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Liouville theory

• Lagrangian: L = 1
4π(∂aϕ)

2 + µe2bϕ

• Central charge: cL = 1+ 6Q2 where Q = b+ 1
b

• Primary fields: Vα = e2αϕ have conformal dimensions ∆(α) = α(Q−α)

• Three-point function (Dorn-Otto-Zamolodchikov-Zamolodchikov):

C(α1, α2, α3) =

[

πµγ(b2)b2−2b2
]

(Q−α)
b ×

× Υ(b)Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α−Q)Υ(α− 2α1)Υ(α− 2α2)Υ(α− 2α3)
,
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• Four-point function: 〈Vα1(z1, z̄1)Vα2(z2, z̄2)Vα3(z3, z̄3)Vα4(z4, z̄4)〉 ∼

∼
∫

C
C

(

α1, α2,
Q

2
+ iP

)

C

(

Q

2
− iP, α3, α4

)

∣

∣

∣

∣

∣

FP
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α2 α3

α1 α4

∣

∣

∣

∣

x

)

∣

∣

∣

∣

∣

2

dP,

• Conformal block: FP

(

α2 α3
α1 α4

∣

∣

∣

∣

x

)

=

(α3,∞)

(α4,1)

(α2,0)

(α1,x)

P2+Q2

4 is not known

in a closed form

• Elliptic block (Al. Zamolodchikov):

FP

(

α2 α3

α1 α4

∣

∣

∣

∣

x

)

= (16q)P
2
x
Q2

4 −∆1−∆2(x− 1)
Q2

4 −∆1−∆4×

× θ3(q)
3Q2−4

∑

k∆kHP

(

α2 α3

α1 α4

∣

∣

∣

∣

q

)

,

where q = eiπτ with τ = i K(1−x)
K(x)

, satisfies a recursive relation which

leads to an effective algorithm for calculation of its expansion in power

series of q (which is more convenient for numerical studies than the

ordinary x expansion)
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• Degenerate fields Vα with α = αmn = −mb
2 − n

2b have a null-vector

in their Verma module at level (m + 1)(n + 1) and hence four-point

function satisfies Fuchsian ordinary differential equation of the same

order (Belavin-Polyakov-Zamolodchikov 1984). An explicit integral

representaion for the solution to this equation can be obtained. For

example in the case n = 0 one has

〈V−mb
2
(x, x̄)Vα1(0)Vα2(1)Vα3(∞)〉 = Ωm(α1, α2, α3) |x|2mbα1|x−1|2mbα2

×
∫ m

∏

k=1

|tk|2A|tk − 1|2B|tk − x|2C
∏

i<j

|ti − tj|−4b2 d2t1 . . . d
2tm

with parameters

A = b (α− 2α1 −Q+mb/2) , B = b (α− 2α2 −Q+mb/2) ,

C = b (Q+mb/2− α)

• However, for several important purposes one needs the differential

operator for the four-point correlation function in explicit form.
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0 π
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∞
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• We consider five-point function

〈V− 1
2b
(z)Vα1(0)Vα2(1)Vα3(∞)Vα4(x)〉 =

= z
1

2b2(z − 1)
1

2b2
(z(z − 1)(z − x))

1
4

(x(x− 1))
2∆(α4)

3 + 1
12

Θ1(u)
b−2

Θ′
1(0)

b−2+1
3

Ψ(u|q),

with q = eiπτ

u =
π

4K(x)

∫ z−x
x(z−1)

0

dt
√

t(1− t)(1− xt)
and τ = i

K(1− x)

K(x)
.
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• One finds, that Ψ(u|τ) satisfies:


∂2u − U(u|τ) + 4i

πb2
∂τ



Ψ(u|τ) = 0, (*)

U(u|τ) =
4
∑

j=1

sj(sj +1)℘(u− ωj)

parameters sk are related with αk as

αk =
Q

2
− b

2

(

sk +
1

2

)

and ωk are half periods.

• One can try to find a solution to (*) in a form

Ψ(u|q) = us4+1
(

Ψ(τ) +Ψ−1(τ)u
2 +Ψ−2(τ)u

4 + . . .
)

,

with diagonal monodromy around u = 0.
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• Function ~Ψ(τ) =







. . .
Ψ−1(τ)
Ψ(τ)





 satisfies semi-infinite WZ equation



−J− +
i

πb2
∂

∂τ
+

∞
∑

k=1

W (k+1)(τ)

k!2
Jk
+



~Ψ(τ) = 0, (**)

where

J− =













. . . . . . . . . . . .

. . . 0 0 0

. . . −2s4 − 5 0 0

. . . 0 −s4 − 3
2 0













J+ =











. . . . . . . . . . . .

. . . 0 1 0

. . . 0 0 1

. . . 0 0 0











and

W (k)(τ(x)) =

(

2K(x)

π

)2k (

(−1)k+1(x− 1)w
(k)
1 Pk(x)+

+ xw
(k)
2 Pk(1− x)− (−1)k−1x(x− 1)w

(k)
3 xk−2Pk(1/x)

)

with w
(k)
j =



sj(sj +1)+ s4(s4+1)
(4k−1)



 and sn2(t|√x) =
∑ Pk+1(1−x)

k!2
t2k.
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• One can notice that if the parameter s4 in eq (**) from the previous

slide takes the values∗

s4 = −m− 3

2

then the infinite chain of equations (**) has a finite sub-chain. Due

to the triangle form of (**) it is easy to conclude that the function

Ψ(τ) satisfies a differential equation of the order (m+1). Examples

are (here W (k)(x) = (dτdx)
kW (k)(τ))

– For m = 1
(

∂2 +W (2)(x)
)

Ψ = 0

– For m = 2
(

∂3 +4W (2)(x)∂ +2∂W (2)(x) +W (3)(x)
)

Ψ = 0

– For m = 3

(

∂4 +10W (2)(x)∂2 +
(

10∂W (2)(x) + 6W (3)(x)
)

∂+

+
(

9W (2)(x)2 +3∂2W (2)(x) + 3∂W (3)(x) +W (4)(x)
)

)

Ψ = 0

∗It corresponds to the situation α4 = 1
2b
−mb

2
and hence in the operator product expansion

V− 1

2b
(z)Vα4

(x) appears the degenerate field V−mb

2

.
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Integrable potentials and conformal blocks

• We consider again the generalized Lamé heat equation


∂2u − U(u|τ) + 4i

πb2
∂τ



Ψ(u|τ) = 0, (⋆)

with

U(u|τ) =
4
∑

j=1

sj(sj +1)℘(u− ωj)

• We propose that for sk = mk+
2nk
b2

(mk, nk ∈ Z+) equation is integrable

• For example for s1 = s2 = s3 = 0 and s4 = 1 one can construct

explicit solution to (⋆)

Ψ(u|q) =

∫ π

0







Θ1(v)

Θ′
1(0)

1
3







b2

E(u+ v)

E(u)E(v)
Ψ0(u+ b2v|q) dv,

where Ψ0 is the solution of the heat equation and E(u) = Θ1(u)
Θ′

1(0)
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• In the dual case s1 = s2 = s3 = 0 and s4 = 2
b2

Ψ(u|q) = Θ′
1(0)

2
3(1−

2
b2
)
∫ π

0







Θ1(v)

Θ′
1(0)

1
3







4
b2 (

E(u+ v)

E(u)E(v)

)
2
b2

Ψ0(u+2v|q) dv,

• For general sk = mk +
2nk
b2

, we expect solution is likely to be given by

an integral of dimension

N = g + n1 + n2 + n3 + n4,

where g is the number of gaps for the classical potential

g =
1

2

(

2maxmk,1+ m− (1 + (−1)m)
(

minmk +
1

2

)

)

,

here m =
∑

mk. For example, for s1 = s2 = s3 = 0 and s4 = m

Ψ(u|q) =

π
∫

0

..

π
∫

0

m
∏

k=1







Θ1(vk)

Θ′
1(0)

1
3







mb2

∏

i<j

∣

∣

∣

∣

∣

∣

∣

Θ1(vi − vj)

Θ′
1(0)

1
3

∣

∣

∣

∣

∣

∣

∣

−b2

m
∏

k=1

E(u+ vk)

E(u)E(vk)
Ψ0(u+ b2v|q) dv1...dvm,
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• In order to obtain the conformal block one has to take instead of Ψ0

Ψ±
P (u|q) = qP

2
e±2b−1Pu.

and take the limit u → 0

• Let us define:

H(P )
m (q)

def
= HP





Q
2 − b

4
Q
2 − b

4

−(2m−1)b
4

Q
2 − b

4

∣

∣

∣

∣

∣

∣

q





then

H(P )
m (q) = N−1

m

π
∫

0

...

π
∫

0

e2bP (u1+···+um)
m
∏

k=1

E(uk)
mb2

∏

i<j

|E(ui − uj)|−b2 d~u

where Nm is the normalization constant

• The product of structure constants simplifies drastically

C

(

−(2m− 1)b

4
,
Q

2
− b

4
,
Q

2
+ iP

)

C

(

Q

2
− iP,

Q

2
− b

4
,
Q

2
− b

4

)

∼

∼ 16−2P2
m
∏

k=1

γ

(

ibP − kb2

2

)

γ

(

−ibP − kb2

2

)

.
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• The integral over the intermediate momentum P goes as shown

P

C
ib
2
−ib

2

imb
2

−imb
2

ib
2+ib−1

−ib
2
+ib−1

imb
2 +ib−1

−imb
2

+ib−1

• This deformation of the contour is prescribed by the condition that

the four-point correlation function is single-valued
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• Surprisingly, the result of integration over the momentum P is given

by a multiple integral over the torus T with periods π and πτ

∫

C
|q|2P2

Fm(P |τ)Fm(−P |τ∗)
∏m
k=1 sin

(

π(ibP + kb2
2 )

)

sin
(

π(ibP − kb2
2 )

) dP =

= Λm

(

Im(τ)

)−1/2 ∫

T

...
∫

T

m
∏

k=1

E(uk, ūk)mb2
∏

i<j

E(ui − uj, ūi − ūj)
−b2 d2~u,

where

Fm(P |τ) def
=

π
∫

0

...

π
∫

0

e2bP (u1+···+um)
m
∏

k=1

E(uk)
mb2

∏

i<j

|E(ui − uj)|−b2 d~u,

E(u, ū) = E(u)Ē(ū)e−
2(Imu)2

πImτ

• We note that this integral representation looks like Coulomb gas rep-

resentation of the one-point correlation function of the operator V−mb′

in LFT with parameter b′ = b√
2
on a torus
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• Let us define function T (α, b|q) in Liouville field theory with cosmo-

logical constant µ and coupling constant b on a torus

T (α, b|q) def
=

[

πµγ(b2)b2−2b2
]
α
b |η(τ)|−4∆(α)〈Vα〉τ

We define also the function S(α, b|q) which is related to the four-point

correlation function in LFT on sphere as (here ζ = Q
2 − b

4)

S(α, b|q) def
=

[

πµγ(b2)b2−2b2
]
α
b+

1
2b−

1
4 ×

× |x(x− 1)|
4
3∆(α) 〈Vα(x, x̄)Vζ(0)Vζ(1)Vζ(∞)〉.

• The correspondence between the one-point toric and the four-point

spheric correlation functions states that

S(α, b|q) = ℵ
(

(

α− b

4

)√
2,

b√
2

)

T
(

(

α− b

4

)√
2,

b√
2

∣

∣

∣

∣

q

)

,

where ℵ(α, b) is given by

ℵ(α, b) =
Υb(α)

Υb

(

1
2b

)

Υb

(

1
b

)

Υb

(

α+ 1
2b

).
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Conformal blocks and Nekrasov partition function

One-point conformal block F(∆)
α (q) is defined as the contribution to the

trace of the conformal family with conformal dimension ∆ = Q2

4 + P2

F(∆)
α (q)

def
= Tr∆

(

qL0− c
24Vα(0)

)

= 1+
2∆+∆2(α)−∆(α)

2∆
q + . . .

It was proposed by Alday, Gaiotto and Tachikawa that

F(∆)
α (q) =





q
1
24

η(τ)





2∆(α)−1

Z(ε1, ε2,m, a),

where Z(ε1, ε2,m, a) is the instanton part of the Nekrasov partition func-

tion in N = 2∗ U(2) SYM with

P =
a

~
, α =

m

~
, ε1 = ~b, ε2 =

~

b
,

where a is VEV of scalar field, m is the mass of the adjoint hypermultiplet

and εk are the parameters of the Ω background. Parameter q is given by

q = e2iπτ , where τ =
4iπ

g2
+

θ

2π
.
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Nekrasov partition function

Z(ε1, ε2,m, a) = 1+
∞
∑

k=1

qkZk,

can be represented as a sum over partitions. Let ~Y = (Y1, Y2) be the pair

of Young diagrams with the total numbers of cells equal to N . Then

ZN =
∑

~Y

2
∏

i,j=1

∏

s∈Yi

(Eij(s)− α)(Q−Eij(s)− α)

Eij(s)(Q− Eij(s))
,

where

Eij(s) = 2Pǫij − bHYj(s) + b−1(VYi(s) + 1),

HY (s) and VY (s) are respectively the horizontal and vertical distance from

the square s to the edge of the diagram Y .

• AGT relation for N = 2∗ theory can proved using Al. Zamolodchikov’s

recursive formula
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• The coefficient ZN can be represented as the contour integral

ZN =
1

N !

(

Q(b− α)(b−1 − α)

2πiα(Q− α)

)N
∮

C1
. . .

∮

CN

N
∏

k=1

P(xk + α)P(xk +Q− α)

P(xk)P(xk +Q)
×

×
∏

i<j

x2ij(x
2
ij −Q2)(x2ij − (b− α)2)(x2ij − (b−1 − α)2)

(x2ij − b2)(x2ij − b−2)(x2ij − α2)(x2ij − (Q− α)2)
dx1 . . . dxN ,

where P(x) = (x−P1)(x−P2) with P = (P1−P2)/2. The contour Ck
surrounds poles xk = P1, xk = P2, xk = xj + b and xk = xj + b−1.

• A singularity in ZN = ZN(α,∆) (∆ = Q2/4 + P2) can happen when

two poles of the integrand pinch the contour. One can show that

Res ZN(α,∆)

∣

∣

∣

∣

∣

∣

∆=∆m,n

= Rm,n(α)ZN−mn(α,∆m,−n),

where Rm,n(α) is exactly the same as prescribed by Alyosha Zamolod-

chikov’s recursion formula.
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• So, the singular part of the Nekrasov partition function coincides with

the singular part of the one-point conformal block.

• The non-singular part which can be obtained in the limit ∆ → ∞. It

can be found using well known “hook-length” formula





q
1
24

η(τ)





1−λ

= 1+
∞
∑

k=1

ξk(λ)q
k,

with

ξN(λ) =
∑

Y

∏

s∈Y

(

1− λ
(

1+HY (s) + VY (s)
)2

)

.

the sum goes over all Y ’s with the total number of cells equal to N .

• Comparing asymptotics of the conformal block and Nekrasov partition

function one finds the coefficient of proportionality in AGT formula.

17



• Seiberg-Witten prepotential can be obtained in the semiclassical limit

~ → 0

Z(ε1, ε2,m,~a) → exp

(

1

~2
F (m,~a|q) +O(1)

)

.

• To derive this limit from the Liouville point of view we consider two-

point function with one degenerate field

Ψ(z) ∼ 〈V− b
2
(z)Vα(0)〉

This function satisfies Scrödinger equation
(

−∂2z +
b2m2

~2
℘(z)

)

Ψ(z) =
2ib2

π
∂τΨ(z).

• We look for the solution in the form

Ψ(z) = exp

(

1

~2
F(q) +

b

~
W(z|q) + . . .

)

with prescribed monodromy e2iπa around A-cycle.
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• WKB approximation gives

W(z|q) =

∫ √

E(q) +m2℘(z)dz, E(q) = 4q∂qF(q).

• With E(q) given in parametric form
∮

A

√

E(q) +m2℘(z)dz = 2iπa,

the prepotential F(m,~a|q) can be calculated as follows

F(m,~a|q) =

(

a2 +
m2

12

)

log(q)− 4m2 log(η(τ)) + F(q),

• The integral over B-cycle defines aD
∮

B

√

E(q) +m2 ℘(z) dz = 2iπaD,

which is the derivative of the total prepotential (including classical

and perturbative part) with respect to a.
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