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Liouville theory
Lagrangian: £ = 3=(0ap)? + pe?*?
Central charge: ¢; =14 6Q2 where Q = b —|—%
Primary fields: V., = e2®% have conformal dimensions A(a) = a(Q—a)

Three-point function (Dorn-Otto-Zamolodchikov-Zamolodchikov):
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e Conformal block: gp(g? gz

e Elliptic block (Al. Zamolodchikov):
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where q = T with 7 = ZKI(<1(:;;§C)' satisfies a recursive relation which

leads to an effective algorithm for calculation of its expansion in power
series of ¢ (which is more convenient for numerical studies than the
ordinary x expansion)




e Degenerate fields V, with a = amn = —”Sb — 5 have a null-vector
in their Verma module at level (m + 1)(n + 1) and hence four-point
function satisfies Fuchsian ordinary differential equation of the same
order (Belavin-Polyakov-Zamolodchikov 1984). An explicit integral
representaion for the solution to this equation can be obtained. For
example in the case n = 0 one has
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e However, for several important purposes one needs the differential
operator for the four-point correlation function in explicit form.
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e \We consider five-point function
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e One finds, that W(u|r) satisfies:
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parameters s; are related with a; as
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and w; are half periods.

e One can try to find a solution to (*) in a form

W (ulg) = u* T (W(r) + Wi (e + Woa(nut + ...,

with diagonal monodromy around u = O.



e Function W(r) = (W1(7)> satisfies semi-infinite WZ equation
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e One can notice that if the parameter s4 in eq (**) from the previous

slide takes the values*
3

Sq4 — —Mm — >
then the infinite chain of equations (**) has a finite sub-chain. Due
to the triangle form of (**) it is easy to conclude that the function

W (7) satisfies a differential equation of the order (m 4+ 1). Examples
are (here W) (z) = (40)kw (k) (1))

— For m =1 <82 + W(2>(a;)) W =0

— For m =2 (03 + 4W P () + 20W () (2) + W(3)(w)) W =0

— Form =3 (84 +10W2)(2)02 4 (100W D (z) + 6W ) (2) )0+
+(9W<2>(:c)2 +302W @ (2) + 30W ) (2) + W(4)(w))) W =0

*It corresponds to the situation as = %—%b and hence in the operator product expansion

V_ﬁ(z)vm(:c) appears the degenerate field V_.w.



Integrable potentials and conformal blocks

e \We consider again the generalized Lamé heat equation

02 — U(ulr) + —-. 8, | W(ulr) =0, (%)
b
with
4
U(ulT) = Z si(s; + Dp(u — w;)
j=1

e \We propose that for s, = mk—l—% (myg,ng € Z4) equation is integrable

e For example for s1 = sp = s3 = 0 and s, = 1 one can construct
explicit solution to (%)
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where Wq is the solution of the heat equation and E(u) = &; (0)
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In the dual case s1 =sp =s3 =0 and s; = >
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For general s = my + % we expect solution is likely to be given by

an integral of dimension

N = g +n1 + n2 + n3 + ng,
where g is the number of gaps for the classical potential

g = % (2 maxmyg, 1 +m— (1 + (—1)m)<min my, + %)) :

here m = ) m;. For example, for s; = s, =s3 =0 and sz =m
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e In order to obtain the conformal block one has to take instead of W
2 —1
\U%(u|q) — qP e:I:Qb Pu.

and take the limit «w — 0O
e Let us define:
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where N,, IS the normalization constant

e [ he product of structure constants simplifies drastically

C(_(Qm—l)b Q_b Q—I—iP)C(g—iPQ—E Q_E)N
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e [ he integral over the intermediate momentum P goes as shown

i
: ~ 4 ip—1

Y

e [ his deformation of the contour is prescribed by the condition that
the four-point correlation function is single-valued
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Surprisingly, the result of integration over the momentum P is given
by a multiple integral over the torus T with periods @ and =«

[ 142§ (P7)Fm (—P|7*)
C T}y sin (n(bP + 55°)) sin (n(ibP — ’be))

_/\m<Im(7')> Y 2/ /H 5(uk,uk) Hé’(uz Ui, Ui — Uj) b2d2_’

Tk 1 1<J

dP =

where

Fm(PIT) € [ / 2P it T B(ug)™ [T | — )|~ dt
0O O k=1 1<J

_ 2(Imu)?
E(u,u) = E(uw)E(u)e”  nImr

We note that this integral representation looks like Coulomb gas rep-
resentation of the one-point correlation function of the operator V__
in LFT with parameter ¥ = -2 on a torus

5
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e Let us define function 7T («,b|q) in Liouville field theory with cosmo-
logical constant @ and coupling constant b on a torus

o

T(abla) & [muy (8202727 | n(r)| 4@ (1),

We define also the function S(«, b|q) which is related to the four-point

correlation function in LFT on sphere as (here { = % — %)

Pl

1
def _9p2 +2_b_
St bl) T muy (125227 X

Sals

% Jz(z — 1)|32) (Vo (z, B)V: (0) Ve (1) Ve (00)).

e [ he correspondence between the one-point toric and the four-point
spheric correlation functions states that

S(a, blg) =R ((Oz — %)\/5, %) T ((a - %)\/5, %‘q) ,
where R(q, b) is given by

WORIG

N(a,b) = :
R E Y (e
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Conformal blocks and Nekrasov partition function

One-point conformal block ]—‘(gA)(q) is defined as the contribution to the
2
trace of the conformal family with conformal dimension A = QT + P2

2A + A?(a) — A(a)
2N
It was proposed by Alday, Gaiotto and Tachikawa that

1\ 2A(a)-1

24

F® () = [ L Z(e1,€2,m,a),
n(T)

where Z(e1,e2,m,a) is the instanton part of the Nekrasov partition func-
tion in N/ = 2* U(2) SYM with

F$ (@) E Tra (a0 9va(0)) = 1+

q—+ ...

a m h
P = —, = —, p— hb, = —,
5 “= -1 27

where a is VEV of scalar field, m is the mass of the adjoint hypermultiplet
and e are the parameters of the €2 background. Parameter g is given by

; 4@7'(
q_—eQWT, where = — 4+ —
2
g 27
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Nekrasov partition function

©.@)
Z(€17€27m7 a) =1+ Z quka
k=1
can be represented as a sum over partitions. Let Y = (Y7, Y5) be the pair
of Young diagrams with the total numbers of cells equal to N. Then

B 2 (Eij(s) —a)(Q — E;(s) — a)
sv=2 =G5 o)

v i,j=1 s€Y;

Y

where
E;j(s) = 2P¢;j — bHy (s) + b=t (Vy.(s) 4+ 1),

Hy (s) and Vi (s) are respectively the horizontal and vertical distance from
the square s to the edge of the diagram Y.

e AGT relation for N = 2* theory can proved using Al. Zamolodchikov's
recursive formula
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e The coefficient 3y can be represented as the contour integral

30 = (Q(b —a)(b 1 — a)) j'{ % H P(xp + a)P(xr, + Q — oz)
N! 2ria(Q — ) Gr b=1 P(:Uk)P(:Uk + Q)

< T2 (CUZJ Qz)(ib‘% —(b— CV)Q)(CUZ-J- (b~ 05)2)

i< (CUZJ 52)(1‘% — 5_2)(33% — 062)(5% (Q — 05)2)

where P(z) = (x — P1)(x — Pp) with P = (P; — P>)/2. The contour Cy
surrounds poles zp = Py, x = P, z, =z, + b and o, = z; + b~ 1.

. .dZUN,

e A singularity in 35 = 3ny(a,A) (A = Q?/4 4+ P?) can happen when
two poles of the integrand pinch the contour. One can show that

Res BN(Oz, A) = Rm,n(a) BN—mn(O‘a Am,—n)a
A:Am,n

where Rp n(a) is exactly the same as prescribed by Alyosha Zamolod-
chikov's recursion formula.
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e SO, the singular part of the Nekrasov partition function coincides with
the singular part of the one-point conformal block.

e [ he non-singular part which can be obtained in the limit A — oco. It
can be found using well known *“hook-length” formula

5% 1—)\ o
(q ) =14+ Y &M,

n(r) k—1

with

ENO) =D 11 (1 — ( A >2>

Y sey 14+ Hy (s) + Vi (s)

the sum goes over all Y's with the total number of cells equal to N.

e Comparing asymptotics of the conformal block and Nekrasov partition
function one finds the coefficient of proportionality in AGT formula.
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Seiberg-Witten prepotential can be obtained in the semiclassical limit
h— 0

1
Z(e1,e9,m, @) — exp (ﬁf(m, 3lq) + 0(1)) .

To derive this limit from the Liouville point of view we consider two-
point function with one degenerate field

W(2) ~ (V5 (2)Va(0))
This function satisfies Scrodinger equation
b2

7

2 62m2
(—az+ - W)) W(z) = "0, (z).

We look for the solution in the form
1 b
W(z) = exp (5 F (@) + WD) + - )

with prescribed monodromy e2!™@ around A-cycle.
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e WKB approximation gives

WD) = [ VE@ +m2p(2)dz,  B(a) = 4a9,F(a).

e With E(q) given in parametric form

%\/E(q) + m?p(2)dz = 2ira,
A
the prepotential F(m,d|q) can be calculated as follows

2

m.alo) = (a2 + 75 ) 109(a) - 4m 00(n(r)) + F(0),

e T he integral over B-cycle defines ap

%\/E(q) + m? p(2) dz = 2irap,
B

which is the derivative of the total prepotential (including classical
and perturbative part) with respect to a.
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