Quelques nouvelles récentes

Sébastien Descotes-Genon

descotes@th.u-psud.fr Laboratoire de Physique Théorique CNRS & Université Paris-Sud, 91405 Orsay, France

Orsay, 23 juillet 2015

Été comme hiver

Les "confs"

- En physique des particules, conférences d'hiver (Moriond) et d'été (ICHEP, Lepton-Photon, EPS-HEP)
- EPS-HEP: conf. européenne, organisée sous l'égide de la Société Européenne de Physique, tous les 2 ans, un endroit différent
- 1 semaine, à Vienne (Autriche)

- De 800 à 1000 participants littéralement du monde entier
- Autant pour les présentations, calibrées, que pour les discussions, informelles, aux pauses (rumeurs...)

• Autres occasions de rencontres: réunions satellites, conférences thématiques, workshops spécialisés, séminaires...

Sébastien Descotes-Genon (LPT-Orsay)

Les trois premiers jours d'EPS-HEP 2015

Sessions parallèles (7 sessions, 15-20 min sur sujet spécifique)
 700 interventions : une session pecters

Quelques nouvelles récentes

700 interventions + une session posters

	Precise Prediction of the Dark M	Status of Light Sterile Neutrinos	Inclusive and Semi- Inclusive Jet measurement	Searches for low mass dark bosons	Prospects for SUSY discovery	Colour Reconnection - Models a	Measurement of t-channel single top quark p
	Dulition of axion dark radiation	Search for sterile neutrinos	Jet results in heavy ion collisions	Search for the dark photon in	Searches for squarks and gluinos	Measurement of observables	Measurement of single top production
15:00	Axino and gravitino dark matte	STEREO: search for a sterile neu	with the ATLAS experiment at the LHC	Measurements of CP violation in \$B^0_{d/s}\$	Searches for 3rd generation	Measurements of particle production,	Tevatron combined single top
	Leptogenesis in natural low-scale s	First results of the deployment	Jet results in heavy ions with CMS	Phi_s and Delta Gamma_s	SUSY searches with lepto	Small-x QCD and forward physics res	production Measurement of ttbar
	Dark Matter Self- Interactions	SOX : Short Distance Neutrino O	HS42 Transverse momentum	New physics searches	Searches for R-Parity Violating	Charged- particle multiplicities	production cross section .HS31
	Cosmological models with QGP: DM,	nuMSM: the model, its predictions	spectra of charged particles and identified		Compressed SUSY searches a	Testing QCD with CMS using jets	Top-quark pair production at hadron
16:00	Coffee Break		nadrons in				
17:00	The Dark Energy Survey: St	Heavy neutrinos in particle ph	Flow and correlations results from CMS	The Precision of the CKM A	Proposing a new LHC search for I	Production of c cbar c cbar in sin	Measurements of the top quark pair production
	Investigating Dark Energy and Gravit	Searches for leptoquarks and heavy	Results on angular correlations	Precision measurement of Δmd usi	Killing the CMSSM softly	Study of fragmentation functions i	Measurement of differential
	Holographic reconstruction of scalar fi	Indirect searches for sterile neu	Latest results from	Re- examining \$\sin 2 \b	pMSSM combination of SUSY se	Measurements of the elastic, ine	Top quark pair production
	Dynamically	Global fit to	NA61/SHINE	Study of CP	\$h^0(125GeV	Data-driven	measurements

Sébastien Descotes-Genon (LPT-Orsay)

Standard Model and Beyond, Electroweak Symmetry Breaking, Neutrino Physics, Flavour Physics CP Violation, QCD and Hadronic Physics, Heavy Ions, Future Facilities, Astroparticle Physics, High Energy Astrophysics, Cosmology, String Theory, Non-Perturbative Field Theory, Detectors and Data Handling, Accelerator R&D, Outreach...

Le dimanche

- Digérer les résultats, travailler, faire du tourisme...
- D'autres activités sociales (concert, banquet...) prévues les soirs

Les trois derniers jours d'EPS-HEP 2015

- 3 jours de sessions plénières (exposés plus longs sur un domaine)
- Remise de prix, dont l'EPS Prize, souvent précurseur du Prix Nobel, à J. D. Bjorken, G. Altarelli, Y. L. Dokshitzer, L. Lipatov et G. Parisi pour leurs travaux sur l'interaction forte
- Conférence de presse sur les premiers résultats du run 2 du LHC
- Plusieurs activités de vulgarisation des sciences

	Dark matter theory	Tomer VOLANSKY
	Audi Max	08:30 - 09:00
09:00	Direct searches for dark matter	Jocelyn MONROE
	Audi Max	09:00 - 09:30
	High energy cosmic rays: Photons and charged particles (incl. antimatter)	Werner HOFMANN
	Audi Max	09:30 - 10:00
10:00	Neutrino astrophysics (incl. dark matter searches)	Francis HALZEN
	Audi Max	10:00 - 10:30
	Coffee break	
	Arcades	10:30 - 11:00
11:00	Cosmic microwave background	Ken GANGA
	Audi May	11:00 - 11:30
		11.00 - 11.50
	Observational cosmology (beyond CMB, including lensing)	Ofer LAHAV

Sébastien Descotes-Genon (LPT-Orsay)

De quoi se cultiver...

- Beaucoup de transparents
 - Des articles paraissent juste après les talks
- Proceedings (comptes-rendus) à écrire dans la foulée

Un petit problème de causalité

- D'ordinaire, les Rencontres ont lieu avant les conférences d'été
- Cette année, EPS commence aujourd'hui (Nicolas y participe)

Un petit problème de causalité

- D'ordinaire, les Rencontres ont lieu avant les conférences d'été
- Cette année, EPS commence aujourd'hui (Nicolas y participe)

Un petit problème de causalité

- D'ordinaire, les Rencontres ont lieu avant les conférences d'été
- Cette année, EPS commence aujourd'hui (Nicolas y participe)
- En l'absence de boule de cristal...
- ... trois nouvelles récentes...
- ... qui seront à suivre dans les mois qui viennent !

A la recherche de la nouvelle résonance

Analyser et interpréter

- Particules créées étudiées via une cascade de désintégrations
- Reconstruction en suivant les trajectoires
- Lois de conservations (énergie-impulsion, charge électrique...)
- Certaines particules ne sont pas détectées (neutrinos...)

- Sélection des évènements pour éliminer bruits de fond
- Reste à interpréter en s'appuyant sur la théorie

Sébastien Descotes-Genon (LPT-Orsay)

Solution pour Klein Gordon (spin 0) dans l'espace des impulsions $(\partial_{\mu}\partial^{\mu} + m^2)\phi(x) = j(x) \Longrightarrow \tilde{\phi}(p) = \frac{1}{m^2 - p^2} \times \tilde{j}(p)$ Propagateur qui décrit l'évolution de la particule

Solution pour Klein Gordon (spin 0) dans l'espace des impulsions $(\partial_{\mu}\partial^{\mu} + m^2)\phi(x) = j(x) \Longrightarrow \tilde{\phi}(p) = \frac{1}{m^2 - p^2} \times \tilde{j}(p)$ Propagateur qui décrit l'évolution de la particule 7+X 74 77 n.=126 Ge H 10 m., [GeV] 2 • Probabilité $P(gg
ightarrow H
ightarrow ZZ^*) \propto \left|g_{Hgg} imes rac{1}{m^2 - p^2} imes g_{HZZ}
ight.$

Solution pour Klein Gordon (spin 0) dans l'espace des impulsions $(\partial_{\mu}\partial^{\mu} + m^2)\phi(x) = j(x) \Longrightarrow \tilde{\phi}(p) = \frac{1}{m^2 - p^2} \times \tilde{j}(p)$ Propagateur qui décrit l'évolution de la particule 7+X 74 77 H 10 m., [GeV] 2 • Probabilité $P(gg
ightarrow H
ightarrow ZZ^*) \propto \left|g_{Hgg} imes rac{1}{m^2 - p^2} imes g_{HZZ}
ight.$ • Mais particule intermédiaire, instable, de temps de vie τ $\phi(t, \vec{x}) \propto e^{-imt} \rightarrow e^{-t/(2\tau)} e^{-imt} \implies m \rightarrow m - i\Gamma/2 \qquad \Gamma = 1/\tau$

Sébastien Descotes-Genon (LPT-Orsay)

Quelques nouvelles récentes

23/7/15 11

Tester des modèles nouveaux

- Pas de paires de nouvelles particules-antiparticules à 8 TeV
- Les particules si elles existent sont trop lourdes pour le LHC

Sébastien Descotes-Genon (LPT-Orsay)

Des excès intriguants (Juin 2015)

- Collisions pp produisant WW, WZ, ZZ
- Il semble apparaître des pics autour de 2 TeV pour ATLAS et CMS

- Mais pas les mêmes paramètres (sections efficaces)
- Et difficile à accommoder dans un modèle cohérent et simple (couplages importants *WZ*, aux *g*, *u*, *d*, et résonance étroite ?)

Sébastien Descotes-Genon (LPT-Orsay)

Quelques nouvelles récentes

23/7/15 13

Le penta-quoi?

LHCb fête le 14 Juillet !

- Au CERN, LHCb étudie les désintégrations de hadrons contenant un quark b
- Entres autres $\Lambda_b \rightarrow J/\psi \ p \ K^- \ [(c\bar{c})(uud)(s\bar{u})]$
 - Processus attendu Λ_b → J/ψ Λ(→ p K⁻)
 Mais aussi Λ_b → K⁻P⁺_c(→ J/ψ p)

[faible, puis fort]

- (a) $\Lambda_{b}^{0} \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} \Lambda^{*} \qquad \Lambda_{b}^{0} \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} \Lambda^{*} \qquad \Lambda_{b}^{0} \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+} \left\{ \left\{ \left\{ \begin{array}{c} b \\ u \\ d \end{array} \right\} H^{+}$
 - c c d u
- $P_c^+ = (uudc\bar{c})$
- en fait, 2 états de masses 4.450 et 4.380 GeV
- se désintégrant en J/ψp sous l'effet de l'interaction forte

Sébastien Descotes-Genon (LPT-Orsay)

LHCb voit donc des particules instables

- Masse invariante p K⁻ : résonance Λ
- Masse invariante J/ψ p : 2 pics, un bien visible, l'autre plus large caché dans le bruit de fond
- L'un serait de spin 3/2, l'autre de spin 5/2
- Probabilité d'un effet dû à une fluctuation du bruit de fond : 9 et 15 σ (soit 10⁻¹⁹ et 10⁻⁵⁰)
- A condition d'avoir bien estimé le bruit de fond...

De quoi fait-on un pentaquark?

- 4 quarks et 1 antiquark, unis par la force forte
- avec des couleurs organisées pour obtenir un pentaquark blanc
- soit les quarks unis fortement tous ensemble, soit une molécule avec baryon et méson faiblement liés
- prédits dans des modèles effectifs de QCD (théorie fondamentale trop compliquée à résoudre)

d'autres états exotiques (nombres quantiques impossibles pour *qqq* ou *qq̄*) déjà observés, peut-être des tétraquarks (*qqq̄q̄*) ?
X(3872), Z(4430), Y(4140), Z_c(3900), Z_b(10610), Z_b(10650)...

Sébastien Descotes-Genon (LPT-Orsay)

Mais un passé discutable pour les pentaquarks

 1997: des théoriciens russes de l'interaction forte prédisent l'existence d'états à 5 quarks (4q+1q̄), en particulier le Θ⁺=uddus̄

- 2003: premières "observations d'un pentaquark (Japon)
- Plusieurs confirmations expérimentales (Russie, Allemagne)...
- ... mais les résultats positifs ne peuvent être reproduits, et d'autres résultats négatifs s'accumulent
- Fluctuation statistique d'un bruit de fond insuffisamment compris, amplifiée par les sélections ... prudence donc avec le P⁺_c !

Sébastien Descotes-Genon (LPT-Orsay)

P-prime-5

Deux approches de la Nouvelle Physique

- ATLAS, CMS: produire de nouvelles particules et détecter leurs produits de désintégrations
- LHCb: étudier des processus rares, qui peuvent faire intervenir des particules intermédiaires (virtuelles) lourdes

 $b
ightarrow s \ell^+ \ell^-$ ($\ell = e \text{ ou } \mu$)

- Processus avec une très faible probabilité dans le Modèle Standard (passage via *W* et *t* virtuels)
- Sensible à des états intermédiaires virtuels lourds au-delà du MS, qui se manifesteront par des écarts entre MS et expérience

Sébastien Descotes-Genon (LPT-Orsay)

Quand l'interaction forte s'en mêle

- Processus théorique en termes de quarks, mais expériences mesurées en termes de hadrons
- b→ sℓ⁺ℓ⁻ peut se traduire en différentes transitions entre hadrons: B→ Kℓ⁺ℓ⁻, B→ K^{*}ℓ⁺ℓ⁻, B_s→ φℓ⁺ℓ⁻, Λ_b→ Λℓ⁺ℓ⁻...

- En présence de physique au-delà du Modèle Standard, tous ces procesus sont affectés : permet de croiser les résultats pour en apprendre plus !
- Mais il faut comprendre la transition entre quarks et hadrons sur le plan théorique, pour pouvoir prédire précisément les valeurs MS

modèles approchés, simulations numériques

Sébastien Descotes-Genon (LPT-Orsay)

Quelques nouvelles récentes

23/7/15 21

La lente progression d'une idée

- 1990: premiers travaux théoriques sur l'intérêt de b → sℓ⁺ℓ⁻ pour la nouvelle physique
- 2000: premières estimations relativement "précises" des effets de l'hadronisation liée à QCD
- 2005-2010: constructions d'observables faiblement sensibles aux effets de QCD (et donc très sensibles à des particules au-delà du MS)
- 2008-2010: premières mesures à Babar, Belle (avec de grosses barres d'erreur),
- 2011: LHCb mesure un processus relié (et très attendu par les partisans de la supersymétrie), B_s → μμ, en accord avec le MS
- 2012-2015: mesures de précision à LHCb

P'_5

- Décrit en partie la géométrie compliquée de la désintégration $B \to K^* \mu^+ \mu^-$ (avec $K^* \to K \pi$)
- En fonction de q², masse invariante de deux muons
- Déviation par rapport au Modèle Standard, observée en 2013 et confirmée en 2015

Sébastien Descotes-Genon (LPT-Orsay)

Des explications ?

- Plusieurs fluctuations statistiques intempestives (?)
- Sous-estimation d'incertitudes du côté expérimentales (géométrie du détecteur) ou théoriques (compréhension de QCD) (?)
- Il y a de la nouvelle physique (?)

- Nouvelle interaction Z' couplant aux muons et changeant b en s
- Leptoquarks, couplant à quark + lepton des 2ème et 3ème famille
- Difficile à décrire avec la supersymétrie...

Sébastien Descotes-Genon (LPT-Orsay)

A bientôt, pour Lepton-Photon 2015 en août à Ljubljana (Slovénie),

> ou dans deux ans, pour EPS-HEP 2017,

ou bien encore dans un an, pour ICHEP 2016 à Chicago (USA) !