Specifications of silicon sensor for g-2/EDM

Shoichiro Nishimura / Univ. of Tokyo 20/02/2014 @LPNHE

Outline

- Muon g-2/EDM experiment at J-PARC (E34)
- Specification of silicon strip sensor
- Estimation of sensor alignment
- Producing and evaluate test sensors

Magnetic & electric dipole moment

Anomalous magnetic moment (g-2)

$$\overrightarrow{\mu} = g\left(\frac{q}{2m}\right) \overrightarrow{s} \qquad a_{\mu} = \frac{g-2}{2} \qquad \text{Dirac equation} \rightarrow g=2 \\ \text{Quantum effect} \rightarrow g\neq 2 \end{cases}$$

experiment
$$\longleftrightarrow$$
 SM (theory)
3.3 σ discrepancy

Dirac equation \rightarrow g=2

$$\overrightarrow{d} = \eta \left(\frac{q}{2mc}\right) \overrightarrow{s}$$

Magnetic & electric dipole moment

Anomalous magnetic moment (g-2)

$$\overrightarrow{\mu} = g\left(\frac{q}{2m}\right) \overrightarrow{s} \qquad a_{\mu} = \frac{g-2}{2}$$

$$g = \mu \int_{\text{Dirac}}^{\gamma \xi} + \mu \int_{\gamma \chi}^{\gamma \xi} + \mu + \mu \int_{\gamma \chi}^{\gamma \xi} + \dots$$

experiment
$$\longleftrightarrow$$
 SM (theory)
3.3 σ discrepancy

Electric dipole moment (EDM)

$$\overrightarrow{d} = \eta \left(\frac{q}{2mc}\right) \overrightarrow{s}$$

Dirac equation \rightarrow g=2

Quantum effect $\rightarrow g \neq 2$

→ CP is violated because of CPT theory

Magnetic & electric dipole moment

Anomalous magnetic moment (g-2)

$$\overrightarrow{\mu} = g\left(\frac{q}{2m}\right) \overrightarrow{s} \qquad a_{\mu} = \frac{g-2}{2} \qquad \text{Dirac equation} \\ \text{Quantum effect} \end{cases}$$

experiment
$$\longleftrightarrow$$
 SM (theory)
3.3 σ discrepancy

• g=2 • g≠2

Electric dipole moment (EDM)

$$\vec{d} = \eta \begin{pmatrix} q \\ g - 2 \end{pmatrix} \Rightarrow \qquad \text{Time}$$

$$g - 2 \Rightarrow 0.54 \text{ ppm} \Rightarrow 0.1 \text{ ppm}$$

$$EDM \Rightarrow 1.8 \times 10^{-19} \text{ e} \cdot \text{cm} \Rightarrow 10^{-21} \text{ e} \cdot \text{cm} \text{ ry}$$

J-PARC muon g-2/EDM experiment (E34)

How to measure g-2/EDM

spin precession w/ continuous B field and E field =0,

Time spectrum of decay positron and up down asymmetry

Positron tracking detector

- positron momentum
 - p>200 MeV/c
- amplitude of spin oscillation
 - ~10 µrad

high rate beam

- high granularity
- fast response
- high stability

Development of tracking detector

Conceptual design

Selection of detector Evaluation of existing sensor → Done

Tracking detector design

Specification of silicon strip sensor

Estimation of requirements for the sensor alignment

Producing test sensor

Producing and evaluating test sensor

Development of tracking detector

Conceptual design

Selection of detector Evaluation of existing sensor → Done

Tracking detector design

Specification of silicon strip sensor

Estimation of requirements for the sensor alignment

Producing test sensor

Producing and evaluating test sensor

Specifications of silicon strip sensor

	sensor spec		
со	isidering mean hit rate		
Item	Specifications		
sensitive are	240 mm x 400 mm		
# of vane	48		
sensor size	74 mm x 98 mm x 0.32 mm		
# of sensor	48 x 12 (12 sensors per vane)		
radial strip (0.188 mm pitch, 72 mm long		
axial strip (z	0.255 mm pitch, 98 mm long		

We optimized strip spec considering event structure

Specification of sensor strip pitch

If strip pitch becomes more narrow,

Relation between hit rate and strip pitch

 Δr , Δz is concerned about

Simulation study is important.

- incident angle (0.5 rad @ 200 MeV)
- multiple scattering (0.003 rad @200 MeV)

Simulation set up

Using Geant4.9.6

tracking detector
of vane : 48

• thickness of sensor : 0.3 mm

ConditionB field : 3 Tesla

- E field : 0 V/m
- •γ_μ: 3 (300 MeV/c)
- in the vacuum

r : radial coordinate
z : axial coordinate
α : rotate angle
from decay point

Positron migration in the sensor (Δr , Δz)

Δr , Δz vs Energy at decay point

Requirement about hit rate

Sensor specification

We determined the spec of silicon strip sensor.

Axial sensor

Radial sensor

Development of tracking detector

Conceptual design

Selection of detector Evaluation of existing sensor → Done

Tracking detector design

Specification of silicon strip sensor

Estimation of requirements for the sensor alignment

Producing test sensor

Producing and evaluating test sensor

Sensor misalignment

- Sensor tilt can lead fake EDM signal.
- We considered 4 types of detector tilt and checked whether fake EDM appears or not by simulation

4 types of detector tilt

Relation between the type of detector tilt and fake EDM

 $d_{\mu} = 0 \, \mathrm{e} \cdot \mathrm{cm}$ $3.4 \times 10^{12} \, \mathrm{muon}$

r and ϕ axis rotation is important problem.

Results about misalignment and fake EDM

 To make fake EDM smaller than goal sensitivity,

φ axis rotation : < 0.01 mrad r axis rotation :

< 0.2 mrad z axis rotation :

no change even if sensors tilt100 mrad

global rotation :

Development of tracking detector

Conceptual design

Selection of detector Evaluation of existing sensor → Done

Tracking detector design

Specification of silicon strip sensor

Estimation of requirements for the sensor alignment

Producing test sensor

Producing and evaluating test sensor

producing test sensors

• We produced test sensors with 64 strip.

 Test sensors equivalent to a part of whole sensors. (blue region in the figure)

Test sensor specification

	Axial ((A) sensor
Thickness	•	0.320 mm
Strip pitch	:	0.100 mm
Strip width	:	0.027 mm
Strip length	:	72 mm
# of Strip	:	64

Test sensors and sensor boards for evaluation

- Producing test sensor
- Designing and producing sensor board
- Mount test sensors for the sensor boards

Radial sensor

Axial sensor

Flow chart of sensor evaluation

Sensor property

- Checking the surface of sensor with microscope
 - → Checking mis-patterned sensor
- I–V measurement
 - → Measuring leak current
- C-V measurement
 - → Measuring Full depletion voltage and sensor capacitance
- Inter strip capacitance measurement
 - → Measuring sensor capacitance

Sensor Evaluation

- Noise measurement
- Signal measurement with pulse laser

Results of sensor evaluation

R sensor

A sensor

	expectation	measured	expectation	measured
Sensor check		O.K.		O.K.
I-V		O.K.		O.K.
Full depletion voltage		93 V		73 V
Bulk capacitance	350 pF	360 pF	150 pF	170 pF
Inter strip capacitance	6 pF	7.4 pF	4 pF	6.2 pF
Detector capacitance		23.4 pF		15.9 pF
ENC	1500 e	1500 e	1300 e	-
Laser test	2.4×10	2.6×10	2.4×10	2.5×10
S/N	16	17	18	

Next step

Tracking detector design

Specification of silicon strip sensor → Done

Estimation of requirements for the sensor alignment \rightarrow Done

Producing test sensor

Producing and evaluating test sensor → Done beam test

sensor improvement & detector construction test

Improve the sensor based on evaluation

demonstration of detector construction

Tracking detector construction

summary

J-PARC muon g-2/EDM experiment

• g-2 : 0.54 ppm \rightarrow 0.1 ppm EDM : 1.8×10^{-19} e · cm \rightarrow 10^{-21} e · cm

Specification of silicon strip sensor

- We optimized strip pitch from positron migration in the sensor
- We determined the sensor spec.

Estimation of requirement for sensor alignment

- Sensor tilt can lead fake EDM.
- φ axis rotation is most important and must be limited 10 µrad.

Producing and evaluating test sensor

• We produced and evaluated two types test sensor.

back up

Sensor check with microscope

55 5 1	
p strip alignment mark	
There is no remarkable damage.	

Sensor characteristic (I-V, C-V measurement)

- We can check if the sensor is work well or not by I-V and C-V measurement.
- And we can also check the full depletion voltage of the silicon sensor.

setup of the measurement

I-V measurement

- We can see plato region over 90 V
- Because of difference of temperature in these two measurement, leak current is different.

Radial strip sensor I-V Leak current (µA) 0.35 0.3 0.25 : 0.2 ٠ 0.15 0.1 on board 26.0 0.05 probe 25.7 20 60 80 120 200 40 100 140 160 180 Bias voltage (V)

C-V measurement

 Considered the sensor as a capacitance,

 $C = \epsilon \frac{S}{d}$

• d is thickness of depleted region, and proportional to square root of bias voltage \sqrt{V} .

Radial strip sensor C-V

Full depletion voltage

- R sensor: 94 V
- A sensor: 73 V
- These results are consistent with I-V measurement

Pulse laser test

 Producing same number of e-h pair as MIP with an infrared laser pulse.

wave length = 1060 nm energy / pulse = 87 keV

- Expectation : 2.4x10⁴ e
- Measured : 2.6x10⁴ e

Signal 2.4×10⁴ / ENC1500 e \rightarrow S/N=16 \rightarrow It seems to be achieved S/N=15 (goal).

I-V measurement

SlitA 2012

 ENC calculated from measured capacitance, ENC=860+29xC_{total} =1500 e

Measured ENC

$$ENC = \frac{7.6 \ (mV)}{32 \ (mV/fC)e} = 1500 \ e$$

consistent

C-V measurement

 Considered the sensor as a capacitance,

 $C = \epsilon \frac{S}{d}$

 d is thickness of depleted region, and proportional to square root of bias voltage/V

figure of merit

E ≥ 200 MeV signal E < 200 MeV background

Cth : # of positron over threshold A : Asymmetry

Event display

Event display

Δz vs positron track length

distribution of momentum, and r and z of hotpoint

