2i+1} = y_{2i+1}y_{2i-1}/y'_{2i-1} \\ &y'_{2i+2} = y_{2i+2}y_{2i-1}/y'_{2i-1} \end{aligned} \text{ if } m_i = m_{i-1} = m_{i+1}.$$

Mutation of weights.

$$z_{2i} = y_{2i}(y_{2i+1})^{m_{i+1}-m_i}, \qquad z_{2i-1} = y_{2i-1} + \begin{cases} -y_{2i}/y_{2i+1}, & m_{i+1}-m_i = -1\\ y_{2i}, & m_{i+1}-m_i = 1\\ 0 & m_i - m_{i+1} = 0. \end{cases}$$

Э

990

<ロト < (回) < ((u)) < (

$$z_{2i} = y_{2i}(y_{2i+1})^{m_{i+1}-m_i}, \qquad z_{2i-1} = y_{2i-1} + \begin{cases} -y_{2i}/y_{2i+1}, & m_{i+1}-m_i = -1\\ y_{2i}, & m_{i+1}-m_i = 1\\ 0 & m_i - m_{i+1} = 0. \end{cases}$$

Paths on the graph G_r with weights z_i give $x_{1,k}$ as a function of data $\mathbf{x_m}$:

Э

5900

◆ロ > ◆母 > ◆臣 > ◆臣 >

$$z_{2i} = y_{2i}(y_{2i+1})^{m_{i+1}-m_i}, \qquad z_{2i-1} = y_{2i-1} + \begin{cases} -y_{2i}/y_{2i+1}, & m_{i+1}-m_i = -1 \\ y_{2i}, & m_{i+1}-m_i = 1 \\ 0 & m_i - m_{i+1} = 0. \end{cases}$$

Paths on the graph G_r with weights z_i give $x_{1,k}$ as a function of data \mathbf{x}_m :

Theorem

As a function of $\mathbf{x_m} = (x_{i,m_i}, x_{i,m_i+1})$, the variables $x_{1,k}$ are given by the homogeneous component of degree k in y_i 's in the partition function of paths from vertex 1 to itself on the graph G_r with weights z_i :

$$\frac{x_{1,k+m_1}}{x_{1,m_1}} = (1+y_1(\mathbf{m})Z_{1,1}(\{z_i(\mathbf{m})\})[k]$$

$$z_{2i} = y_{2i}(y_{2i+1})^{m_{i+1}-m_i}, \qquad z_{2i-1} = y_{2i-1} + \begin{cases} -y_{2i}/y_{2i+1}, & m_{i+1}-m_i = -1 \\ y_{2i}, & m_{i+1}-m_i = 1 \\ 0 & m_i - m_{i+1} = 0. \end{cases}$$

Paths on the graph G_r with weights z_i give $x_{1,k}$ as a function of data $\mathbf{x_m}$:

Theorem

As a function of $\mathbf{x_m} = (x_{i,m_i}, x_{i,m_i+1})$, the variables $x_{1,k}$ are given by the homogeneous component of degree k in y_i 's in the partition function of paths from vertex 1 to itself on the graph G_r with weights z_i :

$$\frac{x_{1,k+m_1}}{x_{1,m_1}} = (1+y_1(\mathbf{m})Z_{1,1}(\{z_i(\mathbf{m})\})[k]$$

Proof of positivity of $x_{i,k}$ follows from LGV.

Image: A matrix and a matrix

$$T_{i,j,k+1}T_{i,j,k-1} = T_{i,j+1,k}T_{i,j-1,k} - T_{i+1,j,k}T_{i-1,j,k}$$

• Satisfied by the transfer matrices $T_{i,j,k} = T_V$: auxiliary space $V = V_{i\omega_k}(j)$ ($j \sim$ spectral parameter) if we impose initial conditions: $T_{i,j,0} = 1$ and consider only k > 0.

SQC

$$T_{i,j,k+1}T_{i,j,k-1} = T_{i,j+1,k}T_{i,j-1,k} - T_{i+1,j,k}T_{i-1,j,k}$$

- Satisfied by the transfer matrices $T_{i,j,k} = T_V$: auxiliary space $V = V_{i\omega_k}(j)$ ($j \sim$ spectral parameter) if we impose initial conditions: $T_{i,j,0} = 1$ and consider only k > 0.
- Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].

<ロト <同ト < 国ト < 国ト

SQA

$$T_{i,j,k+1}T_{i,j,k-1} = T_{i,j+1,k}T_{i,j-1,k} + T_{i+1,j,k}T_{i-1,j,k}$$

- Satisfied by the transfer matrices $T_{i,j,k} = T_V$: auxiliary space $V = V_{i\omega_k}(j)$ ($j \sim$ spectral parameter) if we impose initial conditions: $T_{i,j,0} = 1$ and consider only k > 0.
- Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].
- Renormalize to have positive coefficients as for Q-system and relax the initial conditions, consider $k \in \mathbb{Z}$.

<ロト <同ト < 国ト < 国ト

SQA

$$T_{i,j,k+1}T_{i,j,k-1} = T_{i,j+1,k}T_{i,j-1,k} + T_{i+1,j,k}T_{i-1,j,k}$$

- Satisfied by the transfer matrices $T_{i,j,k} = T_V$: auxiliary space $V = V_{i\omega_k}(j)$ ($j \sim$ spectral parameter) if we impose initial conditions: $T_{i,j,0} = 1$ and consider only k > 0.
- Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].
- Renormalize to have positive coefficients as for Q-system and relax the initial conditions, consider $k \in \mathbb{Z}$.
- This is also a cluster algebra mutation, and $T_{i,j,k}$ are cluster variables in an appropriate cluster algebra.

DQ P

• Define an algebra generated by (mildly noncommutative) invertible generators: $\mathbb{T}_{i,k}^{\pm 1}, d^{\pm 1}$ defined by the action on $V = \operatorname{span}\{|j\rangle : j \in \mathbb{Z}\}$:

$$\mathbb{T}_{i,k}|j+k+i\rangle = T_{i,j,k}|j-k-i\rangle, \quad d|j\rangle = |j-1\rangle.$$

SQA

• Define an algebra generated by (mildly noncommutative) invertible generators: $\mathbb{T}_{i,k}^{\pm 1}, d^{\pm 1}$ defined by the action on $V = \operatorname{span}\{|j\rangle : j \in \mathbb{Z}\}$:

$$\mathbb{T}_{i,k}|j+k+i\rangle = T_{i,j,k}|j-k-i\rangle, \quad d|j\rangle = |j-1\rangle.$$

• The T-system equations are obtained as matrix elements of

$$\mathbb{T}_{i,k+1}\mathbb{T}_{i,k}^{-1}\mathbb{T}_{i,k-1} = \mathbb{T}_{i,k} + \mathbb{T}_{i+1,k}\mathbb{T}_{i,k}^{-1}\mathbb{T}_{i-1,k},$$

with

$$\mathbb{T}_{0,k} = d^{2k}, \quad \mathbb{T}_{r+1,k} = d^{2(k+r+1)}.$$

nac

• Define an algebra generated by (mildly noncommutative) invertible generators: $\mathbb{T}_{i,k}^{\pm 1}, d^{\pm 1}$ defined by the action on $V = \operatorname{span}\{|j\rangle : j \in \mathbb{Z}\}$:

$$\mathbb{T}_{i,k}|j+k+i\rangle = T_{i,j,k}|j-k-i\rangle, \quad d|j\rangle = |j-1\rangle.$$

• The T-system equations are obtained as matrix elements of

$$\mathbb{T}_{i,k+1}\mathbb{T}_{i,k}^{-1}\mathbb{T}_{i,k-1} = \mathbb{T}_{i,k} + \mathbb{T}_{i+1,k}\mathbb{T}_{i,k}^{-1}\mathbb{T}_{i-1,k},$$

with

$$\mathbb{T}_{0,k} = d^{2k}, \quad \mathbb{T}_{r+1,k} = d^{2(k+r+1)}.$$

• This is an example of a non-commutative Q-system equation.

= na0

• $Z_{1,1}$ = paths from node 1 to itself on G_r with non-commutative weights \mathbb{Y}_i . Weighted paths respect non-commutative ordering!

< 口 > < 同

- $Z_{1,1}$ = paths from node 1 to itself on G_r with non-commutative weights \mathbb{Y}_i . Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$\mathbb{Y}_{2i} = \mathbb{T}_{i,1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i,0}^{-1} d^2 \mathbb{T}_{i-1,0} d^2 \quad , \mathbb{Y}_{2i-1} = \mathbb{T}_{i,0}^{-1} d^{-2} \mathbb{T}_{i,1} \mathbb{T}_{i-1,1}^{-1} d^2 \mathbb{T}_{i-1,0} d^2.$$

< 口 > < 同

- $Z_{1,1}$ = paths from node 1 to itself on G_r with non-commutative weights \mathbb{Y}_i . Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$\mathbb{Y}_{2i} = \mathbb{T}_{i,1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i,0}^{-1} d^2 \mathbb{T}_{i-1,0} d^2 \quad , \mathbb{Y}_{2i-1} = \mathbb{T}_{i,0}^{-1} d^{-2} \mathbb{T}_{i,1} \mathbb{T}_{i-1,1}^{-1} d^2 \mathbb{T}_{i-1,0} d^2.$$

Theorem (Di Francesco, K.)

< □ > < 同 >

- $Z_{1,1}$ = paths from node 1 to itself on G_r with non-commutative weights \mathbb{Y}_i . Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$\mathbb{Y}_{2i} = \mathbb{T}_{i,1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i,0}^{-1} d^2 \mathbb{T}_{i-1,0} d^2 \quad , \mathbb{Y}_{2i-1} = \mathbb{T}_{i,0}^{-1} d^{-2} \mathbb{T}_{i,1} \mathbb{T}_{i-1,1}^{-1} d^2 \mathbb{T}_{i-1,0} d^2.$$

Theorem (Di Francesco, K.)

• Conserved quantities: $C_i = partition$ function of i hard particles on the medial graph of G_r .

Image: A matrix

SQA

- $Z_{1,1}$ = paths from node 1 to itself on G_r with non-commutative weights \mathbb{Y}_i . Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$\mathbb{Y}_{2i} = \mathbb{T}_{i,1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i,0}^{-1} d^2 \mathbb{T}_{i-1,0} d^2 \quad , \mathbb{Y}_{2i-1} = \mathbb{T}_{i,0}^{-1} d^{-2} \mathbb{T}_{i,1} \mathbb{T}_{i-1,1}^{-1} d^2 \mathbb{T}_{i-1,0} d^2.$$

Theorem (Di Francesco, K.)

- Conserved quantities: $C_i = partition$ function of i hard particles on the medial graph of G_r .
- Linear recursion relation: $\sum_{j=0}^{r+1} (-1)^j C_j \mathbb{T}_{1,k-j} = 0.$

< < >> < <</>

naa

- $Z_{1,1}$ = paths from node 1 to itself on G_r with non-commutative weights \mathbb{Y}_i . Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$\mathbb{Y}_{2i} = \mathbb{T}_{i,1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i,0}^{-1} d^2 \mathbb{T}_{i-1,0} d^2 \quad , \mathbb{Y}_{2i-1} = \mathbb{T}_{i,0}^{-1} d^{-2} \mathbb{T}_{i,1} \mathbb{T}_{i-1,1}^{-1} d^2 \mathbb{T}_{i-1,0} d^2.$$

Theorem (Di Francesco, K.)

- Conserved quantities: $C_i = partition$ function of i hard particles on the medial graph of G_r .
- Linear recursion relation: $\sum_{j=0}^{r+1} (-1)^j C_j \mathbb{T}_{1,k-j} = 0.$
- $\mathbb{T}_{1,k}\mathbb{T}_{1,0}^{-1} = (1 + Z_{1,1}\mathbb{Y}_1)[k]$ (homogeneous component in \mathbb{Y}_i of degree k).

Example of non-commutative partition function

For A_2 we have the following paths contributing to $\mathbb{T}_{1,3}$ on the graph G_2

 $\mathbb{T}_{1,3}\mathbb{T}_{1,0}^{-1} = (1+Z_{1,1}\mathbb{Y}_1)[3] = Z_{1,1}[2]\mathbb{Y}_1 = (\mathbb{Y}_1^2 + \mathbb{Y}_2\mathbb{Y}_1 + \mathbb{Y}_1\mathbb{Y}_2 + \mathbb{Y}_2^2 + \mathbb{Y}_3\mathbb{Y}_2 + \mathbb{Y}_4\mathbb{Y}_2)\mathbb{Y}_1.$

• There are many choices of initial conditions for the *T*-system: We limit ourselves to those described by Motzkin paths $\mathbf{m} = (m_1, ..., m_r)$. (*d*²-invariant).

SQA

- There are many choices of initial conditions for the *T*-system: We limit ourselves to those described by Motzkin paths $\mathbf{m} = (m_1, ..., m_r)$. (*d*²-invariant).
- The variable $\mathbb{T}_{1,k+m_1}\mathbb{T}_{1,m_1}^{-1}$ as a function of \mathbb{T}_m , the mutated data, is given by path partition function on G_r with new weights \mathbb{Z}_i

$$\mathbb{Z}_{2i} = (\mathbb{Y}_{2i+1})^{m_{i+1}-m_i} \mathbb{Y}_{2i}, \qquad \mathbb{Z}_{2i-1} = \mathbb{Y}_{2i-1} + \begin{cases} -\mathbb{Y}_{2i+1}^{-1} \mathbb{Y}_{2i}, & m_{i+1}-m_i = -1 \\ \mathbb{Y}_{2i}, & m_{i+1}-m_i = 1 \\ 0 & m_i-m_{i+1} = 0. \end{cases}$$

MQ (P

- There are many choices of initial conditions for the *T*-system: We limit ourselves to those described by Motzkin paths $\mathbf{m} = (m_1, ..., m_r)$. (*d*²-invariant).
- The variable $\mathbb{T}_{1,k+m_1}\mathbb{T}_{1,m_1}^{-1}$ as a function of \mathbb{T}_m , the mutated data, is given by path partition function on G_r with new weights \mathbb{Z}_i

$$\mathbb{Z}_{2i} = (\mathbb{Y}_{2i+1})^{m_{i+1}-m_i} \mathbb{Y}_{2i}, \qquad \mathbb{Z}_{2i-1} = \mathbb{Y}_{2i-1} + \begin{cases} -\mathbb{Y}_{2i+1}^{-1} \mathbb{Y}_{2i}, & m_{i+1}-m_i = -1 \\ \mathbb{Y}_{2i}, & m_{i+1}-m_i = 1 \\ 0 & m_i-m_{i+1} = 0. \end{cases}$$

MQ (P

- There are many choices of initial conditions for the *T*-system: We limit ourselves to those described by Motzkin paths $\mathbf{m} = (m_1, ..., m_r)$. (*d*²-invariant).
- The variable $\mathbb{T}_{1,k+m_1}\mathbb{T}_{1,m_1}^{-1}$ as a function of \mathbb{T}_m , the mutated data, is given by path partition function on G_r with new weights \mathbb{Z}_i

$$\mathbb{Z}_{2i} = (\mathbb{Y}_{2i+1})^{m_{i+1}-m_i} \mathbb{Y}_{2i}, \qquad \mathbb{Z}_{2i-1} = \mathbb{Y}_{2i-1} + \begin{cases} -\mathbb{Y}_{2i+1}^{-1} \mathbb{Y}_{2i}, & m_{i+1}-m_i = -1 \\ \mathbb{Y}_{2i}, & m_{i+1}-m_i = 1 \\ 0 & m_i-m_{i+1} = 0. \end{cases}$$

where \mathbb{Y}_i are given by the recursion: If $\mathbf{m}' = \mathbf{m} + \varepsilon_i$ then $\mathbb{Y}_j(\mathbf{m}') = \mathbb{Y}_j(\mathbf{m})$ except for:

$$\begin{aligned} & \mathbb{Y}'_{2i-1} = \mathbb{Y}_{2i-1} + \mathbb{Y}_{2i} \\ & \mathbb{Y}'_{2i} = \mathbb{Y}_{2i+1} \mathbb{Y}_{2i} (\mathbb{Y}'_{2i-1})^{-1} \\ & \mathbb{Y}'_{2i+1} = \mathbb{Y}_{2i+1} \mathbb{Y}_{2i-1} (\mathbb{Y}'_{2i-1})^{-1} \end{aligned}$$

- There are many choices of initial conditions for the *T*-system: We limit ourselves to those described by Motzkin paths $\mathbf{m} = (m_1, ..., m_r)$. (*d*²-invariant).
- The variable $\mathbb{T}_{1,k+m_1}\mathbb{T}_{1,m_1}^{-1}$ as a function of \mathbb{T}_m , the mutated data, is given by path partition function on G_r with new weights \mathbb{Z}_i

$$\mathbb{Z}_{2i} = (\mathbb{Y}_{2i+1})^{m_{i+1}-m_i} \mathbb{Y}_{2i}, \qquad \mathbb{Z}_{2i-1} = \mathbb{Y}_{2i-1} + \begin{cases} -\mathbb{Y}_{2i+1}^{-1} \mathbb{Y}_{2i}, & m_{i+1}-m_i = -1 \\ \mathbb{Y}_{2i}, & m_{i+1}-m_i = 1 \\ 0 & m_i-m_{i+1} = 0. \end{cases}$$

where \mathbb{Y}_i are given by the recursion: If $\mathbf{m}' = \mathbf{m} + \varepsilon_i$ then $\mathbb{Y}_j(\mathbf{m}') = \mathbb{Y}_j(\mathbf{m})$ except for:

$$\begin{split} & \mathbb{Y}'_{2i-1} = \mathbb{Y}_{2i-1} + \mathbb{Y}_{2i} \\ & \mathbb{Y}'_{2i} = \mathbb{Y}_{2i+1} \mathbb{Y}_{2i} (\mathbb{Y}'_{2i-1})^{-1} \\ & \mathbb{Y}'_{2i+1} = \mathbb{Y}_{2i+1} \mathbb{Y}_{2i-1} (\mathbb{Y}'_{2i-1})^{-1} \\ & \mathbb{Y}'_{2i+2} = \mathbb{Y}_{2i+2} \mathbb{Y}_{2i-1} (\mathbb{Y}'_{2i-1})^{-1} & \text{if } m_i = m_{i-1} = m_{i+1}. \end{split} \right\}$$
 Mutation of weights.

• Integrability allows us to explicitly solve for the variables in terms of path partition functions.

E

990

・ロト ・回ト ・ヨト ・ヨト

- Integrability allows us to explicitly solve for the variables in terms of path partition functions.
- Non-commutative versions generalize: For example, the *q*-commuting *Q*-system is the quantum cluster algebra [Berenstein and Zelevinsky].

SQA

- Integrability allows us to explicitly solve for the variables in terms of path partition functions.
- Non-commutative versions generalize: For example, the *q*-commuting *Q*-system is the quantum cluster algebra [Berenstein and Zelevinsky].
- Associated Y-systems can also be described in terms of cluster algebras: Periodicity conjecture of Zamolodchikov can be proved this way [Keller]. (No explicit solution with this method yet).

SQA

- Integrability allows us to explicitly solve for the variables in terms of path partition functions.
- Non-commutative versions generalize: For example, the *q*-commuting *Q*-system is the quantum cluster algebra [Berenstein and Zelevinsky].
- Associated Y-systems can also be described in terms of cluster algebras: Periodicity conjecture of Zamolodchikov can be proved this way [Keller]. (No explicit solution with this method yet).
- Rank 2 completely non-commutative case related to the "wall crossing formulas" of Kontsevich and Soibelman.

DQ P

<ロト <同ト < 国ト < 国ト