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Nécessite d’une theéorie relativiste de la gravitation

_interaction gravitationnelle ne peut pas &tre instantanée

Clle doit prendre en compte la relativité restreinte

Programme mene a bien par Albert Einstein en 1915



Universalité de la chute libre :

« Les objets lancés ou laches de la méme facon
tombent de la méme facon

indépendamment de leur masse »
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Principe d’equivalence :

« Les lois de la physique,
pour un observateur en chute libre dans un champ gravitationnel,

sont localement identiques a celles en I'absence de gravitation »
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Référentiel en chute libre

Principe d’equivalence :

« Les lois de la physique,
pour un observateur en chute libre dans un champ gravitationnel,

sont localement identiques a celles en I'absence de gravitation »



La chute libre : répren‘ons e
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Dans un référentiel inertiel ma = 0

Dans le référentiel qui nous intéresse (le laboratoire)

ma = —ma,
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Dans un référentiel inertiel ma = 0

Dans le référentiel qui nous intéresse (le laboratoire)

ma=—mad. =mg

Remarque : oublier la notion de référentiel galiléen |



Dans un référentiel inertiel ma =0
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Dans le référentiel qui nous intéresse (le laboratoire)
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Dans un référentiel inertiel
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c’est la connexion affine

forces d’inertie = forces gravitationnelles !
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R o dz® dxzP =

dr2 P dr dr

c’est I'équation des géodésiques
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c’est I'équation des géodésiques

Elle donne I'équation des lignes droites dans
n'importe quel systeme de coordonnées



dx® dz”

R
% Elb 5 =0
dT? XC dr  dT

c’est I'équation des géodésiques

Elle donne I'équation des lignes droites dans
n'importe quel systeme de coordonnées

Elle donne I'éguation des chemins les plus
courts sur des surfaces courbees






la gravitation est une manifestation de la courbure de
’espace-temps
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Dans |'espace-temps usuel (plat) de la RR

cette relation définit la géométrie de I'espace-temps
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Dans un espace-temps courbe ds® = g,, dz* dz”

détermine la relation entre
coordonnées et « distances »

(géométrie)
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Dans un espace-temps courbe

détermine la relation entre
coordonnées et « distances »

(géométrie)

dl? = R? da’ + R? sin® o db?
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Dans un espace-temps courbe ds* = g, dz* dz*

c’est aussi un potentiel gravitationnel

R pw dz® dxP

dr2 P dr dr e

FM lga,u 89004 | 8905 89045
OxP Ox® 0x°
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La présence d’un champ gravitationnel
affecte les distances et les durées

Remarque #1 sur le potentiel gravitationnel

ds® = goo dt” + 2 g0 dt dz + 2 goo dt dy + 2 gso dt dz
+ g11dz® +2gi2dxdy +2g13drdz + 2 g3 dydz + g3 dz”
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Remarque #2 sur le potentiel gravitationnel

a la dimension physique de v?

a la dimension physigue d’une longueur




Rayon de Schwarzschild

s o~ 3 ) x297km

2

environ 3 km pour le Solell,

environ 1 cm pour la Terre,

quelgues millions de km pour un trou noir supermassif



Metriqgue de Schwarzschild |

dans le vide

pas de charge électrique

distribution de masse a symétrie sphérique
ISotropie

conditions aux limites plates

coordonnées sphérigues

constante cosmologique nulle
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Metriqgue de Schwarzschild
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circonférence d’'un cercle

: — Sl
de rayon-coordonnée r ¢
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o Sur une sphere
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o Sur une sphere
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sur un plan




remarque sur la géométrie Z 7“%%%

pour la métrique de Schwarzschild, dans le plan équatorial :
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Figure 15.7. The figure suggests how flat spacetime (the uniformly spaced grid) would be |
distorted by the presence of a mass. Since it is the curvature of spacetime that determines how
objects move, all objects, regardless of their mass, would “fall” toward the massive object at

the same rate.
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Figure 15.7. The figure suggests how flat spacetime (the uniformly spaced grid) would be
distorted by the presence of a mass. Since it is the curvature of spacetime that determines how
objects move, all objects, regardless of their mass, would “fall” toward the massive object at
the same rate.
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Qu’est-ce qui détermine la courbure ? (la métrique ?)

L.a courbure détermine le mouvement
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Une theorie satisfaisante doit étre formulée de fagcon covariante
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« Conférence sur les grandeurs physiques » |

‘.'" Lme) Gy

Les vecteurs sont présentes/compris comme :
o des elements d’'un espace vectoriel
o la juxtaposition de 3 nombres (les coordonneées)

< un objet dote d'une direction et d'une norme (une fleche)

Ces points de vue sont tres differents.

https://www.youtube.com/watch?v=Z1li_c7-D1k
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pien definie par changement de coordonnées

ox'H
V/,u e VOA
Ox™
ox®
e
e ox'H Vo
Ty _ ox'* 0x'v o

- Oz OxP
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| es tenseurs sont des grandeurs qui se transforment d’une fagon
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I3
Exemple : temps propre 7, position z** , quadri-vitesse _d;

=
tenseur de courbure

A A
R)\ = aF,LL(X aF,LLV | 1’\)\ 1—177 R F)\ Fn
e e 0T Bl AU an® pv
tenseur de Ricci R, = R;ij
scalaire de Ricci B= R
0P

gradient 8MCI) =



pﬂ% }

Contre-exemples :

o oxH  9°E°
b T 9ET Jr*OxP

A%

OxH

O =W =
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Contre-exemples :

o Oxt O4£°
b T 9ET Ox2OzP
o e SIS
oV¥=Ve , = =

La combinaison suivante est un tenseur
OVt 7 (Vi g s o Q B
D,UV :V L :6,“‘/ _I_FBMV

c’est |a derivée covariante
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On s’'impose d’écrire des égalités entre tenseurs



On s’'impose d’écrire des égalités entre tenseurs

(ca indigue notamment comment les forces se transforment)
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La courbure est déterminée par le contenu de I'espace-temps

L.a courbure détermine le mouvement

1
RMV ToE §g,u,/R 2 Ag,ul/ — —SWGTMV



pﬂ% '

La courbure est déterminée par le contenu de I'espace-temps

L.a courbure détermine le mouvement

1
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equations d’Einstein

Ce sont 16 equations difféerentielles portant sur le tenseur métrique.

Elles sont hautement non linéaires
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Faire de la physique en espace-temps courbe



Faire de la physique en espace-temps courbe ‘

Remplacer partout

ove

oxt

oV =W =
par

D, V*=V*,=§,V*+Tg, VP’
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Tests cubére
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Tests exfé

#0

Succes théorigue :

on peut formuler une théorie relativiste de la gravitation !

o 47
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Avance du périnélie de Mercure (1915)

V.

aphélie

périhélie



#1 lests eupérimentaur

Avance du périnélie de Mercure (1915)

3T,

il a(l — e?)

43 secondes d’arc par siecle pour Mercure,

3,8 pour la Terre.
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Déviation gravitationnelle des rayons lumineux (1919)
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Déviation gravitationnelle des rayons lumineux (1919)
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1,75 seconde d’arc pour le bord du Solell
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1,75 seconde d’arc pour le bord du Solell
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Lentilles gravitationnelles
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Expéerience de Pound et Rebka (1959)

AR LT A
i T2 7
Expérience de Hafele & Keating (19/1)

~ U T

GPS (Global Positioning System)
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#4

Retard de I’'écho radar : effet Shapiro (prédit 1964 - mesuré 1968)

Terre



W
235 A

S

Tow (TN
——

M




lests evbért aur

#4

Retard de I’'écho radar : effet Shapiro (prédit 1964 - mesuré 1968)

s | 4 :
Nfiet 1—|—1n< ﬁf)

& g

rs/c =~ 10 us

Quelques centaines de microsecondes pour Vénus et Mercure.

On utilise aussi les sondes du Systeme solaire.
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#4

« Planetary Radar »
J. H. Thomson
Quarterly Journal of the Royal Astronomical Society 4 (1963) p. 347

o 47



Planetary Radar
| J. H. Thomson

(A Council Report on the Progress of Astronomy)

Summnary

The discussion is confined to radar studies of the planets, lunar
and solar radar being excluded. There are two limiting cases of
radar systems, pulse and continuous wave; the former enables the
range and angular power spectrum of the target planet to be
measured, the latter the line of sight velocity and the frequency
spectrum. Actual radar systems are often a combination of the two.
Methods are described for measuring the rotation of the target,
and for mapping its surface. The probable strength of echoes is
discussed; present techniques allow the three inner planets to be
detected. Necessary computational and electronic techniques are
discussed. 'The history of the subject since 1958 is recorded. Obser-
vations of Venus have resulted in a much more precise measurement
of the astronomical unit, which is in conflict with the generally
, 1 % 3)
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Bibliographie Taille de la police Augmenter Réinitialiser Diminuer

Dictionnaire de physique

Vous étes ici : Home

Dans ce site Bibliographie

Accueil Liste de liens bibliographiques pertinents (plus de 10 000). Cette liste a été congue en cherchant dans plusieurs revues de

qualité des articles qui portaient directement sur le sujet abordé :
Erratum

« « American Joumnal of Physics » est une revue ameéricaine destinée aux physiciens, avec une portée pédagogique
Nouvelles entrées i : _
exceptionnelle [accés restreint] [1969-aujourd'hui] ;
Bibliographie » Les « Resource Letters » de I'American Joumnal of Physics sont des compilations bibliographiques extrémement complétes
SRk e en anglais [acces restreint] ;
= « Physics Reports », articles de revue destinés aux chercheurs du domaine, sur des sujets pointus. [acces restreint]

Enseignement » « Images de la physique » est une revue annuelle publiée par le CNRS, destinée a faire connaitre les avancées récentes
Vu sur le nat en physique a un public de physiciens [acces libre] ;
« « La Recherche » est une revue de vulgarisation frangaise, s'adressant au grand public [acceés restreint] [1990-aujourd'hui] ;
» « Pour la Science », version frangaise du « Scientific American », est une revue de vulgarisation s'adressant au grand
public [accés restreint] [1993-aujourd’hui] ;
« Les « Cahiers de science et vie » sonl des dossiers s'intéressant a I'histoire des sciences, pour le grand public ,
« « Ciel et Espace », revue d'astronomie amateur proposant aussi des articles de vulgarisaticn sur I'astrophysique, la
cosmologie et I'histoire des sciences [acces restreint) [2007-aujourdhui] ;
« « Physics Today » est une revue de diffusion de la physique, en anglais, s'adressant plutdt a des physiciens [acceés

restreint] [1989-aujourd’hui] ;

MisL. Jd.. ISr-a -l i e il el Bl L ACALZ e e M SIS A e el EolY .

http://www.dicodephysique.fr/joomla/joomla-fr/ice/bibliographie
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Effet Einstein-de Sitter ou précession geodétique (1916/1988)

e 3¢ (7“3)3/2

% Op

quelgques arcsec/siecle

verifie par Gravity Probe B
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#6

Entrainement des référentiels : effet Lense-Thirring (1918/2004)
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#6

Entrainement des référentiels : effet Lense-Thirring (1918/2004)

gravitomagnéetisme

F =m(Eg +7A4Bg)
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#6

Entrainement des référentiels : effet Lense-Thirring (1918/2004)

gravitomagnéetisme

F =m(Eg +7A4Bg)
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la particule
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Entrainement des référentiels : effet Lense-Thirring (1918/2004)
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Entrainement des réféerentiels : effet Lense-Thirring (1918/2004)

vérifie par LAGEOS
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Ondes gravitationnelles

dit rapidement : ondes dans la structure de I'espace-temps
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Ondes gravitationnelles

dit rapidement : ondes dans la structure de I'espace-temps

En fait, c’est subtil. La notion d’energie gravitationnelle est tres
délicate a definir en relativité générale.

Longue controverse historique sur la réalité de ces ondes
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Détection indirecte dans le
pulsar binaire PSR 1913+16
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Détection directe en 2016 par LIGO/Virgo
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Principe cosmologique
« A grande échelle, I'Univers est homogéne et isotrope »

Metrigue de Robertson-\Walker

dr?
1 — kr?

ds® = ¢'dt® — a°(t) ( - r2df? 4 r* sin” 0 d¢2>
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—Xpansion de I'Univers

Histoire thermique

Nucléosynthese primordiale

—ormation des grandes structures

Rayonnement de fond cosmologique






Manipuler des tenseurs
Singularités

Interprétation des coordonnées



)
ds? = (1 — T—S> il (1 — T—S) dr? — r?df* — r? sin® Odo?

T T

quantités singulieres pour deux valeurs de r :



dl? = R?da’ + R? sin“« db?
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singularité de coordonnées
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dl? = R?da’ + R? sin“« db?

dp?
& 1 — p?/R? | ('”)dHZ

dl?



ct

0




coordonnées d’Eddington-Finkelstein

= e i | — — 1
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e = @i — 97 b

on a le droit de faire ca ?1?
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e = — e — — 1l

on a le droit de faire ca ?1?

oul, les coordonnées n'ont pas de sens physique a priori
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G = — T =

on a le droit de faire ca ?1?

oul, les coordonnées n'ont pas de sens physique a priori

1]
ds? = (1 — T—S) il (1 — T—S) dr? — r2d6* — r? sin® 0do?

T T



théorie de Brans-Dicke

théories de Gauss-Bonnet

prise en compte d’'une torsion

A é@/%@féﬂ&f/

théorie des cordes

gravité quantique a boucles
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GRAVITATION
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PRINCIPLES AND APPLICATIONS OF
THE GENERAL THEORY OF
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« The Confrontation between General Relativity and Experiment »
Clifford M.Will

Living Reviews in relativity

http://relativity.livingreviews.org/Articles/lrr-2006-3/


http://relativity.livingreviews.org/About/authors.html#will.clifford
http://relativity.livingreviews.org/About/authors.html#will.clifford

http://podcast.grenet.fr/podcast/cours-dintroduction-a-la-relativite-generale/



26 épisodes de 25 a 45 minutes (HD 720)

http://podcast.grenet.fr/podcast/cours-dintroduction-a-la-relativite-generale/
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Richard. Talllet@univ-savoie.fr
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